511 research outputs found

    Prolonging nephrogenesis in preterm infants: a new approach for prevention of kidney disease in adulthood?

    No full text
    Chronic kidney disease represents a dramatic worldwide resourceconsuming problem. This problem is of increasing importance even in preterm infants, since nephrogenesis may go on only for a few weeks (4 to 6 weeks) after birth. Recent literature focusing on traditional regenerative medicine does not take into account the presence of a high number of active endogenous stem cells in the preterm kidney, which represents a unique opportunity for starting regenerative medicine in the perinatal period. Pluripotent cells of the blue strip have the capacity to generate new nephrons, improving kidney function in neonates and potentially protecting them from developing chronic kidney disease and end-stage renal disease in adulthood. There is a marked interindividual neonatal variability of nephron numbers. Moreover, the renal stem/progenitor cells appear as densely-packed small cells with scant cytoplasm, giving rise to a blue-appearing strip in hematoxylin-eosin–stained kidney sections (“the blue strip”). There are questions concerning renal regenerative medicine: among preliminary data, the simultaneous expression of Wilms tumor 1 and thymosin β4 in stem/progenitor cells of the neonatal kidney may bring new prospects for renal regeneration applied to renal stem cells that reside in the kidney itself. A potential approach could be to prolong the 6 weeks of postnatal renal growth of nephrons or to accelerate the growth of nephrons during the 6 weeks or both. Considering what we know today about perinatal programming, this could be an important step for the future to reduce the incidence and global health impact of chronic kidney disease

    Cranberry in children: prevention of recurrent urinary tract infections and review of the literature

    Get PDF
    Urinary tract infections (UTI) are common in childhood. In 30-50% of children with UTI the infections occur recurrently, especially in those with vesicoureteral reflux (VUR), neurogenic bladder (NB), previous cystitis or pyelonephritis and malformative uropathies. To reduce the likelihood of UTI, antibiotic prophylaxis has been regarded as the therapeutic standard for many years. However, the disadvantage of long-term antibiotic therapy is the potential for development of collateral effects and resistant organisms in the host. Such reasons have induced scientists to search for alternative modalities of UTI prevention and have contributed to determining the increasing desire for "naturalness" of the population and preventing excessive medication. The use of cranberry fulfils these needs by potentially replacing or enhancing traditional procedures. The purpose of this study was to assess the effectiveness of cranberry in preventing UTI in pediatric populations. We searched Pubmed, the Cochrane Central Register of Controlled Trials and Internet. Cranberry in patients with previous UTI was evaluated in three studies, cranberry in patients with VUR in three studies and four studies analyzed the efficacy of cranberry in children with NB. In seven of nine studies cranberry had a significant effect in preventing UTI

    Metabolomics and fetal-neonatal nutrition: Between "not enough" and "too much"

    Get PDF
    Metabolomics is a new analytical technique defined as the study of the complex system of metabolites that is capable of describing the biochemical phenotype of a biological system. In recent years the literature has shown an increasing interest in paediatric obesity and the onset of diabetes and the metabolic syndrome in adulthood. Some studies show that fetal malnutrition, both excessive and insufficient, may permanently alter the metabolic processes of the fetus and increase the risk of future chronic pathologies. At present then, attention is being focused mainly on the formulation of new hypotheses, by means of metabolomics, concerning the biological mechanisms to departure from fetal-neonatal life that may predispose to the development of these diseases. © 1996-2013 MDPI AG

    Pulmonary Tuberculosis in Children: A Forgotten Disease?

    Get PDF
    Even today, tuberculosis in childhood is a disease that is often undiagnosed and undertreated. In the absence of therapy with antituberculosis drugs, children in the first years of life have a high degree of severe forms and mortality. In these children, symptoms are often not very specific and can easily be confused with other diseases of bacterial, viral or fungal etiology, making diagnosis more difficult. Nevertheless, the introduction of new diagnostic techniques has allowed a more rapid identification of the infection. Indeed, Interferon gamma release assay (IGRA) is preferred to the Mantoux, albeit with obvious limitations in children aged <2 years. While the Xpert Mtb/RIF Ultra test is recommended as an initial diagnostic investigation of the gastric aspirate and/or stools in children with signs and symptoms of pulmonary tuberculosis. The drugs used in the treatment of susceptible and resistant TB are the same as those used in adults but doses and combinations are different in the pediatric age. In children, brief therapy is preferable in both the latent infection and the active disease, as a significant reduction in side effects is obtained

    NGAL and metabolomics: The single biomarker to reveal the metabolome alterations in kidney injury

    Get PDF
    Conditions affecting kidney structure and function can be considered acute or chronic, depending on their duration. Acute kidney injury (AKI) is one of a number of acute kidney diseases and consists of an abrupt decline in kidney function after an injury leading to functional and structural changes. The widespread availability of enabling technologies has accelerated the rate of novel biomarker discovery for kidney injury. The introduction of novel biomarkers in clinical practice will lead to better preventative and therapeutic interventions and to improve outcomes of critically ill patients. A number of biomarkers of functional change and cellular damage are under evaluation for early diagnosis, risk assessment, and prognosis of AKI. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as the most promising biomarker of kidney injury; this protein can be measured by commercially available methods in whole blood, plasma, serum, and urine. Concomitantly, metabolomics appears to be a snapshot of the chemical fingerprints identifying specific cellular processes. In this paper, we describe the role of NGAL for managing AKI and the potential benefits deriving from the combined clinical use of urine NGAL and metabolomics in kidney disease

    Should we definitively abandon prophylaxis for patent ductus arteriosus in preterm new-borns?

