102 research outputs found

    Historical Isolation versus Recent Long-Distance Connections between Europe and Africa in Bifid Toadflaxes (Linaria sect. Versicolores)

    Get PDF
    Background: Due to its complex, dynamic and well-known paleogeography, the Mediterranean region provides an ideal framework to study the colonization history of plant lineages. The genus Linaria has its diversity centre in the Mediterranean region, both in Europe and Africa. The last land connection between both continental plates occurred during the Messinian Salinity Crisis, in the late Miocene (5.96 to 5.33 Ma). Methodology/Principal Findings: We analyzed the colonization history of Linaria sect. Versicolores (bifid toadflaxes), which includes c. 22 species distributed across the Mediterranean, including Europe and Africa. Two cpDNA regions (rpl32-trnL UAG and trnK-matK) were sequenced from 66 samples of Linaria. We conducted phylogenetic, dating, biogeographic and phylogeographic analyses to reconstruct colonization patterns in space and time. Four major clades were found: two of them exclusively contain Iberian samples, while the other two include northern African samples together with some European samples. The bifid toadflaxes have been split in African and European clades since the late Miocene, and most lineage and speciation differentiation occurred during the Pliocene and Quaternary. We have strongly inferred four events of post-Messinian colonization following long-distance dispersal from northern Africa to the Iberian Peninsula, Sicily and Greece. Conclusions/Significance: The current distribution of Linaria sect. Versicolores lineages is explained by both ancien

    Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins

    Get PDF
    Background: Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings: cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory b-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the a-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the b-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both a and b NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance: This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed

    The rank reversal problem in multi-criteria decision making : a literature review

    Get PDF
    Despite the importance of multicriteria decision-making (MCDM) techniques for constructing effective decision models, there are many criticisms due to the occurrence of a problem called rank reversal. Nevertheless, there is a lack of a systematic literature review on this important subject which involves different methods. This study reviews the pertinent literature on rank reversal, based on 130 related articles published from 1980 to 2015 in international journals, which were gathered and analyzed according to the following perspectives: multicriteria technique, year and journal in which the papers were published, co-authorship network, rank reversal types, and research goal. Thus our survey provides recommendations for future research, besides useful information and knowledge regarding rank reversal in the MCDM field

