20 research outputs found

    INCORPORATION OF OXYGEN IN CRYSTALLINE ZEOLITIC CHROMOSILICATES - OPTICAL-IDENTIFICATION OF CHROMIUM(VI) BY PHOTOACOUSTIC-SPECTROSCOPY

    Get PDF
    Incorporation of oxygen to crystalline zeolitic chromosilicates, with oxidation of anchored Cr(III) to non-interacting Cr(VI) species, has been confirmed by photoacoustic spectroscopy; the dichromate anion being extracted from the chromosilicate with water and identified by precipitation of AgCrO4 and oxidation to CrO5.1492292

    SYNTHESIS AND CHARACTERIZATION OF CHROMIUM SILICALITE

    No full text
    Infrared spectroscopy (mid-IR), Si-29 and Al-27 magic angle spinning nuclear magnetic resonance (MAS-NMR), powder X-ray diffraction (PXRD), electron paramagnetic resonance (EPR), and photoacoustic spectroscopy (PAS), in combination, have produced useful information about a series of crystalline MFI-type chromium silicalite, synthesized in a fluoride medium. Aluminum is an impurity and occupies framework sites, as evaluated by the Al-27 MAS-NMR. The mid-IR spectra are very similar to the zeolite ZSM-5 with the addition of a weak band at congruent-to 680 cm-1, which we tentatively assign to symmetric stretching of (Cr-O-Si)n groups. The samples are crystalline materials and have expanded unit cells, as PXRD measurements pointed out. The as-synthesized sample shows a distribution of Cr sites, detected by EPR, comprising structure and channel occlusion sites; the nonstructural sites being extensively oxidized to Cr(VI) species after calcination in the presence of dioxygen. The changes in the photoacoustically measured physical properties, such as nonradiative relaxation time, the thermal diffusivity and optical absorption coefficient of both calcined and noncalcined chromium silicalite samples are also reported.5216617

    ELECTRON-PARAMAGNETIC RESONANCE STUDY OF CHROMOSILICALITE

    No full text
    An electron paramagnetic resonance (EPR) study of crystalline chromosilicalite has been presented with the purpose of characterization of the distribution of Cr3+ sites in the solid. In addition, a deconvolution process is described whereby the EPR parameters can be analysed.88142071207

    Search for exclusive Higgs and Z boson decays to ωγ and Higgs boson decays to K ⁎ γ with the ATLAS detector

    Get PDF
    Searches for the exclusive decays of the Higgs boson to an ω meson and a photon or a K⁎ meson and a photon can probe flavour-conserving and flavour-violating Higgs boson couplings to light quarks, respectively. Searches for these decays, along with the analogous Z boson decay to an ω meson and a photon, are performed with a pp collision data sample corresponding to integrated luminosities of up to 134 fb−1 collected at √s=13 TeV with the ATLAS detector at the CERN Large Hadron Collider. The obtained 95% confidence-level upper limits on the respective branching fractions are B(H→ωγ)<5.5×10−4, B(H→K⁎γ)<2.2×10−4 and B(Z→ωγ)<3.9×10−6. The limits for H→ωγ and Z→ωγ are 370 times and 140 times the Standard Model expected values, respectively. The result for Z→ωγ corresponds to a two-orders-of-magnitude improvement over the limit obtained by the DELPHI experiment at LEP

    Tools for estimating fake/non-prompt lepton backgrounds with the ATLAS detector at the LHC

    Get PDF
    International audienceMeasurements and searches performed with the ATLAS detector at the CERN LHC often involve signatures with one or more prompt leptons. Such analysesare subject to `fake/non-prompt' lepton backgrounds, where either a hadron or a lepton from a hadron decay or an electron from a photon conversion satisfies the prompt-leptonselection criteria. These backgrounds often arise within a hadronic jet because of particle decays in the showering process, particle misidentification or particleinteractions with the detector material. As it is challenging to model these processes with high accuracy in simulation, their estimation typically uses data-driven methods.Three methods for carrying out this estimation are described, along with their implementation in ATLAS and their performance

    Study of Z → llγ decays at √s=8 TeV with the ATLAS detector

    No full text

    Search for heavy long-lived multi-charged particles in the full LHC Run 2 pp collision data at s = 13 TeV using the ATLAS detector

    Get PDF
    A search for heavy long-lived multi-charged particles is performed using the ATLAS detector at the LHC. Data collected in 2015–2018 at √s = 13 TeV from pp collisions corresponding to an integrated luminosity of 139 fb−1 are examined. Particles producing anomalously high ionization, consistent with long-lived spin-½ massive particles with electric charges from |q| = 2e to |q| = 7e are searched for. No statistically significant evidence of such particles is observed, and 95% confidence level cross-section upper limits are calculated and interpreted as the lower mass limits for a Drell–Yan plus photon-fusion production mode. The least stringent limit, 1060 GeV, is obtained for |q| = 2e particles, and the most stringent one, 1600 GeV, is for |q| = 6e particles

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at s = 13 TeV with the ATLAS detector

    No full text
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s=13 TeV with the ATLAS detector

    No full text

    Measurements of Higgs boson production by gluon-gluon fusion and vector-boson fusion using H→WW*→eνμν decays in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    Higgs boson production via gluon-gluon fusion and vector-boson fusion in proton-proton collisions is measured in the H → W W ∗ → e ν μ ν decay channel. The Large Hadron Collider delivered proton-proton collisions at a center-of-mass energy of 13 TeV between 2015 and 2018, which were recorded by the ATLAS detector, corresponding to an integrated luminosity of 139     fb − 1 . The total cross sections for Higgs boson production by gluon-gluon fusion and vector-boson fusion times the H → W W ∗ branching ratio are measured to be 12.0 ± 1.4 and 0.75   + 0.19 − 0.16     pb , respectively, in agreement with the Standard Model predictions of 10.4 ± 0.6 and 0.81 ± 0.02     pb . Higgs boson production is further characterized through measurements of Simplified Template Cross Sections in a total of 11 kinematic fiducial regions
    corecore