6 research outputs found

    Global biogeographic patterns of avian morphological diversity

    Get PDF
    Understanding the biogeographical patterns, and evolutionary and environmental drivers, underpinning morphological diversity are key for determining its origins and conservation. Using a comprehensive set of continuous morphological traits extracted from museum collections of 8353 bird species, including geometric morphometric beak shape data, we find that avian morphological diversity is unevenly distributed globally, even after controlling for species richness, with exceptionally dense packing of species in hyper-diverse tropical hotspots. At the regional level, these areas also have high morphological variance, with species exhibiting high phenotypic diversity. Evolutionary history likely plays a key role in shaping these patterns, with evolutionarily old species contributing to niche expansion, and young species contributing to niche packing. Taken together, these results imply that the tropics are both ‘cradles’ and ‘museums’ of phenotypic diversity

    AVONET: Morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.Fil: Tobias, Joseph A.. Imperial College London; Reino Unido. University of Oxford; Reino UnidoFil: Sheard, Catherine. University of Oxford; Reino Unido. University of Bristol; Reino UnidoFil: Pigot, Alex L.. University of Oxford; Reino Unido. University College London; Estados UnidosFil: Devenish, Adam J. M.. Imperial College London; Reino UnidoFil: Yang, Jingyi. Imperial College London; Reino UnidoFil: Sayol, Ferran. University College London; Estados UnidosFil: Neate Clegg, Montague H. C.. University of Oxford; Reino Unido. University of Utah; Estados UnidosFil: Alioravainen, Nico. University of Oxford; Reino Unido. Natural Resources Institute Finland; FinlandiaFil: Weeks, Thomas L.. Imperial College London; Reino Unido. Natural History Museum; Reino UnidoFil: Barber, Robert A.. Imperial College London; Reino UnidoFil: Walkden, Patrick A.. Imperial College London; Reino Unido. Natural History Museum; Reino UnidoFil: MacGregor, Hannah E. A.. University of Oxford; Reino Unido. University of Bristol; Reino UnidoFil: Jones, Samuel E. I.. University of Oxford; Reino Unido. University of London; Reino UnidoFil: Vincent, Claire. Organización de Las Naciones Unidas; ArgentinaFil: Phillips, Anna G.. Senckenberg Biodiversity And Climate Research Centre; AlemaniaFil: Marples, Nicola M.. Trinity College; Estados UnidosFil: Montaño Centellas, Flavia A.. Universidad Mayor de San Andrés; Bolivia. University of Florida; Estados UnidosFil: Leandro Silva, Victor. Universidade Federal de Pernambuco; BrasilFil: Claramunt, Santiago. University of Toronto; Canadá. Royal Ontario Museum; CanadáFil: Darski, Bianca. Universidade Federal do Rio Grande do Sul; BrasilFil: Freeman, Benjamin G.. University of British Columbia; CanadáFil: Bregman, Tom P.. University of Oxford; Reino Unido. Future-Fit Foundation; Reino UnidoFil: Cooney, Christopher R.. University Of Sheffield; Reino UnidoFil: Hughes, Emma C.. University Of Sheffield; Reino UnidoFil: Capp, Elliot J. R.. University Of Sheffield; Reino UnidoFil: Varley, Zoë K.. University Of Sheffield; Reino Unido. Natural History Museum; Reino UnidoFil: Friedman, Nicholas R.. Okinawa Institute of Science and Technology Graduate University; JapónFil: Korntheuer, Heiko. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Corrales Vargas, Andrea. Universidad Nacional de Costa Rica; Costa RicaFil: García, Natalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    Mega-evolutionary dynamics of the adaptive radiation of birds

    Get PDF
    The origin and expansion of biological diversity is regulated by both developmental trajectories and limits on available ecological niches. As lineages diversify, an early and often rapid phase of species and trait proliferation gives way to evolutionary slow- downs as new species pack into ever more densely occupied regions of ecological niche space. Small clades such as Darwin’s finches demonstrate that natural selection is the driving force of adaptive radiations, but how microevolutionary processes scale up to shape the expansion of phenotypic diversity over much longer evolutionary timescales is unclear. Here we address this problem on a global scale by analysing a crowd-sourced dataset of three-dimensional scanned bill morphology from more than 2,000 species. We find that bill diversity expanded early in extant avian evolutionary history, before transitioning to a phase dominated by packing of morphological space. However, this early phenotypic diversification is decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages but are comparatively stable through time. We find that rare, but major, discontinuities in phenotype emerge from rapid increases in rate along single branches, sometimes leading to depauperate clades with unusual bill morphologies. Despite these jumps between groups, the major axes of within-group bill-shape evolution are remarkably consistent across birds. We reveal that macroevolutionary processes underlying global-scale adaptive radiations support Darwinian and Simpsonian ideas of microevolution within adaptive zones and accelerated evolution between distinct adaptive peaks

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity

    Latitudinal gradients in avian colourfulness

    Get PDF
    It has long been suggested that tropical species are generally more colourful than temperate species, but whether latitudinal gradients in organismal colourfulness exist remains controversial. Here we quantify global latitudinal trends in colourfulness (within-individual colour diversity) by collating and analysing a photographic dataset of whole-body plumage reflectance information for &gt;4,500 species of passerine birds. We show that male and female birds of tropical passerine species are generally more colourful than their temperate counterparts, both on average and in the extreme. We also show that these geographic gradients can be explained in part by the effects of several latitude-related factors related to classic hypotheses for climatic and ecological determinants of organismal colourfulness. Taken together, our results reveal that species’ colourfulness peaks in the tropics for passerine birds, confirming the existence of a long-suspected yet hitherto elusive trend in the distribution of global biodiversity.</p

    AVONET: morphological, ecological and geographical data for all birds

    No full text
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity
    corecore