234 research outputs found

    Preliminary survey of historic buildings with wearable mobile mapping systems and uav photogrammetry

    Get PDF
    In cultural heritage, three-dimensional documentation of historic buildings is fundamental for conservation and valorisation projects. In recent years, the consolidated tools and methods: Terrestrial Laser Scanning (TLS) and close-range photogrammetry, have been joined by portable Mobile Mapping Systems (MMSs), which can offer significant advantages in terms of speed of survey operations at the price of reduced accuracy. The reduction of survey times and, therefore, costs makes the application of MMS techniques ideal for the preliminary stages of analysis of historical artifacts, when a rapid survey is indispensable for estimating the costs of conservation interventions. In this paper, we present a methodology for the expeditious survey of historic buildings and the surrounding urban fabric that is based on the use of an MMS and an Unmanned Aerial Vehicle (UAV). The MMS is the Gexcel Heron MS Twin color. It was used to survey two architecture of interest and the urban context surrounding them from the ground level. The UAV is the DJI Mini 2, used to integrate the terrestrial survey by acquiring the buildings' roofs. The case study presented in the paper is the survey of San Clemente and San Zeno al Foro churches, two historic churches in the city centre of Brescia (Italy). The result are a complete point cloud of the two buildings and a metric virtual tour of all spaces. These results were made available to the architects through the Cintoo web platform to plan future activities

    Dorsal anterior cingulate-brainstem ensemble as a reinforcement meta-learner

    Get PDF
    Published: August 24, 2018Optimal decision-making is based on integrating information from several dimensions of decisional space (e.g., reward expectation, cost estimation, effort exertion). Despite considerable empirical and theoretical efforts, the computational and neural bases of such multidimensional integration have remained largely elusive. Here we propose that the current theoretical stalemate may be broken by considering the computational properties of a cortical-subcortical circuit involving the dorsal anterior cingulate cortex (dACC) and the brainstem neuromodulatory nuclei: ventral tegmental area (VTA) and locus coeruleus (LC). From this perspective, the dACC optimizes decisions about stimuli and actions, and using the same computational machinery, it also modulates cortical functions (meta-learning), via neuromodulatory control (VTA and LC). We implemented this theory in a novel neuro-computational model–the Reinforcement Meta Learner (RML). We outline how the RML captures critical empirical findings from an unprecedented range of theoretical domains, and parsimoniously integrates various previous proposals on dACC functioning.MS was funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 795919. EV was funded from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 705630. EA was supported by Research Foundation Flanders under contract number 12C4715N. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    SURVEY OF HISTORICAL GARDENS: MULTI-CAMERA PHOTOGRAMMETRY VS MOBILE LASER SCANNING

    Get PDF
    This paper presents an investigation into the characterization of historical gardens by comparing two 3D survey methodologies. In this context, approaches employing terrestrial laser scanning are considered the most accurate, while Mobile Mapping Systems (MMSs) are considered promising due to their extreme productivity. Less common is the use of close-range photogrammetry. This paper compares two approaches based on the use of a wearable MMS and the use of an in-house built photogrammetric multi-camera prototype. The comparison aims to assess the applicability of the two techniques in this field, evaluating their advantages and disadvantages in surveying a historical garden and extracting information for tree inventory, such as the DBH (Diameter at Breast Height) and canopy footprint. We compared the practicality of surveying and processing operations; and the quality and characteristics of the point clouds obtained. Both systems produced a dense representation of the terrain. The multi-camera survey resulted to be more defined due to the lower noise of the point cloud but incomplete in the definition of tree canopies. DBH of tree trunks can be extracted with both systems, except for thinner and finer diameter trunks detected by the MMS approach but not always by the multi-camera. The MMS approach proved more effective thanks to a shorter survey time required to cover an equal area and the fact that the MMS survey alone is sufficient for the geometric description of trees. In contrast, the multi-camera approach cannot avoid integration with an aerial survey for canopy reconstructio