    Get PDF
    Although the prophylactic administration of indomethacin in extremely low-birth weight infants reduces the frequency of patent ductus arteriosus and severe intraventricular hemorrhage, it does not appear to provide any long-term benefit in terms of survival without neurosensory and cognitive outcomes. Considering the increased drug-induced reduction in renal, intestinal, and cerebral blood flow, the use of prophylaxis cannot be routinely recommended in preterm neonates. However, a better understanding of the genetic background of each infant may allow for individualized prophylaxis using NSAIDs and metabolomics

    Metabolomic profiles and microbiota of GDM offspring: The key for future perspective?

    Get PDF
    Gestational diabetes mellitus (GDM), or any degree of glucose intolerance recognized for the first time during pregnancy, is one of the diseases that most frequently aggravates the course of gestation. Missed or late diagnosis and inadequate treatment are associated with high maternal and fetal morbidity, with possible short- and long-term repercussions. Estimates on the prevalence of GDM are alarming and increasing by about 30% in the last 10-20 years. In addition, there is the negative influence of the SARS-CoV-2 emergency on the glycemic control of pregnant women, making the matter increasingly topical. To date, knowledge on the metabolic maturation of newborns is still incomplete. However, in light of the considerable progress of the theory of "developmental origins of health and disease," the relevant role of the intrauterine environment cannot be overlooked. In fact, due to the high plasticity of the early stages of development, some detrimental metabolic alterations during fetal growth, including maternal hyperglycemia, are associated with a higher incidence of chronic diseases in adult life. In this context, metabolomic analysis which allows to obtain a detailed phenotypic portrait through the dynamic detection of all metabolites in cells, tissues and different biological fluids could be very useful for the early diagnosis and prevention of complications. Indeed, if the diagnostic timing is optimized through the identification of specific metabolites, the detailed understanding of the altered metabolic pathway could also allow better management and more careful monitoring, also from a nutritional profile, of the more fragile children. In this context, a further contribution derives from the analysis of the intestinal microbiota, the main responsible for the fecal metabolome, given its alteration in pregnancies complicated by GDM and the possibility of transmission to offspring. The purpose of this review is to analyze the available data regarding the alterations in the metabolomic profile and microbiota of the offspring of mothers with GDM in order to highlight future prospects for reducing GDM-related complications in children of mothers affected by this disorder

    Clinical metabolomics and nutrition: the new frontier in neonatology and pediatrics.

    Get PDF
    In the pediatric clinic, nutritional research is focusing more and more on preventing the development of long-term diseases as well as supporting the repair processes important in the therapy of already fully developed diseases. Most children who are hospitalized or affected by chronic diseases could benefit from specific and careful attention to nutrition. Indeed, the state of nutrition modulates all body functions, including the different metabolic processes which, all together, have a profound effect on the development of the health and future of all individuals. Inappropriate food, even in the first periods of life, can accelerate the development of chronic metabolic diseases, especially in the pediatric age. To gain further insights into metabolic cycles and how they are connected with diet and health, nutrition and metabolomics interact to develop and apply modern technologies for metabolic assessment. In particular, nutritionists are evaluating the metabolomic approach to establish the single nutritional phenotypes, that is, the way in which diet interacts with individuals' metabolisms. This strategy offers the possibility of providing a complete definition of the individual's nutritional and health status, predict the risk of disease, and create metabolomic databases supporting the development of "personalized nutrition," in which diet is attuned to the nutritional needs of individual patients

    Metabolomics: a challenge for detecting and monitoring inborn errors of metabolism

    Get PDF
    Timely newborn screening and genetic profiling are crucial in early recognition and treatment of inborn errors of metabolism (IEMs). A proposed nosology of IEMs has inserted 1,015 well-characterized IEMs causing alterations in specific metabolic pathways. With the increasing expansion of metabolomics in clinical biochemistry and laboratory medicine communities, several research groups have focused their interest the analysis of metabolites and their interconnections in IEMs. Metabolomics has the potential to extend metabolic information, thus allowing to achieve an accurate diagnosis for the individual patient and to discover novel IEMs. Structural and functional information on 247 metabolites associated with 147 IEMs and 202 metabolic pathways involved in various IEMs have been reported in the human metabolome data base (HMDB). For each metabolic gene, a new computational approach can be developed for predicting a set of metabolites, whose concentration is predicted to change after gene knockout in urine, blood and other biological fluids. Both targeted and untargeted mass spectrometry (MS)-based metabolomic approaches have been used to expand the range of disease-associate metabolites. The quantitative targeted approach, in conjunction with chemometrics, can be considered a basic tool for validating known diagnostic biomarkers in various metabolic disorders. The untargeted approach broadens the identification of new biomarkers in known IEMs and allows pathways analysis. Urine is an ideal biological fluid for metabolomics in neonatology; however, lack of standardization of preanalytical phase may generate potential interferences in metabolomic studies. The integration of genomic and metabolomic data represents the current challenge for improving diagnosis and prognostication of IEMs. The goals consist in identifying both metabolically active loci and genes relevant to a disease phenotype, which means deriving disease-specific biological insights
    • …
    corecore