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Abstract

Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the so-
lution of discrete equations which are based on physical principles (e.g. conservation of
mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen’s
and Fourier’s laws). These equations must be accompanied by information on the forcing
term and by initial and boundary conditions (IBCs) on ice velocity, stress and tempera-
ture; on the other hand the constitutive laws involve many physical parameters, some of
which depend on the ice thermodynamical state. The proper forecast of the dynamics of ice
sheets and glaciers requires a precise knowledge of several quantities which appear in the
IBCs, in the forcing terms and in the phenomenological laws. As these quantities cannot
be easily measured at the study scale in the field, they are often obtained through model
calibration by solving an inverse problem (IP). The objective of this paper is to provide a
thorough and rigorous conceptual framework for IPs in cryospheric studies, which can be
useful to improve the definition and the analysis of some properties of the IPs with respect
to standard introduction. In particular, among the topics that are considered in this paper,
it is worth to recall the following: the role of experimental and monitoring data to determine
the calibration targets and the values of the parameters that can be considered to be fixed;
the definition of identifiability, a property related to the solution to the forward problem; the
correct study of well-posedness, without confusing instability with ill-conditioning or with the
properties of the method applied to compute a solution; the embedding of sensitivity analy-
sis in a general framework and the distinction between local sensitivity indicators, computed
with a one-at-a-time approach, and first-order sensitivity indicators that consider the whole
possible variability of the model parameters. The conceptual framework and the relevant
properties are illustrated by means of a simple numerical example of isothermal ice flow,
based on the shallow-ice approximation.
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1 Introduction

The physics of the dynamic evolution of ice sheets and glaciers is based on physical prin-
ciples (e.g. conservation of mass, linear momentum and energy) and phenomenological
constitutive laws (e.g. Glen’s and Fourier’s laws) which are used to derive partial differential
equations. These equations must be accompanied by information on the forcing terms and
by initial and boundary conditions (IBCs) on ice velocity, stress and temperature. On the
other hand, the constitutive laws involve many physical parameters, some of which depend
on the ice thermodynamical state. The basic equations of ice sheet models can be found,
e.g. in |Hutter| (1983), van der Veen| (1999), Hooke| (2005), |Greve and Blatter (2009) and
Cuffey and Paterson| (2010).

Difficulties associated with heterogeneity and anisotropy of the physical parameters and
of the climatic forcing, non-linearity of the physical processes, complex geometries, etc. do
not permit to compute analytical solutions, which can be obtained only if strong approxima-
tions are introduced. Therefore, numerical methods of solution of partial differential equa-
tions (e.g. finite differences, finite elements, etc.) are used and discrete numerical models
are developed and applied, such as, e.g. SICOPOLIS (Grevel [1995), GLIMMER (Rutt et al.,
2009), PISM (the PISM authors, |2014; (Winkelmann et al., 2011), and many others, some
of which were also tested in intercomparison experiments (Huybrechts et al., |1996; [Payne
et al., 2000; Pattyn et al., [2008).

The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP)
does not depend only on the goodness of the approximations introduced by the discretiza-
tion of the domain and of the equations. It requires also a precise knowledge of several
quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws.
Unfortunately, field measurements are often affected by large uncertainties and poor space
and time sampling, whereas laboratory measurements are relevant to scales which are
very different from those involved in the FP. Therefore, one must rely on model calibration
to infer the input model parameters, i.e. the solution of inverse problems (IPs) is necessary.
Roughly speaking, an IP aims at finding the optimal values of the model parameters that
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yield the best agreement of the model output with the field observations and data. Several
applications of inverse modelling were proposed in glaciology, mostly to model the dynamics
of ice sheets and glaciers (MacAyeal, {1992, 1993}, Arthern and Hindmarsh, 2003; Joughin
et al., [2004; Truffer, 2004} Gudmundsson and Raymond, |2008; [Raymond and Gudmunds-
son|, (2009}, |Avdonin et al., |2009|; [Morlighem et al., 2010; |Arthern and Gudmundsson, 2010;
Gillet-Chaulet et al., 2012;|Habermann et al.,|2012; |Petra et al., 2012} |Pollard and DeConto,
2012; |Bonan et al., 2014, and others). Besides this, inverse problems have been used in
cryospheric sciences also to infer other properties from field data, for instance, in ice core
dating, as proposed, among the others, by |Parrenin et al.|(2001) and|Johnsen et al.[(2001).