    Potassium and Sodium Transport in Yeast

    Full text link
    [EN] As the proper maintenance of intracellular potassium and sodium concentrations is vital for cell growth, all living organisms have developed a cohort of strategies to maintain proper monovalent cation homeostasis. In the model yeast Saccharomyces cerevisiae, potassium is accumulated to relatively high concentrations and is required for many aspects of cellular function, whereas high intracellular sodium/potassium ratios are detrimental to cell growth and survival. The fact that S. cerevisiae cells can grow in the presence of a broad range of concentrations of external potassium (10 M–2.5 M) and sodium (up to 1.5 M) indicates the existence of robust mechanisms that have evolved to maintain intracellular concentrations of these cations within appropriate limits. In this review, current knowledge regarding potassium and sodium transporters and their regulation will be summarized. The cellular responses to high sodium and potassium and potassium starvation will also be discussed, as well as applications of this knowledge to diverse fields, including antifungal treatments, bioethanol production and human disease.L.Y. is funded by grant BFU2011-30197-C03-03 from the Spanish Ministry of Science and Innovation (Madrid, Spain) and EUI2009-04147 [Systems Biology of Microorganisms (SysMo2) European Research Area-Network (ERA-NET)].Yenush, L. (2016). Potassium and Sodium Transport in Yeast. Advances in Experimental Medicine and Biology. 892:187-228. https://doi.org/10.1007/978-3-319-25304-6_8S187228892Ahmed A, Sesti F, Ilan N, Shih TM, Sturley SL et al (1999) A molecular target for viral killer toxin: TOK1 potassium channels. Cell 99:283–291Albert A, Yenush L, Gil-Mascarell MR, Rodriguez PL, Patel S et al (2000) X-ray structure of yeast Hal2p, a major target of lithium and sodium toxicity, and identification of framework interactions determining cation sensitivity. J Mol Biol 295:927–938Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144Alepuz PM, Cunningham KW, Estruch F (1997) Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol 26:91–98Ali R, Brett CL, Mukherjee S, Rao R (2004) Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast. J Biol Chem 279:4498–4506Alijo R, Ramos J (1993) Several routes of activation of the potassium uptake system of yeast. Biochim Biophys Acta 1179:224–228Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:3736–3740Anderson JA, Nakamura RL, Gaber RF (1994) Heterologous expression of K+ channels in Saccharomyces cerevisiae: strategies for molecular analysis of structure and function. Symp Soc Exp Biol 48:85–97André B, Scherens B (1995) The yeast YBR235w gene encodes a homolog of the mammalian electroneutral Na(+)-(K+)-C1- cotransporter family. Biochem Biophys Res Commun 217:150–153Andrés MT, Viejo-Díaz M, Fierro JF (2008) Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+-channel-mediated K+ efflux. Antimicrob Agents Chemother 52:4081–4088Anemaet IG, van Heusden GP (2014) Transcriptional response of Saccharomyces cerevisiae to potassium starvation. BMC Genomics 15:1040Arino J, Ramos J, Sychrova H (2010) Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74:95–120Babazadeh R, Furukawa T, Hohmann S, Furukawa K (2014) Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 4:4697Baev D, Rivetta A, Li XS, Vylkova S, Bashi E et al (2003) Killing of Candida albicans by human salivary histatin 5 is modulated, but not determined, by the potassium channel TOK1. Infect Immun 71:3251–3260Baev D, Rivetta A, Vylkova S, Sun JN, Zeng GF et al (2004) The TRK1 potassium transporter is the critical effector for killing of Candida albicans by the cationic protein, Histatin 5. J Biol Chem 279:55060–55072Bagriantsev SN, Ang KH, Gallardo-Godoy A, Clark KA, Arkin MR et al (2013) A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem Biol 8:1841–1851Bañuelos MA, Sychrová H, Bleykasten-Grosshans C, Souciet JL, Potier S (1998) The Nha1 antiporter of Saccharomyces cerevisiae mediates sodium and potassium efflux. Microbiology 144(Pt 10):2749–2758Bañuelos MA, Ruiz MC, Jiménez A, Souciet JL, Potier S et al (2002) Role of the Nha1 antiporter in regulating K(+) influx in Saccharomyces cerevisiae. Yeast 19:9–15Barnett JA (2008) A history of research on yeasts 13. Active transport and the uptake of various metabolites. Yeast 25:689–731Barreto L, Canadell D, Petrezselyova S, Navarrete C, Maresova L et al (2011) A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot Cell 10:1241–1250Barreto L, Canadell D, Valverde-Saubí D, Casamayor A, Ariño J (2012) The short-term response of yeast to potassium