8 research outputs found

    Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes

    No full text
    Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome-scale metabolic models (GEMs) provide a network context for the integration of high-throughput data. We generated myocyte-specific RNA-sequencing data and investigated their correlation with proteome data. These data were then used to reconstruct a comprehensive myocyte GEM. Next, we performed a meta-analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism, connected through the downregulated dihydrolipoamide dehydrogenase. Strikingly, the gene signature underlying this metabolic regulation successfully classifies the disease state of individual samples, suggesting that regulation of these pathways is a ubiquitous feature of myocytes in response to T2D

    Cold tolerance dataset

    No full text
    This excel-file contains two sheets. The first has data on cold shock tolerance and the second has data on supercooling point of Pieris napi pupae undergoing diapause or direct development. Column headers contain descriptions of coding system. See main article for more information

    Data from: Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases

    No full text
    Diapause is a deep resting stage facilitating temporal avoidance of unfavourable environmental conditions that is used by many insects to adapt their life cycle to seasonal variation. Although considerable work has been invested in trying to understand each of the major diapause stages (induction, maintenance and termination), we know very little about the transitions between stages, especially diapause termination. Understanding diapause termination is critical for modelling and predicting spring emergence and winter physiology of insects, including many pest insects. In order to gain these insights we investigated metabolome dynamics across diapause development in pupae of the butterfly Pieris napi, which exhibits adaptive latitudinal variation in the length of endogenous diapause that is uniquely well characterized. By employing a time-series experiment we show that the whole-body metabolome is highly dynamic throughout diapause and differs between pupae kept at a diapause-terminating (low), or at a diapause-maintaining (high) temperature. We show major physiological transitions through diapause, separated temperature-dependent from temperature-independent processes and identified significant patterns of metabolite accumulation and degradation. Together the data show that while the general diapause phenotype (suppressed metabolism, increased cold tolerance) is established in a temperature-independent fashion, diapause termination is temperature-dependent and requires a cold signal. This revealed several metabolites that are only accumulated in diapause terminating conditions and degraded in a temperature-unrelated fashion during diapause termination. In conclusion, our findings indicate that some metabolites, in addition to functioning as e.g. cryoprotectants, are candidates for having regulatory roles as metabolic clocks or time-keepers during diapause

    Data from: Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases

    No full text
    Diapause is a deep resting stage facilitating temporal avoidance of unfavourable environmental conditions that is used by many insects to adapt their life cycle to seasonal variation. Although considerable work has been invested in trying to understand each of the major diapause stages (induction, maintenance and termination), we know very little about the transitions between stages, especially diapause termination. Understanding diapause termination is critical for modelling and predicting spring emergence and winter physiology of insects, including many pest insects. In order to gain these insights we investigated metabolome dynamics across diapause development in pupae of the butterfly Pieris napi, which exhibits adaptive latitudinal variation in the length of endogenous diapause that is uniquely well characterized. By employing a time-series experiment we show that the whole-body metabolome is highly dynamic throughout diapause and differs between pupae kept at a diapause-terminating (low), or at a diapause-maintaining (high) temperature. We show major physiological transitions through diapause, separated temperature-dependent from temperature-independent processes and identified significant patterns of metabolite accumulation and degradation. Together the data show that while the general diapause phenotype (suppressed metabolism, increased cold tolerance) is established in a temperature-independent fashion, diapause termination is temperature-dependent and requires a cold signal. This revealed several metabolites that are only accumulated in diapause terminating conditions and degraded in a temperature-unrelated fashion during diapause termination. In conclusion, our findings indicate that some metabolites, in addition to functioning as e.g. cryoprotectants, are candidates for having regulatory roles as metabolic clocks or time-keepers during diapause

    The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling

    No full text
    Background: To understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level. Results: Our study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction. Conclusions: Our results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease

    Теплогенерирующие установки и их водный режим

    Get PDF
    Охватывает основные разделы курса «Теплогенерирующие установки и их водный режим». Доступность изложения материала позволяет студентам совершенствовать навыки в области проектирования и эксплуатации котельных установок, применяемых в промышленности, энергетике и коммунально-бытовой сфере. Для слушателей специальности 1-43 01 71 «Техническая эксплуатация теплоэнергетических установок и систем теплоснабжения» ИПКиП Гомельского государственного технического университета имени П. О. Сухого

    Metabolome dataset

    No full text
    This excel sheet contains the whole body metabolome of Pieris napi undergoing direct development or diapause at two temperatures. Values are expressed as nmol mg-1. The first four columns contain descriptive information, each row is a single individual. Missing data (under quantification limit) was replaced with the lowest quantifiable value. See main article for more information
    corecore