Although the topics presented and discussed in this paper have a general validity, the
focus will be on the application to ice sheet and glacier modelling. In these cases, surface
data (e.g.: glacier topography; velocity, accumulation rate and temperature of ice), could
be used to infer either the physical properties of the ice (namely the parameters apply-
ing in Glen’s law) or basal properties of the glacier, which are practically impossible to be
measured, such as, for instance, melt rate or ice velocity. Notice that the input data could
include not only sparse measurements obtained with field surveys, but also maps obtained
from aerial or satellite imaging.

Notwithstanding the excellent works proposed by different research groups, as shown
by the above, incomplete list of references (see also [Gudmundsson, 2011, for a review),
IP theory, which is well developed in several areas of science and geophysics (see, e.g.
Parker, [1994; Tarantola, [2004; Menke, 2012), has not yet become popular in glaciologi-
cal sciences. This remark is supported by a simple statistical analysis, whose results are
shown in table [1|and which was performed with the Scopus data base. The number of pa-
pers with keywords related to inverse problems (“invers*”, “model calibration”, “parameter
identification”) and keywords related to geophysics (“geophys*”), glaciology (“glaci*”) and
(surface or sub-surface) hydrology (“hydro*”) have been extracted from the subject areas
“Earth and planetary sciences”, “Environmental Science”, “Physics and astronomy”. Table 1]
shows that the percentage of papers dealing with glaciological studies whose keywords are
related to inverse modelling is one order of magnitude less than that for the whole field of
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geophysics. Moreover, even if the analysis is compared with other restricted fields of geo-
physics, e.g., hydrology, the results show that there is a difference by a factor close to 2;
moreover, notice that the papers extracted for the keyword “Hydro*” are sometimes related
to fields different from geophysics (e.g., biology) and therefore the discrepancy between the
fields of hydrology and glaciological sciences is probably more relevant.

These results clearly show that the use and application of inverse modelling in the
cryospheric sciences is more limited than in other fields of geophysics. While the literature
contains a number of excellent examples of IP methods and applications (see the papers
cited above, among many others), in other cases some basic mathematical properties are
not fully considered in the applications and therefore a somehow formal and abstract review
can be useful.

First of all, the proposed conceptual framework permits to clarify the role of experimental
and monitoring data to determine the calibration targets and the values of the parameters
that can be considered to be fixed, whereas only the model output should depend on the
subset of the parameters that can be identified with the calibration procedure and the solu-
tion to the IP.

It is difficult to guarantee the existence and uniqueness of a solution to the IP for com-
plex non-linear models. Together with instability, non-existence and non-uniqueness of the
solution make the IP ill-posed. Unfortunately, in practical applications the issue of non-
uniqueness and that of identifiability (Giudici, (1989, [1991), a property related to the solu-
tion to the FP, is rarely analyzed. IPs are often claimed to be ill-posed, due to instability.
However, this is rigorously true only for continuous-domain distributed-parameters models.
For discrete numerical models, the properties of the IP must be analyzed with more care
and when this is done, it appears that difficulties sometimes arise from ill-conditioning or
non-uniqueness (Giudici, |2002). Moreover, instability of the IP should not be confused with
ill-conditioning and with the properties of the method applied to compute a solution.