starvation. Environ Microbiol 14:3026–3042Benito B, Moreno E, Lagunas R (1991) Half-life of the plasma membrane ATPase and its activating system in resting yeast cells. Biochim Biophys Acta 1063:265–268Benito B, Quintero FJ, Rodríguez-Navarro A (1997) Overexpression of the sodium ATPase of Saccharomyces cerevisiae: conditions for phosphorylation from ATP and Pi. Biochim Biophys Acta 1328:214–226Benito B, Garciadeblás B, Rodríguez-Navarro A (2002) Potassium- or sodium-efflux ATPase, a key enzyme in the evolution of fungi. Microbiology 148:933–941Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A (2004) Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi. Eukaryot Cell 3:359–368Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155Bertl A, Slayman CL, Gradmann D (1993) Gating and conductance in an outward-rectifying K+ channel from the plasma membrane of Saccharomyces cerevisiae. J Membr Biol 132:183–199Bertl A, Bihler H, Reid JD, Kettner C, Slayman CL (1998) Physiological characterization of the yeast plasma membrane outward rectifying K+ channel, DUK1 (TOK1), in situ. J Membr Biol 162:67–80Bertl A, Ramos J, Ludwig J, Lichtenberg-Fraté H, Reid J et al (2003) Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol 47:767–780Bihler H, Slayman CL, Bertl A (1998) NSC1: a novel high-current inward rectifier for cations in the plasma membrane of Saccharomyces cerevisiae. FEBS Lett 432:59–64Bihler H, Slayman CL, Bertl A (2002) Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochim Biophys Acta 1558:109–118Blomberg A (1995) Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl. J Bacteriol 177:3563–3572Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182:1–8Borst-Pauwels GW (1981) Ion transport in yeast. Biochim Biophys Acta 650:88–127Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189:695–704Bouillet LE, Cardoso AS, Perovano E, Pereira RR, Ribeiro EM et al (2012) The involvement of calcium carriers and of the vacuole in the glucose-induced calcium signaling and activation of the plasma membrane H(+)-ATPase in Saccharomyces cerevisiae cells. Cell Calcium 51:72–81Bowers K, Levi BP, Patel FI, Stevens TH (2000) The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae. Mol Biol Cell 11:4277–4294Breinig F, Tipper DJ, Schmitt MJ (2002) Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108:395–405Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405Cagnac O, Leterrier M, Yeager M, Blumwald E (2007) Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation/H+ antiporter of Saccharomyces cerevisiae. J Biol Chem 282:24284–24293Cagnac O, Aranda-Sicilia MN, Leterrier M, Rodriguez-Rosales MP, Venema K (2010) Vacuolar cation/H+ antiporters of Saccharomyces cerevisiae. J Biol Chem 285:33914–33922Calahorra M, Lozano C, Sánchez NS, Peña A (2011) Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta 1808:433–445Canadell D, González A, Casado C, Ariño J (2015) Functional interactions between potassium and phosphate homeostasis in Saccharomyces cerevisiae. Mol Microbiol 95:555–572Casado C, Yenush L, Melero C, del Carmen Ruiz M, Serrano R et al (2010) Regulation of Trk-dependent potassium transport by the calcineurin pathway involves the Hal5 kinase. FEBS Lett 584:2415–2420Causton HC, Ren B, Koh SS, Harbison CT, Kanin E et al (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63–76Cornet M, Gaillardin C (2014) pH signaling in human fungal pathogens: a new target for antifungal strategies. Eukaryot Cell 13:342–352Courchesne WE (2002) Characterization of a novel, broad-based fungicidal activity for the antiarrhythmic drug amiodarone. J Pharmacol Exp Ther 300:195–199Courchesne WE, Ozturk S (2003) Amiodarone induces a caffeine-inhibited, MID1-dependent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol Microbiol 47:223–234Crespo JL, Daicho K, Ushimaru T, Hall MN (2001) The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem 276:34441–34444Cunningham KW, Fink GR (1996) Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16:2226–2237Curto M, Valledor L, Navarrete C, Gutiérrez D, Sychrova H et al (2010) 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases. J Proteomics 73:2316–2335D’Avanzo N, Cheng WW, Xia X, Dong L, Savitsky P et al (2010) Expression and purification of recombinant human inward rectifier K+ (KCNJ) channels in Saccharomyces cerevisiae. Protein Expr Purif 71:115–121Daran-Lapujade P, Daran JM, Luttik MA, Almering MJ, Pronk JT et al (2009) An atypical PMR2 locus is responsible for hypersensitivity to sodium and lithium cations in the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D. FEMS Yeast Res 9:789–792Davis DA (2009) How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 