238 research outputs found

    Laser Floating Zone: General Overview Focusing on the Oxyorthosilicates Growth

    Get PDF
    This chapter reviews the laser floating zone (LFZ) technique, also known as the laser-heated pedestal growth (LHPG), focusing on the recently produced rare-earth-doped oxyorthosilicate fibers. LFZ has been revealed as a suitable prototyping technique since high-quality crystals can be developed in short time with low consumption of precursor materials in a crucible-free processing that ensures to practically avoid by-products. Moreover, additional advantages are the possibility to treat and melt highly refractory materials together with the easy way for tailoring the final microstructural characteristics and this way the macroscopic physical properties. Thus, refractory rare-earth (RE) doped oxyorthosilicates following the formula RE2SiO5 have been recently produced by the LFZ technique for tuning laser emission parameters. The oxyorthosilicates have high chemical stability and allow incorporation of many rare-earth ions yielding different applications, such as laser host materials, gamma ray detectors or scintillators, environmental barrier coatings (EBCs) and waveguides, among others. Thus, different kinds of oxyorthosilicates were produced by the LFZ technique, and the detailed effects of the main processing parameters on crystal’s characteristics are discussed in this chapter

    L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine

    Get PDF
    In mammals, methionine adenosyltransferase (MAT), the enzyme responsible for S-adenosylmethionine (AdoMet) synthesis, is encoded by two genes, MAT1A and MAT2A. In liver, MAT1A expression is associated with high AdoMet levels and a differentiated phenotype, whereas MAT2A expression is associated with lower AdoMet levels and a dedifferentiated phenotype. In the current study, we examined regulation of MAT2A gene expression by l-methionine availability using HepG2 cells. In l-methionine-deficient cells, MAT2A gene expression is rapidly induced, and methionine adenosyltransferase activity is increased. Restoration of l-methionine rapidly down-regulates MAT2A mRNA levels; for this effect, l-methionine needs to be converted into AdoMet. This novel action of AdoMet is not mediated through a methyl transfer reaction. MAT2A gene expression was also regulated by 5'-methylthioadenosine, but this was dependent on 5'-methylthioadenosine conversion to methionine through the salvage pathway. The transcription rate of the MAT2A gene remained unchanged during l-methionine starvation; however, its mRNA half-life was significantly increased (from 100 min to more than 3 h). The effect of l-methionine withdrawal on MAT2A mRNA stabilization requires both gene transcription and protein synthesis. We conclude that MAT2A gene expression is modulated as an adaptive response of the cell to l-methionine availability through its conversion to AdoMet

    5'-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes

    Get PDF
    5'-methylthioadenosine (MTA) is a nucleoside generated from S-adenosylmethionine (AdoMet) during polyamine synthesis. Recent evidence indicates that AdoMet modulates in vivo the production of inflammatory mediators. We have evaluated the anti-inflammatory properties of MTA in bacterial lipopolysaccharide (LPS) challenged mice, murine macrophage RAW 264.7 cells, and isolated rat hepatocytes treated with pro-inflammatory cytokines. MTA administration completely prevented LPS-induced lethality. The life-sparing effect of MTA was accompanied by the suppression of circulating tumor necrosis factor-alpha (TNF-alpha), inducible NO synthase (iNOS) expression, and by the stimulation of IL-10 synthesis. These responses to MTA were also observed in LPS-treated RAW 264.7 cells. MTA prevented the transcriptional activation of iNOS by pro-inflammatory cytokines in isolated hepatocytes, and the induction of cyclooxygenase 2 (COX2) in RAW 264.7 cells. MTA inhibited the activation of p38 mitogen-activated protein kinase (MAPK), c-jun phosphorylation, inhibitor kappa B alpha (IkappaBalpha) degradation, and nuclear factor kappaB (NFkappaB) activation, all of which are signaling pathways related to the generation of inflammatory mediators. These effects were independent of the metabolic conversion of MTA into AdoMet and the potential interaction of MTA with the cAMP signaling pathway, central to the anti-inflammatory actions of its structural analog adenosine. In conclusion, these observations demonstrate novel immunomodulatory properties for MTA that may be of value in the management of inflammatory diseases