Finally, sensitivity analysis is of paramount importance to assess the reliability of the esti-
mated parameters and of the model output. It is often based on the one-at-a-time approach,
through the application of the adjoint-state method (see, e.g.Heimbach and Bugnion, |2009;
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Petra et al., 2012; |[Heimbach and Losch, [2012), to compute local sensitivity, i.e. the un-
certainty on the model output due to small variations of the input parameters. However,
first-order approaches that consider the whole possible variability of the model parameters
should be considered (see, e.g. Hill and Tiedeman, 2006;;\Saltelli et al.,|2008; |Baratelli et al.,
2012).

Therefore, the objective of this paper is to provide a further step towards a thorough and
rigorous theoretical conceptual framework for IPs in cryospheric studies, in order to improve
the definition and the comprehension of the properties of IPs with a formal approach which
might help to close the gap between mathematical abstraction and applied simulation mod-
elling. The conceptual framework and some of the relevant properties of IPs are illustrated
by means of a simple numerical model of isothermal ice flow, based on the shallow-ice ap-
proximation (SIA, see, e.g. [Hutter, |1983|; Baratelli et al., [2011). In particular, this example
is useful to show that the uncertainties related to ill-posedness or ill-conditioning of the IP
could be limited for a simple model and to show the dependence of the IP solution on the
resolution algorithm.

2 The paradigmatic example and definition of the forward problem

The conceptual framework is introduced with a paradigmatic example based on the ap-
plication of the model developed by Bueler| (2014) at the University of Alaska (Fairbanks
AK, USA) and implemented in the Matlab® code siageneral.m. The model is based on
a finite-difference discretization of the ice-sheet equation under the SIA and the hypothesis
of constant and uniform temperature, that is (Bueler et al.,|2005):

OH = M +V - (DVh), (1)

where H is the ice thickness, t is time, & is the ice surface elevation, M is the surface mass
balance and D is the diffusivity. The model does not consider ice-shelves, so that h = b+ H,
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where b is the bed elevation. D is given by

n+

H 2
D =2EA(pg)" Vh|" 1, 2
(pg)" T |Vh| (2)
where A and n are the flow parameters and E the enhancement factor in Glen’s law, which
is the constitutive relation assumed between strain rate £ and deviatoric stress 7:

éij = BAT) 'y, (3)

where 7. is the effective deviatoric stress.

The model is applied to the Antarctic ice-sheet: the bed elevation and the initial ice thick-
ness are taken from the dataset ALBMAP v1 (Le Brocq et al.,2010) and it is assumed that
n=3and A=10"1°Pa=3a~!l. The latter value corresponds to the reference value used
for some experiments of model intercomparison: EISMINT | (Huybrechts et al., [1996) and
ISMIP-HOM (Pattyn et al., |2008). In the paradigmatic example, it is assumed that M is
constant in space and time. Of course these are very strong approximations, but they are
useful to have a test to introduce some concepts and to show some results in a very sim-
ple way. A reference solution A("¢) is generated by running the model from the present-day
geometry for a time period of 20 ka with the reference parameters M () =0.3ma~! and
E(ref) =3,

In real-world applications, acquired data should include information about the geometry
of the domain, the positions of the measurement points, the measured values of physical
quantities (e.g. ice-sheet-surface height, temperature at the surface and in few boreholes,
ice-sheet velocity at the surface, ice accumulation rate at some monitoring stations on the
surface, etc.). All these data are collected in an array d. For the paradigmatic example, d
contains the synthetic data corresponding to the nodal values of A("e"),

The input model parameters, included those that describe the geometry of the discretiza-
tion grid (e.g. the spacing of the grid), are contained in the array p. Some of these parame-
ters are fixed before the application of the model and can be grouped in a “sub-array” p{™),
which depends on the data, i.e. p™(d). Instead, the model parameters whose values are
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obtained from calibration, via the solution of an IP, are collected in the array p'°@). Therefore,
p = (p™" pea)t. For the paradigmatic example p©@ = (E, M), whereas p™ includes,
among the others, the length of the simulated time period (20 ka) and the prescribed initial
condition.