12:365–370de Nadal E, Posas F (2011) Elongating under stress. Genet Res Int 2011:326286de Nadal E, Clotet J, Posas F, Serrano R, Gomez N et al (1998) The yeast halotolerance determinant Hal3p is an inhibitory subunit of the Ppz1p Ser/Thr protein phosphatase. Proc Natl Acad Sci U S A 95:7357–7362de Nadal E, Calero F, Ramos J, Ariño J (1999) Biochemical and genetic analyses of the role of yeast casein kinase 2 in salt tolerance. J Bacteriol 181:6456–6462de Nadal E, Alepuz PM, Posas F (2002) Dealing with osmostress through MAP kinase activation. EMBO Rep 3:735–740De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G et al (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374Dimmer KS, Fritz S, Fuchs F, Messerschmitt M, Weinbach N et al (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol Biol Cell 13:847–853Durell SR, Guy HR (1999) Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K(+) channel. Biophys J 77:789–807Eide DJ, Clark S, Nair TM, Gehl M, Gribskov M et al (2005) Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and trace element homeostasis in Saccharomyces cerevisiae. Genome Biol 6:R77Elicharova H, Sychrova H (2014) Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata. Microbiology 160:1705–1713Endele S, Fuhry M, Pak SJ, Zabel BU, Winterpacht A (1999) LETM1, a novel gene encoding a putative EF-hand Ca(2+)-binding protein, flanks the Wolf-Hirschhorn syndrome (WHS) critical region and is deleted in most WHS patients. Genomics 60:218–225Eraso P, Mazón MJ, Portillo F (2006) Yeast protein kinase Ptk2 localizes at the plasma membrane and phosphorylates in vitro the C-terminal peptide of the H+-ATPase. Biochim Biophys Acta 1758:164–170Erez O, Kahana C (2002) Deletions of SKY1 or PTK2 in the Saccharomyces cerevisiae trk1Deltatrk2Delta mutant cells exert dual effect on ion homeostasis. Biochem Biophys Res Commun 295:1142–1149Estrada E, Agostinis P, Vandenheede JR, Goris J, Merlevede W et al (1996) Phosphorylation of yeast plasma membrane H+-ATPase by casein kinase I. J Biol Chem 271:32064–32072Fairman C, Zhou X, Kung C (1999) Potassium uptake through the TOK1 K+ channel in the budding yeast. J Membr Biol 168:149–157Farnaud S, Evans RW (2003) Lactoferrin – a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405Fell GL, Munson AM, Croston MA, Rosenwald AG (2011) Identification of yeast genes involved in k homeostasis: loss of membrane traffic genes affects k uptake. G3 (Bethesda) 1:43–56Fernandes AR, Sá-Correia I (2003) Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Yeast 20:207–219Ferrando A, Kron SJ, Rios G, Fink GR, Serrano R (1995) Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3. Mol Cell Biol 15:5470–5481Ferrigno P, Posas F, Koepp D, Saito H, Silver PA (1998) Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J 17:5606–5614Flegelova H, Haguenauer-Tsapis R, Sychrova H (2006) Heterologous expression of mammalian Na/H antiporters in Saccharomyces cerevisiae. Biochim Biophys Acta 1760:504–516Flis K, Hinzpeter A, Edelman A, Kurlandzka A (2005) The functioning of mammalian ClC-2 chloride channel in Saccharomyces cerevisiae cells requires an increased level of Kha1p. Biochem J 390:655–664Forment J, Mulet JM, Vicente O, Serrano R (2002) The yeast SR protein kinase Sky1p modulates salt tolerance, membrane potential and the Trk1,2 potassium transporter. Biochim Biophys Acta 1565:36–40Froschauer E, Nowikovsky K, Schweyen RJ (2005) Electroneutral K+/H+ exchange in mitochondrial membrane vesicles involves Yol027/Letm1 proteins. Biochim Biophys Acta 1711:41–48Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A et al (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. Plant Cell Physiol 45:146–159Gaber RF (1992) Molecular genetics of yeast ion transport. Int Rev Cytol 137:299–353Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL et al (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96:1480–1485Gelis S, Curto M, Valledor L, González A, Ariño J et al (2012) Adaptation to potassium starvation of wild-type and K(+)-transport mutant (trk1,2) of Saccharomyces cerevisiae: 2-dimensional gel electrophoresis-based proteomic approach. Microbiologyopen 1:182–193Gómez MJ, Luyten K, Ramos J (1996) The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 135:157–160González A, Casado C, Petrezsélyová S, Ruiz A, Ariño J (2013) Molecular analysis of a conditional hal3 vhs3 yeast mutant links potassium homeostasis with flocculation and invasiveness. Fungal Genet Biol 53:1–9Goossens A, de La Fuente N, Forment J, Serrano R, Portillo F (2000) Regulation of yeast H(+)-ATPase by protein kinases belonging to a family dedicated to