91 research outputs found

    Methods for Population-Adjusted Indirect Comparisons in Health Technology Appraisal

    Get PDF
    Standard methods for indirect comparisons and network meta-analysis are based on aggregate data, with the key assumption that there is no difference between the trials in the distribution of effect-modifying variables. Methods which relax this assumption are becoming increasingly common for submissions to reimbursement agencies such as NICE. These use individual patient data from a subset of trials to form population-adjusted indirect comparisons between treatments, in a specific target population. Recently proposed population adjustment methods include the Matching-Adjusted Indirect Comparison (MAIC) and the Simulated Treatment Comparison (STC). Despite increasing popularity, MAIC and STC remain largely untested. Furthermore, there is a lack of clarity about exactly how and when they should be applied in practice, and even whether the results are relevant to the decision problem. There is therefore a real and present risk that the assumptions being made in one submission to a reimbursement agency are fundamentally different to – or even incompatible with – the assumptions being made in another for the same indication. We describe the assumptions required for population-adjusted indirect comparisons, and demonstrate how these may be used to generate comparisons in any given target population. We distinguish between anchored and unanchored comparisons according to whether a common comparator arm is used or not. Unanchored comparisons make much stronger assumptions which are widely regarded as infeasible. We provide recommendations on how and when population adjustment methods should be used, and the supporting analyses that are required, in order to provide statistically valid, clinically meaningful, transparent and consistent results for the purposes of health technology appraisal. Simulation studies are needed to examine the properties of population adjustment methods and their robustness to breakdown of assumptions

    Abundance of the Quorum-Sensing Factor Ax21 in Four Strains of Stenotrophomonas maltophilia Correlates with Mortality Rate in a New Zebrafish Model of Infection

    Get PDF
    Stenotrophomonas maltophilia is a Gram-negative pathogen with emerging nosocomial incidence. Little is known about its pathogenesis and the genomic diversity exhibited by clinical isolates complicates the study of pathogenicity and virulence factors. Here, we present a strategy to identify such factors in new clinical isolates of S. maltophilia, incorporating an adult-zebrafish model of S. maltophilia infection to evaluate relative virulence coupled to 2D difference gel electrophoresis to explore underlying differences in protein expression. In this study we report upon three recent clinical isolates and use the collection strain ATCC13637 as a reference. The adult-zebrafish model shows discrimination capacity, i.e. from very low to very high mortality rates, with clinical symptoms very similar to those observed in natural S. maltophilia infections in fish. Strain virulence correlates with resistance to human serum, in agreement with previous studies in mouse and rat and therefore supporting zebrafish as a replacement model. Despite its clinical origin, the collection strain ATCC13637 showed obvious signs of attenuation in zebrafish, with null mortality. Multilocus-sequence-typing analysis revealed that the most virulent strains, UV74 and M30, exhibit the strongest genetic similitude. Differential proteomic analysis led to the identification of 38 proteins with significantly different abundance in the three clinical strains relative to the reference strain. Orthologs of several of these proteins have been already reported to have a role in pathogenesis, virulence or resistance mechanisms thus supporting our strategy. Proof of concept is further provided by protein Ax21, whose abundance is shown here to be directly proportional to mortality in the zebrafish infection model. Indeed, recent studies have demonstrated that this protein is a quorum-sensing-related virulence factor

    Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages

    Get PDF
    A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists

    Surface-Associated Plasminogen Binding of Cryptococcus neoformans Promotes Extracellular Matrix Invasion

    Get PDF
    BACKGROUND:The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS), resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface. METHODOLOGY:The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen. CONCLUSIONS:The results of this study provide evidence for the cooperative role of multiple virulence determinants in C. neoformans pathogenesis and suggest new avenues for the development of anti-infective agents in the prevention of fungal tissue invasion

    Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection.

    Get PDF
    Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis

    Virulence Factors IN Fungi OF Systemic Mycoses

    Full text link
    • …
    corecore