The state of the system is the ice-sheet surface under stationary conditions at the end of
the simulation: the values computed at all the nodes of the discretization grid are collected
in an array s. With this notation, the model can be written as

A(p,s)s = b(p, s), (4)

where the matrix A is used to discretize not only convective and diffusive flow terms, but also
capacity terms related to time-variations, whereas the array b is related to accumulation,
energy production and to boundary conditions. Therefore, Eq. (4) is a prototype for the linear
system of equations arising from the discretization of the partial differential equations which
translate mass, momentum and energy conservation principles in mathematical form, even
for transient conditions, for which the array s is usually split in the sub-arrays corresponding
to different time steps. Also, Eq. is a prototype of different methods of solution of the
partial differential equations: for instance, for finite elements or spectral methods, the array
s could include the coefficients of the basis functions. Both A and b depend on the system
state because the relevant equation are usually non linear. A is usually a sparse matrix
and for approaches based on the discretization of integral balance equations, it is also
symmetric and positive definite.

Roughly speaking, the FP aims at solving Eq. with respect to s, given the model pa-
rameters p, whereas the IP aims at identifying the values of some of the model parameters,

p©@)  given data (d) that can be used to estimate p{™ and to predict the state s of the
system. The solution of the FP can be expressed in explicit form as

s =g(p), (5)

which is the forward mapping p — s.

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



3 Definition of the inverse problem

The model outcome, i.e. the state of the system, can be used to forecast other quantities
that depend also on the model parameters and possibly on some of the data. Therefore,
the model forecast is expressed as an array y, which is function of s, p and d: y(d, s, p).

For instance, with reference to the paradigmatic example, the basic option is that the
model forecast coincides with the ice cap surface, i.e. y C s. An alternative option is that
the model forecast used for calibration is the ice cap volume. In this case, it is required to
include other parameters in p(™) to compute the model forecast, e.g. parameters related to
the geometry of the system, namely the bedrock topography.

Roughly speaking, the IP consists in the determination of the optimal values of p©a),
i.e. those values that reduce the misfit between the model forecasts and some target values
t. In the simplest case of the basic option, when measurements of the system state are
available, some elements of s can be directly compared with the corresponding elements
of d, i.e. t C d. Instead, for the aforementioned alternative option, the calibration target is
obtained from the processing of field data, in order to obtain an estimate of the total ice cap
volume and therefore it requires additional data and some processing parameters. Then
it is necessary to express the calibration targets as an array depending on d and p™:
t =t(d,p™).

The IP is therefore related to the determination of p(°) through the inverse mapping
{d,p(ﬁx)} N p(cal)_

The most common approach to IP follows optimal control theory and is the search for the
minimum of an objective function O, given by

O(p“) = ||ly(d, s,p) — t(d,p™)]. (6)

The classical choice is the least-squares approach, when the norm appearing in the right
hand side of Eq. (6) is the sum of squared differences between t and y components (I»
norm). This is the objective function applied in the paradigmatic example of this paper. Of
course, many other choices are possible, among which the sum of absolute differences (I;
norm) and the maximum absolute difference (I norm).

9
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The above described formalism includes also more complex objective functions, such as
that based on the logarithm of the misfit between modelled and observed glacier-surface
velocity proposed by Morlighem et al.|(2010) or that developed by |Arthern and Gudmunds-
son| (2010) who introduced the Dirichlet-to-Neumann map approach (Calderon, 2006}, [Kohn
and Vogelius| |1984) in glaciological modelling. These objective functions were tested to
model the Greenland ice sheet dynamics by [Gillet-Chaulet et al.| (2012).