activation of plasma membrane transporters. Mol Cell Biol 20:7654–7661Gupta SS, Canessa CM (2000) Heterologous expression of a mammalian epithelial sodium channel in yeast. FEBS Lett 481:77–80Gustin MC, Martinac B, Saimi Y, Culbertson MR, Kung C (1986) Ion channels in yeast. Science 233:1195–1197Haass FA, Jonikas M, Walter P, Weissman JS, Jan YN et al (2007) Identification of yeast proteins necessary for cell-surface function of a potassium channel. Proc Natl Acad Sci U S A 104:18079–18084Haro R, Rodríguez-Navarro A (2002) Molecular analysis of the mechanism of potassium uptake through the TRK1 transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1564:114–122Haro R, Rodríguez-Navarro A (2003) Functional analysis of the M2(D) helix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochim Biophys Acta 1613:1–6Haro R, Garciadeblas B, Rodríguez-Navarro A (1991) A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett 291:189–191Hasenbrink G, Schwarzer S, Kolacna L, Ludwig J, Sychrova H et al (2005) Analysis of the mKir2.1 channel activity in potassium influx defective Saccharomyces cerevisiae strains determined as changes in growth characteristics. FEBS Lett 579:1723–1731Herrera R, Álvarez MC, Gelis S, Ramos J (2013) Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants. Biochem J 454:525–532Herrera R, Alvarez MC, Gelis S, Kodedová M, Sychrová H et al (2014) Role of Saccharomyces cerevisiae Trk1 in stabilization of intracellular potassium content upon changes in external potassium levels. Biochim Biophys Acta 1838:127–133Hess DC, Lu W, Rabinowitz JD, Botstein D (2006) Ammonium toxicity and potassium limitation in yeast. PLoS Biol 4:e351Hoeberichts FA, Perez-Valle J, Montesinos C, Mulet JM, Planes MD et al (2010) The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast 27:713–725Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372Hohmann S, Krantz M, Nordlander B (2007) Yeast osmoregulation. Methods Enzymol 428:29–45Idnurm A, Walton FJ, Floyd A, Reedy JL, Heitman J (2009) Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signature-tagged insertional mutagenesis. Eukaryot Cell 8:315–326Jung KW, Strain AK, Nielsen K, Jung KH, Bahn YS (2012) Two cation transporters Ena1 and Nha1 cooperatively modulate ion homeostasis, antifungal drug resistance, and virulence of Cryptococcus neoformans via the HOG pathway. Fungal Genet Biol 49:332–345Kafadar KA, Cyert MS (2004) Integration of stress responses: modulation of calcineurin signaling in Saccharomyces cerevisiae by protein kinase A. Eukaryot Cell 3:1147–1153Kahm M, Navarrete C, Llopis-Torregrosa V, Herrera R, Barreto L et al (2012) Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLoS Comput Biol 8:e1002548Kallay LM, Brett CL, Tukaye DN, Wemmer MA, Chyou A et al (2011) Endosomal Na+(K+)/H+ exchanger Nhx1/Vps44 functions independently and downstream of multivesicular body formation. J Biol Chem 286:44067–44077Kane PM (2007) The long physiological reach of the yeast vacuolar H+-ATPase. J Bioenerg Biomembr 39:415–421Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13:117–123Ke R, Ingram PJ, Haynes K (2013) An integrative model of ion regulation in yeast. PLoS Comput Biol 9:e1002879Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695Kinclová O, Ramos J, Potier S, Sychrová H (2001) Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40:656–668Kinclova-Zimmermannova O, Sychrova H (2006) Functional study of the Nha1p C-terminus: involvement in cell response to changes in external osmolarity. Curr Genet 49:229–236Kinclová-Zimmermannová O, Flegelová H, Sychrová H (2004) Rice Na+/H+-antiporter Nhx1 partially complements the alkali-metal-cation sensitivity of yeast strains lacking three sodium transporters. Folia Microbiol (Praha) 49:519–525Kinclova-Zimmermannova O, Gaskova D, Sychrova H (2006) The Na+, K+/H+ -antiporter Nha1 influences the plasma membrane potential of Saccharomyces cerevisiae. FEMS Yeast Res 6:792–800Klee CB, Draetta GF, Hubbard MJ (1988) Calcineurin. Adv Enzymol Relat Areas Mol Biol 61:149–200Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23:975–982Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273Ko CH, Buckley AM, Gaber RF (1990) TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. Genetics 125:305–312Ko CH, Liang H, Gaber RF (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol Cell Biol 13:638–648Kojima A, To

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Malaria vector species in Colombia: a review

    Full text link
    Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species

    Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva

    Get PDF
    corecore