    SCAN-TO-BIM EFFICIENT APPROACH TO EXTRACT BIM MODELS FROM HIGH PRODUCTIVE INDOOR MOBILE MAPPING SURVEY

    Get PDF
    Building Information Modeling represents one of the most interesting developments in construction fields in the last 20 years. BIM process supports the creation of intelligent data that can be used throughout the life cycle of a construction project. Where a project involves a pre-existing structure, reality capture can provide the most critical information. The purpose of this paper is to describe an efficient approach to extract 3D models using high productive indoor Mobile Mapping Systems (iMMS) and an optimized scan-to-BIM workflow. The scan-to-BIM procedure allows reconstructing several elements within a digital environment preserving the features and reusing them in the development of the BIM project. The elaboration of the raw data acquired from the iMMS starts with the software HERON® Desktop where a SLAM algorithm runs and a 3D point cloud model is produced. The model is translated in the Gexcel Reconstructor® point cloud post processing software where a number of deliverables as orthophotos, blueprints and a filtered and optimized point cloud are obtained. In the proposed processing workflow, the data are introduced to Autodesk ReCap®, where the model can be edited and the final texturized point cloud model extracted. The identification and modeling of the 3D objects that compose the BIM model is realized in ClearEdge3D EdgeWiseTM and optimized in Autodesk Revit®. The data elaboration workflow implemented shows how an optimized data processing workflow allows making the scan-to-BIM procedure automatic and economically sustainable

    Paediatric non-alcoholic fatty liver disease: impact on patients and mothers' quality of life

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is one of the causes of fatty liver in adults and is currently the primary form of chronic liver disease in children and adolescents. However, the psychological outcome (i.e. the behavioural problems that can in turn be related to psychiatric conditions, like anxiety and mood disorders, or lower quality of life) in children and adolescents suffering of NAFLD has not been extensively explored in the literature. Objectives: The present study aims at evaluating the emotional and behavioural profile in children suffering from NAFLD and the quality of life in their mothers. Patients and Methods: A total of 57 children (18 females/39 males) with NAFLD were compared to 39 age-matched control children (25 females/14 males). All participants were submitted to the following psychological tools to assess behavior, mood, and anxiety: the Multidimensional Anxiety Scale for Children (MASC), the Child Behavior Checklist (CBCL), and the Children's Depression Inventory (CDI). Moreover, the mothers of 40 NAFLD and 39 control children completed the World Health Organization Quality of Life-BREF (WHOQOL-BREF) questionnaire. Results: NAFLD children scored significantly higher as compared to control children in MASC (P = 0.001) and CDI total (P < 0.001) scales. The CBCL also revealed significantly higher scores for NAFLD children in total problems (P = 0.046), internalizing symptoms (P = 0.000) and somatic complaints (P < 0.001). The WHOQOL-BREF revealed significantly lower scores for the mothers of NAFLD children in the overall perception of the quality of life (P < 0.001), and in the "relationships" domain (P = 0.023). Conclusions: Increased emotional and behavioural problems were detected in children with NAFLD as compared to healthy control children, together with an overall decrease in their mothers' quality of life. These results support the idea that these patients may benefit from a psychological intervention, ideally involving both children and parents, whose quality of life is likely negatively affected by this disease

    SURVEY OF HISTORICAL GARDENS: MULTI-CAMERA PHOTOGRAMMETRY VS MOBILE LASER SCANNING

    Get PDF
    This paper presents an investigation into the characterization of historical gardens by comparing two 3D survey methodologies. In this context, approaches employing terrestrial laser scanning are considered the most accurate, while Mobile Mapping Systems (MMSs) are considered promising due to their extreme productivity. Less common is the use of close-range photogrammetry. This paper compares two approaches based on the use of a wearable MMS and the use of an in-house built photogrammetric multi-camera prototype. The comparison aims to assess the applicability of the two techniques in this field, evaluating their advantages and disadvantages in surveying a historical garden and extracting information for tree inventory, such as the DBH (Diameter at Breast Height) and canopy footprint. We compared the practicality of surveying and processing operations; and the quality and characteristics of the point clouds obtained. Both systems produced a dense representation of the terrain. The multi-camera survey resulted to be more defined due to the lower noise of the point cloud but incomplete in the definition of tree canopies. DBH of tree trunks can be extracted with both systems, except for thinner and finer diameter trunks detected by the MMS approach but not always by the multi-camera. The MMS approach proved more effective thanks to a shorter survey time required to cover an equal area and the fact that the MMS survey alone is sufficient for the geometric description of trees. In contrast, the multi-camera approach cannot avoid integration with an aerial survey for canopy reconstruction