The misfit between y and t depends on several factors: measurement errors; relevance
of the measurement support volumes with respect to the spatial and temporal scales of
the model; model approximations; data processing; etc. This motivated several researchers
(Berliner et al., 2008; |Raymond and Gudmundsson, 2009, among the others) to consider
the data and the model parameters, and therefore also the model forecasts and the cali-
bration targets as stochastic processes. Then the Bayes’ theorem can be invoked; with the
formalism that has been previously introduced, it can be cast as:

f(y _ t‘p(cal)) . f(p(cal))
fly—t) ’

where f functions are (possibly conditioned) probability density functions (pdfs) of the re-
spective arguments. In particular, f(p°®) is the prior pdf of the model parameters to be
calibrated, i.e. independent from the measurements of state variables or other independent
quantities; instead, f(p°@ |y — t) represents the posterior pdf, which is conditioned on the
measured data.

Notice that Eq. is slightly different from the standard formulation proposed by other
authors (see, e.g. the textbook by Menke, 2012), because the framework introduced in this
paper is more general, as it accounts for different types of model outputs and calibration
targets.

Most of the applications of the Bayesian approach compute the optimal parameters by
means of the maximum likelihood method (Edwards| [1972), which searches for the array
p(©@) which maximizes the posterior probability given by Eq. . Among the most commonly
introduced approximations it is worth recalling the assumption that both f(y — t|p°®) and

10
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f(p°@) can be expressed as multigaussian distributions. Moreover, it is often implicitly
assumed that f(y —t) is independent from p(®). Under these hypotheses, the maximum-
likelihood method reduces to the least-squares approach (Menke, 2012).

At the authors’ knowledge, no test has been conducted in glaciological sciences with
different hypotheses of pdfs. However, an exponential pdf, above all for f(y—t|p{ca), might
be a better guess in presence of outliers, i.e. of model predictions which are very far from
the expected target values. In practice, exponential pdfs yield the minimization of [;-like
norms, which are expected to provide robust estimates, i.e. to be able to yield reasonable
results even in presence of high errors.

Methods that aim at obtaining the posterior distribution are increasingly applied in glaciol-
ogy, as well as Markov-chain Monte Carlo simulations (see [Tarasov et al., 2012, for an
example of application in glaciology).

4 Properties of the IP
The material is now ready to introduce and discuss some properties of the IP.
4.1 lll-posedness and ill-conditioning

The first question is whether model parameters are identifiable, i.e. if different values of the
parameters always yield different predictions of the state of the system with the FP. In other
words, the model parameters are said to be identifiable, if for every couple of arrays p and
p', p#p/, the corresponding solutions to Eq. (4), s =g(p) and s’ = g(p’) are such that
s#s.

Any mathematical problem that is applied to model physical processes is required to
be well-posed, i.e. it is required that a solution exists, is unique and is stable with respect
to the data. For IPs, in principle, it is very easy to state that the uniqueness of the solution
corresponds to the property that a unique array p(¢®) yields an absolute minimum of Eq. @
In principle, it is also very simple to state that an IP admits a unique solution if O is a convex

11

IodeJ UOISSNoSI(]

JTodeJ UOISSnoSI(]

JodeJ UOISSnosI(]

JodeJ UOISSnoSI(]



function of its arguments; unfortunately, it is not easy to prove this for complex models, with
a great number of parameters.

The paradigmatic example is so simple that it is possible to draw the graph of O, which
is expressed for this example as the root-mean-square error (RMSe) between the modelled
ice-sheet surface and A(): it is shown in Fig. for the basic option of y and . This plot
shows that the IP has a unique solution, obviously corresponding to the reference values
used to generate the synthetic data 2(""). This is confirmed by Fig. : the objective function
is convex in a neighbourhood of the reference parameters and no local minima are present.

Notice that if one of the model parameters were not identifiable, it would be possible to
find another couple of values that yield the same solution to the FP. Since in this example y
does not explicitly depend on p, as it is often the case, then the solution to the IP would not
be unique. This remark is fundamental to show the strict link between identifiability, which
is a property of the FP, and uniqueness of the IP.