    Fine-tuning of SIRT1 expression is essential to protect the liver from cholestatic liver disease

    Get PDF
    Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRT oe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRT hep–/– ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRT oe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2 –/– ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRT oe mice showed exacerbated parenchymal injury whereas SIRT hep–/– mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRT oe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRT hep–/– hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRT oe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage

    Combining a prioritization strategy and functional studies nominates 5’UTR variants underlying inherited retinal disease

    Get PDF
    BACKGROUND: 5’ untranslated regions (5’UTRs) are essential modulators of protein translation. Predicting the impact of 5’UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5’UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5’UTRs by different whole exome sequencing (WES) kits. The selected 5’UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5’UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5’UTR compared to that of their canonical isoform. Depending on the probe design, 3–20% of IRD genes have 5’UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5’UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5’UTR variants implicated in IRDs and provides a systematic approach for 5’UTR annotation and validation that is applicable to other inherited diseases

    Fatty liver and fibrosis in glycine N-methyltransferase knockout mice is prevented by nicotinamide

    Get PDF
    Deletion of glycine N-methyltransferase (GNMT) in mice, the main gene involved in liver S-adenosylmethionine (SAMe) catabolism, leads to the hepatic accumulation of this molecule and the development of fatty liver and fibrosis. To demonstrate that the excess of hepatic SAMe is the main agent contributing to liver disease in GNMT-KO mice, we treated 1.5-month old GNMT-KO mice for 6 weeks with nicotinamide (NAM), a substrate of the enzyme NAM N-methyltransferase. NAM administration markedly reduced hepatic SAMe content, prevented DNA-hypermethylation and normalized the expression of critical genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation, and apoptosis. More important, NAM treatment prevented the development of fatty liver and fibrosis in GNMT-KO mice. Because GNMT expression is down-regulated in patients with cirrhosis and there are subjects with GNMT mutations who have spontaneous liver disease, the clinical implication of the present findings is obvious at least with respect to these latter individuals. Especially since NAM has been used for many years to treat a broad spectrum of diseases including pellagra and diabetes without significant side effects, it should be considered in subjects with GNMT mutations.ConclusionsThese results indicate that the anomalous accumulation of SAMe in GNMT-KO mice can be corrected by NAM treatment leading to the normalization of the expression of many genes involved in fatty acid metabolism, oxidative stress, inflammation, cell proliferation and apoptosis, and to the reversion of the appearance of the pathologic phenotype

    S-adenosylmethionine Levels Regulate the Schwann Cell DNA Methylome

    Get PDF
    SummaryAxonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, providing a mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations

    Stabilization of LKB1 and Akt by neddylation regulates energy metabolism in liver cancer

    Get PDF
    The current view of cancer progression highlights that cancer cells must undergo through a post-translational regulation and metabolic reprogramming to progress in an unfriendly environment. In here, the importance of neddylation modification in liver cancer was investigated. We found that hepatic neddylation was specifically enriched in liver cancer patients with bad prognosis. In addition, the treatment with the neddylation inhibitor MLN4924 in Phb1-KO mice, an animal model of hepatocellular carcinoma showing elevated neddylation, reverted the malignant phenotype. Tumor cell death in vivo translating into liver tumor regression was associated with augmented phosphatidylcholine synthesis by the PEMT pathway, known as a liver-specific tumor suppressor, and restored mitochondrial function and TCA cycle flux. Otherwise, in protumoral hepatocytes, neddylation inhibition resulted in metabolic reprogramming rendering a decrease in oxidative phosphorylation and concomitant tumor cell apoptosis. Moreover, Akt and LKB1, hallmarks of proliferative metabolism, were altered in liver cancer being new targets of neddylation. Importantly, we show that neddylation-induced metabolic reprogramming and apoptosis were dependent on LKB1 and Akt stabilization. Overall, our results implicate neddylation/signaling/metabolism, partly mediated by LKB1 and Akt, in the development of liver cancer, paving the way for novel therapeutic approaches targeting neddylation in hepatocellular carcinoma
    • …
    corecore