250 research outputs found

    Severely restricting energy intake for 24 h does not affect markers of bone metabolism at rest or in response to re-feeding

    Get PDF
    Purpose: Intermittent energy restriction commonly refers to ad libitum energy intake punctuated with 24 h periods of severe energy restriction. This can improve markers of metabolic health but the effects on bone metabolism are unknown. This study assessed how 24 h severe energy restriction and subsequent refeeding affected markers of bone turnover. Methods: In a randomised order, 16 lean men and women completed 2, 48 h trials over 3 days. On day 1, participants consumed a 24 h diet providing 100% [EB: 9.27 (1.43) MJ] or 25% [ER: 2.33 (0.34) MJ] of estimated energy requirements. On day 2, participants consumed a standardised breakfast (08:00), followed by an ad libitum lunch (12:00) and dinner (19:30). Participants then fasted overnight, returning on day 3. Plasma concentrations of C-terminal telopeptide of type I collagen (CTX), procollagen type 1 N-terminal propeptide (P1NP) and parathyroid hormone (PTH) were assessed as indices of bone metabolism after an overnight fast on days 1–3, and for 4 h after breakfast on day 2. Results: There were no differences between trials in fasting concentrations of CTX, P1NP or PTH on days 1–3 (P [greater than] 0.512). During both trials, consuming breakfast reduced CTX between 1 and 4 h (P [less than] 0.001) and PTH between 1 and 2 h (P [less than] 0.05), but did not affect P1NP (P = 0.773) Postprandial responses for CTX (P = 0.157), P1NP (P = 0.148) and PTH (P = 0.575) were not different between trials. Ad libitum energy intake on day 2 was greater on ER [12.62 (2.46) MJ] than EB [11.91 (2.49) MJ]. Conclusions Twenty-four hour severe energy restriction does not affect markers of bone metabolism

    Substituting carbohydrate at lunch for added protein increases fat oxidation during subsequent exercise in healthy males

    Get PDF
    Context How pre-exercise meal composition influences metabolic and health responses to exercise later in the day is currently unclear. Objective Examine the effects of substituting carbohydrate for protein at lunch on subsequent exercise metabolism, appetite, and energy intake. Methods Twelve healthy males completed three trials in randomized, counterbalanced order. Following a standardized breakfast (779 ± 66 kcal; ∼08:15), participants consumed a lunch (1186 ± 140 kcal; ∼13:15) containing either 0.2 g·kg-1 carbohydrate and ∼2 g·kg-1 protein (LO-CARB), 2 g·kg-1 carbohydrate and ∼0.4 g·kg-1 protein (HI-CARB), or fasted (FAST). Participants later cycled at ∼60% V̇O2peak for 1 h (∼16:15) and post-exercise ad-libitum energy intake was measured (∼18:30). Substrate oxidation, subjective appetite, and plasma concentrations of glucose, insulin, non-esterified fatty acids (NEFA), peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and acylated ghrelin (AG) were measured for 5 h post-lunch. Results Fat oxidation was greater during FAST (+11.66 ± 6.63 g) and LO-CARB (+8.00 ± 3.83 g) than HI-CARB (p < 0.001), with FAST greater than LO-CARB (+3.67 ± 5.07 g; p < 0.05). NEFA were lowest in HI-CARB and highest in FAST, with insulin demonstrating the inverse response (all p < 0.01). PYY and GLP-1 demonstrated a stepwise pattern, with LO-CARB greatest and FAST lowest (all p < 0.01). AG was lower during HI-CARB and LO-CARB versus FAST (p < 0.01). Energy intake in LO-CARB was lower than FAST (-383 ± 233 kcal; p < 0.001) and HI-CARB (-313 ± 284 kcal; p < 0.001). Conclusion Substituting carbohydrate for protein in a pre-exercise lunch increased fat oxidation, suppressed subjective and hormonal appetite, and reduced post-exercise energy intake

    Mega-evolutionary dynamics of the adaptive radiation of birds

    Get PDF
    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow- downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowd-sourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks

    A randomized controlled trial to isolate the effects of fasting and energy restriction on weight loss and metabolic health in lean adults