IPs are usually claimed to be unstable and this is true for the continuous case, when
a continuous domain is considered and the model is built with partial differential equations
(Giudici and Vassena, [2008). Instead, for discrete models, algebraic equations have to be
considered and this means that the issue of stability could be of minor relevance. Moreover,
the definition of stability presumes that the error on the data can be reduced at will, so that
the results of the IP can be as close as possible to the reference value or to the solution
for ideal, error-free data. However, this is not the case with real-world applications, when
measurement, modelling and approximation errors cannot be reduced below a practical
limit.

Figure [3| shows the graph of O when an uncorrelated error with a gaussian distribution
with zero average and standard deviation (SD) of 1 m is added to the data, i.e. to the
reference elevation (). It is difficult to appreciate differences with the graph of Fig. [1| The
differences are even smaller for smaller values of the SD. In other words, this is a graphical
proof that the considered IP is stable.

However, it has been stressed that the concept of stability assumes that the error on the
data can be reduced at will, but this will never be the case in practical applications, due to
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the great number of causes of errors that have been recalled before. In several applications
some typical characteristics that denote numerical instability (oscillatory behavior, alternat-
ing high and low values) can be observed: however, they might be effects of ill-conditioning
or non-identifiability or non-uniqueness, rather than due to instability of the IP.

Of course conditioning is a qualitative concept, which is related to the Lipschitz condition,
defined as follows. If p’ and p' are the solutions to the IP corresponding, respectively, to
data d' and d¥, then a Lipschitz condition holds if

lp" —p*| < C|ld" —d*|, (8)

where C' > 0 is called a Lipschitz constant. If C' is big, then the IP is ill-conditioned, be-
cause a very small (and often practically unrealistic) error on the input data is necessary to
guarantee a small, physically acceptable error on the calibrated parameters. In other words,
ill-conditioning means that a small error on the data could be sufficient to yield big differ-
ences in the estimated parameters; on the other hand well-conditioned IPs are such that
even if the errors on the input data are quite big, the solution to the IP does not change
dramatically.

It is also very important to stress that a clear distinction must be done among problems
with the intrinsic properties of the IP and the effects of the solution method. Figure [3|shows
a very simple example. On top of the graph of O the minimization paths followed by the
application of the Matlab® function fminunc, based on the quasi-Newton algorithm, with
two different initializations are shown. Information listed in Table [2| show that starting from
different couples of parameters values might yield different “solutions”. In fact, Fig. 2 shows
that the reference values lie in a “valley” characterised by a weak slope, which makes dif-
ficult the identification of the absolute minimum with a gradient-based approach. However,
notice that the difference between the values of the O functions at those points are very
small and even about one third of the SD of the error added to the data.

Problems with non-uniqueness, instability or ill-conditioning might appear as alternating
(high and low) values of the elements of p(¢@). They can be handled by introducing regular-
ization terms in the objective function (see, e.g.Habermann et al., [2012;[Petra et al., 2012),
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which is often obtained by including a term like ||p(®®)|| in ©. This regularizing term has the
effect of cutting the high values and therefore the minima of O, which are characterised by
the most accentuated oscillatory behaviour. With the formalism proposed in this paper, this
is equivalent to directly insert the values of p(°®) into the model outputs y and by assum-
ing that the corresponding target elements are set to zero. For the Bayesian approach, the
regularizing effect is introduced through the prior pdf.

4.2 Sensitivity analysis

4.2.1 Some definitions

Several authors addressed the problem of sensitivity of model outcomes with respect to
input parameters (Ritz et al., [2001; [Heimbach and Bugnion, |2009; Baratelli et al., 2012;
Giudici et al., 2012; |Larour et al., 2012; [Thoma et al., 2012; |Heimbach and Losch, 2012;
Schafer et al 2012). This is fundamental in order to estimate the errors on model predic-
tions due to the uncertainties on the values of p, but also to assess the physical relevance
of some parameters and of some physical processes to determine, for instance, glacier
thickness, ice velocity, ice temperature, etc.