    TARGETLESS REGISTRATION METHODS BETWEEN UAV LIDAR AND WEARABLE MMS POINT CLOUDS

    Get PDF
    Fixed-wing Unmanned Aerial Vehicles (UAV) and wearable or portable Mobile Mapping Systems (MMS) are two widely used platforms for point cloud acquisition with Light Detection And Ranging (LiDAR) sensors. The two platforms acquire from distant viewpoints and produce complementary point clouds, one describing predominantly horizontal surfaces and the other primarily vertical. Thus, the registration of the two data is not straightforward. This paper presents a test of targetless registration between a UAV LiDAR point cloud and terrestrial MMS surveys. The case study is a vegetated hilly landscape characterized by the presence of a structure of interest; the UAV acquisition allows the entire area to be acquired from above, while the terrestrial MMS acquisitions will enable the construction of interest to be detailed. The paper describes the survey phase with both techniques. It focuses on processing and registration strategies to fuse the two data together. Our approach is based on the ICP (Iterative Closest Point) method by exploiting the data processing algorithms available in the Heron Desktop post-processing software for handling data acquired with the Heron Backpack MMS instrument. Two co-registration methods are compared. Both ways use the UAV point cloud as a reference and derive the registration of the terrestrial MMS data by finding ICP matches between the ground acquisition and the reference cloud exploiting only a few areas of overlap. The two methods are detailed in the paper, and both allow us to complete the co-registration task

    PRELIMINARY SURVEY OF HISTORIC BUILDINGS WITH WEARABLE MOBILE MAPPING SYSTEMS AND UAV PHOTOGRAMMETRY

    Get PDF
    In cultural heritage, three-dimensional documentation of historic buildings is fundamental for conservation and valorisation projects. In recent years, the consolidated tools and methods: Terrestrial Laser Scanning (TLS) and close-range photogrammetry, have been joined by portable Mobile Mapping Systems (MMSs), which can offer significant advantages in terms of speed of survey operations at the price of reduced accuracy. The reduction of survey times and, therefore, costs makes the application of MMS techniques ideal for the preliminary stages of analysis of historical artifacts, when a rapid survey is indispensable for estimating the costs of conservation interventions.In this paper, we present a methodology for the expeditious survey of historic buildings and the surrounding urban fabric that is based on the use of an MMS and an Unmanned Aerial Vehicle (UAV). The MMS is the Gexcel Heron MS Twin color. It was used to survey two architecture of interest and the urban context surrounding them from the ground level. The UAV is the DJI Mini 2, used to integrate the terrestrial survey by acquiring the buildings' roofs. The case study presented in the paper is the survey of San Clemente and San Zeno al Foro churches, two historic churches in the city centre of Brescia (Italy).The result are a complete point cloud of the two buildings and a metric virtual tour of all spaces. These results were made available to the architects through the Cintoo web platform to plan future activities.</p

    Non-Pharmacological Treatments

    Get PDF
    In clinical psychiatry, we dispose of different non-pharmacological approaches, such as somatic treatments, chronobiological treatments, cognitive remediation, and psychotherapy. Somatic treatments include transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and electroconvulsive therapy (ECT). These techniques, which exert their function through the modulation of cortical excitability, find an application in many psychiatric disorders, but mainly in resistant depression. Chronotherapies, a group of non-pharmacological therapeutic approaches to mood disorder treatment, are rooted in the hypothesis of chronobiology aetiopathogenesis of psychiatric disorders (mainly mood disorders). Chrono-biological treatments include light therapy (LT), sleep deprivation (SD), and dark therapy (DT). While LT and SD are mainly used in depression, DT finds a clinical application in mania. Cognitive remediation (CR) is a set of interventions based on behavioural training whose goal is to enhance neurocognitive abilities. This technique finds its main application in schizophrenia. Psychotherapy approaches have a proved effectiveness for the treatment of various psychiatric conditions when combined to psychopharmacological treatment. The two main approaches are cognitive-behavioural therapy and psychodynamic therapy

    Model calibration for ice sheets and glaciers dynamics: a general theory of inverse problems in glaciology

    Get PDF
    Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen\u2019s and Fourier\u2019s laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBCs) on ice velocity, stress and temperature; on the other hand the constitutive laws involve many physical parameters, some of which depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws. As these quantities cannot be easily measured at the study scale in the field, they are often obtained through model calibration by solving an inverse problem (IP). The objective of this paper is to provide a thorough and rigorous conceptual framework for IPs in cryospheric studies and in particular: to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed; to define and characterise identifiability, a property related to the solution to the forward problem; to study well-posedness in a correct way, without confusing instability with ill-conditioning or with the properties of the method applied to compute a solution; to cast sensitivity analysis in a general framework and to differentiate between the computation of local sensitivity indicators with a one-at-a-time approach and first-order sensitivity indicators that consider the whole possible variability of the model parameters. The conceptual framework and the relevant properties are illustrated by means of a simple numerical example of isothermal ice flow, based on the shallow-ice approximation
    • …
    corecore