342 research outputs found

    MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling

    Get PDF
    Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2 reside within a complex and cross-stabilize each other's protein expression in a cell-type dependent manner. Using in vivo RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.National Institutes of Health (U.S.) (GM0077465)National Institutes of Health (U.S.) (DK080261

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations

    Get PDF
    Mutations of mitochondrial DNA are associated with a wide spectrum of disorders, primarily affecting the central nervous system and muscle function. The specific consequences of mitochondrial DNA mutations for neuronal pathophysiology are not understood. In order to explore the impact of mitochondrial mutations on neuronal biochemistry and physiology, we have used fluorescence imaging techniques to examine changes in mitochondrial function in neurons differentiated from mouse embryonic stem-cell cybrids containing mitochondrial DNA polymorphic variants or mutations. Surprisingly, in neurons carrying a severe mutation in respiratory complex I (<10% residual complex I activity) the mitochondrial membrane potential was significantly increased, but collapsed in response to oligomycin, suggesting that the mitochondrial membrane potential was maintained by the F1Fo ATPase operating in ‘reverse’ mode. In cells with a mutation in complex IV causing ∼40% residual complex IV activity, the mitochondrial membrane potential was not significantly different from controls. The rate of generation of mitochondrial reactive oxygen species, measured using hydroethidium and signals from the mitochondrially targeted hydroethidine, was increased in neurons with both the complex I and complex IV mutations. Glutathione was depleted, suggesting significant oxidative stress in neurons with a complex I deficiency, but not in those with a complex IV defect. In the neurons with complex I deficiency but not the complex IV defect, neuronal death was increased and was attenuated by reactive oxygen species scavengers. Thus, in neurons with a severe mutation of complex I, the maintenance of a high potential by F1Fo ATPase activity combined with an impaired respiratory chain causes oxidative stress which promotes cell death

    Mitochondrial DNA mutations affect calcium handling in differentiated neurons

    Get PDF
    Mutations in the mitochondrial genome are associated with a wide range of neurological symptoms, but many aspects of the basic neuronal pathology are not understood. One candidate mechanism, given the well-established role of mitochondria in calcium buffering, is a deficit in neuronal calcium homoeostasis. We therefore examined calcium responses in the neurons derived from various ‘cybrid’ embryonic stem cell lines carrying different mitochondrial DNA mutations. Brief (∼50 ms), focal glutamatergic stimuli induced a transient rise in intracellular calcium concentration, which was visualized by bulk loading the cells with the calcium dye, Oregon Green BAPTA-1. Calcium entered the neurons through N-methyl-d-aspartic acid and voltage-gated calcium channels, as has been described in many other neuronal classes. Intriguingly, while mitochondrial mutations did not affect the calcium transient in response to single glutamatergic stimuli, they did alter the responses to repeated stimuli, with each successive calcium transient decaying ever more slowly in mitochondrial mutant cell lines. A train of stimuli thus caused intracellular calcium in these cells to be significantly elevated for many tens of seconds. These results suggest that calcium-handling deficits are likely to contribute to the pathological phenotype seen in patients with mitochondrial DNA mutations

    The influence of gravity on structure and function of animals

    Full text link
    Gravity is the only environmental parameter that has remained constant during the period of evolution of living matter on Earth. Thus, it must have been a major force in shaping livimg things. The influence of gravitational loading on evolution of the vertebrate skeleton is well recognized, and scale effects have been studied. This paper, however, considers in addition four pivotal events in early evolution that would seem to have been significant for the later success and diversification of animal life. These are evolution of the cytoskeleton, cell motility (flagellae and cilia), gravity detecting devices (accelerometers), and biomineralization. All are functionally calcium dependent in eukaryotes and all occurred or were foreshadowed in prokaryotes. A major question is why calcium was selected as an ion of great importance to the structure and function of living matter; another is whether gravity played a role in its selection.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24999/1/0000426.pd

    Accumulation of calcium and phosphate stimulated by carboxylic antibiotics into mitochondria

    Full text link
    Carboxylic ionophores such as nigericin, dianemycin, the monensins and compounds Lilly A 217 or X-537 A, stimulate an electron-transport dependent accumulation of Ca 2+ and phosphate into mitochondria. Ion accumulation is stimulated under conditions of limited Ca 2+ loading imposed by phosphate in the presence of β-hydroxybutyrate. Carboxylic ionophores do not affect divalent ion uptake when β-hydroxybutyrate is replaced for by succinate. They block Ca 2+ and phosphate accumulation when energy is provided from the hydrolysis of ATP, or from the oxidation of glutamate, α-ketoglutarate, pyruvate or glutamate+malate. Nigericin-like antibiotics also transform the indefinite prolongation of state 3 respiration induced by Ca 2+ and phosphate on β-hydroxybutyrate oxidation, into tightly coupled state 3 to 4 transitions. Evidence suggests that electrophoretic Ca 2+ transport occurs in parallel with proton or K + carriers. The anion movements associated to Ca 2+ uptake are most probably driven by the existent ΔpH across the mitochondrial membrane.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44799/1/10863_2005_Article_BF01516075.pd
    corecore