A simple approach is the computation of quantities related to the ratio between variations
of s or y as a response to variations of p around a reference value. From the mathematical
point of view, this is nothing but a derivative. In particular, the state sensitivity, Sﬁi% of
a state variable s,, with respect to a single parameter p,,, under a linear approximation, i.e.
for small local variations of the parameter, is given by:

SG) = = 2 (p),

= = 9
mre Opn, Opn p 9)
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Analogously, the prediction sensitivity, 57(7% of a model prediction y,,, with respect to p,, is
given by:

OYym Osy, aym OYm (s) OYm
S Z 08y, .(9p Z sy, Sin ¥ op,’ (10)

where Ng is the dimension of the array s and the “total” dependence of y on p is considered
explicitly, i.e. both through the direct functional dependence and the indirect dependence
through the solution of the FP.

However, these definitions have two weaknesses. First, since parameters and system
states are represented by physical quantities, with given measurement units, it is impossible
to identify the most sensitive parameters from a straightforward comparison among the
elements of S(*) and S(v). Therefore, it is necessary to scale or normalize these quantities.
Second, both S(*) and S®) are based on a linearized, one-at-a-time approach, so that they
take into account only the linear approximation of the model and neglect both non-linear
effects and joint effects of the parameters.

The first problem can be overcome by means of the dimensionless normalized sensitivity,
which corresponds to the scaling given by the SD of the relevant quantities, or the predic-
tion scaled sensitivity, which is scaled by means of the reference values around which the
sensitivity indices are computed (Giudici et al., 2012).

The second issue is overcome by means of the first-order sensitivity (Saltelli et al., 2008),
which can be defined as

. varp, [Ep\n [Y‘pn]]
Sn = o2 ; (11)

where Y represents a state variable s,,, or a model prediction y.,, E,\,[Y |p.] is the ex-
pected value of Y conditioned on the parameter p,, and var,,, is the variance with respect

to p,,.
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4.2.2 Adjoint method for the computation of sensitivity

The computation of S(*) is often a crucial computational aspect for the application of IPs,
because it is required both to compute S() and the gradient of © for methods of solution
which are based on steepest-descent or conjugate-gradient approaches.

The simplest approach is the computation of Sffl% with a finite-difference approach: the
FP is solved for two different arrays p™ and p—, which differ from each other only for the
value of p,, by an amount Ap: if the corresponding solutions to the IP are denoted by,
respectively, s* and s~, then S%), ~ (s — s)/Ap.

An alternative is the use of the adjoint-state equation method (Plessix, |2006), which is
introduced in the continuous case by making use of variational calculus and by introducing
the Frechet’s derivative. Here it is shortly revised for its application to discrete models in
glaciological sciences (Heimbach and Bugnion, 2009; |Heimbach and Losch, 2012; (Gold-
berg and Heimbach, 2013; Martin and Monnier, [2014)).

A linearization of Eq. (4) is obtained by imposing that A ~ A(p, 8) and b = b(p, §), where
§ is fixed as the solution to Eq. corresponding to the parameters p around which the
sensitivity is estimated; in other words Eq. (4) is linearized around the values of the refer-
ence parameters and system states. If Eq. H is multiplied by an arbitrary array z,b(m), and
the derivative of the resulting equation with respect to p,, is taken, one obtains

OA 0s
IR (™) IS pm) _
8pns ¥ +A8pn v

%

(M) —
p, (1 0. (12)

If zp(m) is the solution of the so-called “adjoint-state equation”

Al =35, (13)
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where d,, is the unit impulse concentrated on the mth element, then

0s 0s oA s ob
m__"m_ . (m)_Ai. (m) o Z7  ap(m) 14
opn opn, opn, s Y opn, v * opy, ¥ (4)
OA 0b
—_ 20 o pm) L T (m)
opn” v Opn Ll

Recall that in most cases A’ = A.