    Get PDF
    Intermittent fasting may impart metabolic benefits independent of energy balance by initiating fasting-mediated mechanisms. This randomized controlled trial examined 24-hour fasting with 150% energy intake on alternate days for 3 weeks in lean, healthy individuals (0:150; n = 12). Control groups involved a matched degree of energy restriction applied continuously without fasting (75% energy intake daily; 75:75; n = 12) or a matched pattern of fasting without net energy restriction (200% energy intake on alternate days; 0:200; n = 12). Primary outcomes were body composition, components of energy balance, and postprandial metabolism. Daily energy restriction (75:75) reduced body mass (−1.91 ± 0.99 kilograms) almost entirely due to fat loss (−1.75 ± 0.79 kilograms). Restricting energy intake via fasting (0:150) also decreased body mass (−1.60 ± 1.06 kilograms; P = 0.46 versus 75:75) but with attenuated reductions in body fat (−0.74 ± 1.32 kilograms; P = 0.01 versus 75:75), whereas fasting without energy restriction (0:200) did not significantly reduce either body mass (−0.52 ± 1.09 kilograms; P ≤ 0.04 versus 75:75 and 0:150) or fat mass (−0.12 ± 0.68 kilograms; P ≤ 0.05 versus 75:75 and 0:150). Postprandial indices of cardiometabolic health and gut hormones, along with the expression of key genes in subcutaneous adipose tissue, were not statistically different between groups (P > 0.05). Alternate-day fasting less effectively reduces body fat mass than a matched degree of daily energy restriction and without evidence of fasting-specific effects on metabolic regulation or cardiovascular health

    Match running performance and physical capacity profiles of U8 and U10 soccer players

    Get PDF
    Aim This study aimed to characterize match running performance of very young soccer players and evaluate the relationship between these data and physical capacities and technical skills. Methods Distances covered at different speed thresholds were measured during 31 official matches using GPS technology in U10 (n = 12; age 10.1 ± 0.1 years) and U8 (n = 15; age 7.9 ± 0.1 years) national soccer players. Counter movement jump performance (CMJ), 20 m shuttle running (20 m-SR), linear sprint performance (10, 20, 30 m), shuttle (SHDT) and slalom dribble tests (SLDT) were performed to determine the players physical capacities and technical skills. Results Physical capacities and technical skills were higher in U10 versus U8 players [P 0.05, ES: 0.74). The U10 players covered more total (TD) and high-intensity running distance (HIRD) than their younger counterparts did (P 0.05, ES: 0.99). TD and HIRD covered across the three 15 min periods of match play did not decline (P > 0.05, ES: 0.02–0.55). Very large magnitude correlations were observed between the U8 and U10 players performances during the 20 m-SR versus TD (r = 0.79; P < 0.01) and HIRD (r = 0.82; P < 0.01) covered during match play. Conclusions Data demonstrate differences in match running performance and physical capacity between U8 and U10 players, and large magnitude relationships between match play measures and physical test performances. These findings could be useful to sports science staff working within the academies

    Chromosomal Aberrations in Bladder Cancer: Fresh versus Formalin Fixed Paraffin Embedded Tissue and Targeted FISH versus Wide Microarray-Based CGH Analysis

    Get PDF
    Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions

    The Min System and Nucleoid Occlusion Are Not Required for Identifying the Division Site in Bacillus subtilis but Ensure Its Efficient Utilization

    Get PDF
    Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle

    Nocturnal enuresis—theoretic background and practical guidelines

    Get PDF
    Nocturnal polyuria, nocturnal detrusor overactivity and high arousal thresholds are central in the pathogenesis of enuresis. An underlying mechanism on the brainstem level is probably common to these mechanisms. Enuretic children have an increased risk for psychosocial comorbidity. The primary evaluation of the enuretic child is usually straightforward, with no radiology or invasive procedures required, and can be carried out by any adequately educated nurse or physician. The first-line treatment, once the few cases with underlying disorders, such as diabetes, kidney disease or urogenital malformations, have been ruled out, is the enuresis alarm, which has a definite curative potential but requires much work and motivation. For families not able to comply with the alarm, desmopressin should be the treatment of choice. In therapy-resistant cases, occult constipation needs to be ruled out, and then anticholinergic treatment—often combined with desmopressin—can be tried. In situations when all other treatments have failed, imipramine treatment is warranted, provided the cardiac risks are taken into account
    • …
    corecore