In other words, computing S(*) with the adjoint-state approach requires the solution of
Eq. for each m and then the application of Eq. (14). This procedure could appear
cumbersome, but it is to be recalled that for the application of the model, it is necessary to
have an efficient code, function or routine for the solution of the FP: for a single value of
m, only one run of the same tool can be used to compute w(m) as the solution to Eq. ,
and then Sﬂin, forn=1,...,N, by means of Eq. , where N, is the number of calibrated
parameters.

Also the simplest “finite-differences” approach requires the solution of FPs, but it is always
approximate. The adjoint-state approach, based on Egs. and (14), provides a result,
which is theoretically perfect and affected only by rounding errors.

5 Conclusions

Inverse modelling is of paramount importance in glaciological sciences to estimate param-
eters which can hardly be measured (for instance, the parameters of the Glen’s law, basal
temperature and melt rate, etc.) by taking advantage of the collection of data on more easily
accessible physical quantities (for instance, the ice-sheet surface, ice velocity, surface tem-
perature, etc.). Different definitions are given by different authors and there is also a great
variety of approaches to the discretization of the equations that translate in mathematical
form the basic conservation principles (mass, linear momentum, energy). The conceptual
framework proposed in this paper permits to unify the different notations and to facilitate the
formal definitions of the IP and its properties.
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First, the weight of experimental and monitoring data on IP has been clarified together
with the role of the parameters that are kept fixed and are not subjected to the fitting proce-
dure. Model predictions and calibration targets seldom correspond in a straightforward way
with, respectively, the results of the balance equations, which can be cast in the form shown
by Eq. (4), and the directly measured quantities. Some processing is often required and its
role for the mathematical properties of the IP should be considered.

The simple prototype example of inferring the leading coefficient of Glen’s law and of
accumulation rate for a SIA-based, uncoupled model is a proof that the classical statement
that IPs are ill-posed is not always true. In fact, such an example shows an IP which has
a unique and stable solution. However, this remark should not be misunderstood as a state-
ment that IP can be easily and efficiently solved. Even in the best cases, when IPs are
well-posed, the great number of processes, which introduce discrepancies between model
outcomes and calibration targets (measurement errors, modelling errors, wrong estimates
of fixed parameters, etc.), do not permit to reduce such discrepancies at will. Moreover, in
many cases IPs could be ill-conditioned, so that even a small error on the input data could
cause high and physically unacceptable errors on the calibrated parameters.

The paradigmatic example, despite being quite simple, also shows that the methods of
solution to the IP can introduce some issues. In particular, they could suffer from some
troubles when the objective function has multiple local minima or is very flat around the
minimum. Unfortunately, in some cases the methods of solution could also reduce or mask
the intrinsic difficulties of the IP because they do not span the whole space of the admissible
values of model parameters.

Finally, one of the most important messages of this paper is that before drawing any
conclusion on the results of the model calibration, the IP under study should be clearly
defined and its properties should be properly and thoroughly analysed.
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Geophys*  Glaci*  Hydro*

Papers with inverse-related keywords 2,102 222 6,105
Total number of papers 31,556 31,038 501,400

Ratio 6.7% 0.7% 1.2%

Table 1. Analysis of the records in the Scopus data base with inverse-related keywords.
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Table 2. Initial points for the search of the minimum of O; final points of the procedure of minimization
and the corresponding values of O.

Initial points Final points O at the final point

(0.38,2) (0.3002,3.002) 0.992 m
(0.2,2) (0.2915,2.914) 0.992 m
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Figure 1. Objective function for the test example:
values.
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Figure 2. Zoom of the objective function for the test example around the reference values.
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Figure 3. Objective function for the test example when an uncorrelated gaussian error with zero
mean and SD of 1 m is added to the input data. The two panels show the minimisation paths obtained
with the fminunc function starting from two different sets of parameters: (@) M =0.2ma~ !, E =2;
(b) M =0.38 ma~!, E = 2. The red symbol corresponds to the reference values (M (e E(reN),
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