25 research outputs found

    Funciones de los Receptores de Estrógenos en las neuronas primarias: interacción con otras vías intracelulares e implicación en la morfología neuronal

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 19-10-200

    Suppression of glycogen synthesis as a treatment for Lafora disease: Establishing the window of opportunity

    Get PDF
    Lafora disease (LD) is a fatal adolescence-onset neurodegenerative condition. The hallmark of LD is the accumulation of aberrant glycogen aggregates called Lafora bodies (LBs) in the brain and other tissues. Impeding glycogen synthesis from early embryonic stages by genetic suppression of glycogen synthase (MGS) in an animal model of LD prevents LB formation and ultimately the pathological manifestations of LD thereby indicating that LBs are responsible for the pathophysiology of the disease. However, it is not clear whether eliminating glycogen synthesis in an adult animal after LBs have already formed would halt or reverse the progression of LD. Herein we generated a mouse model of LD with inducible MGS suppression. We evaluated the effect of MGS suppression at different time points on LB accumulation as well as on the appearance of neuroinflammation, a pathologic trait of LD models. In the skeletal muscle, MGS suppression in adult LD mice blocked the formation of new LBs and reduced the number of glycogen aggregates. In the brain, early but not late MGS suppression halted the accumulation of LBs. However, the neuroinflammatory response was still present, as shown by the levels of reactive astrocytes, microglia and inflammatory cytokines. Our results confirm that MGS as a promising therapeutic target for LD and highlight the importance of an early diagnosis for effective treatment of the disease

    Estradiol Activates β-Catenin Dependent Transcription in Neurons

    Get PDF
    Estradiol may fulfill a plethora of functions in neurons, in which much of its activity is associated with its capacity to directly bind and dimerize estrogen receptors. This hormone-protein complex can either bind directly to estrogen response elements (ERE's) in gene promoters, or it may act as a cofactor at non-ERE sites interacting with other DNA-binding elements such as AP-1 or c-Jun. Many of the neuroprotective effects described for estrogen have been associated with this mode of action. However, recent evidence suggests that in addition to these “genomic effects”, estrogen may also act as a more general “trophic factor” triggering cytoplasmic signals and extending the potential activity of this hormone. We demonstrated that estrogen receptor alpha associates with β-catenin and glycogen synthase kinase 3 in the brain and in neurons, which has since been confirmed by others. Here, we show that the action of estradiol activates β-catenin transcription in neuroblastoma cells and in primary cortical neurons. This activation is time and concentration-dependent, and it may be abolished by the estrogen receptor antagonist ICI 182780. The transcriptional activation of β-catenin is dependent on lymphoid enhancer binding factor-1 (LEF-1) and a truncated-mutant of LEF-1 almost completely blocks estradiol TCF-mediated transcription. Transcription of a TCF-reporter in a transgenic mouse model is enhanced by estradiol in a similar fashion to that produced by Wnt3a. In addition, activation of a luciferase reporter driven by the engrailed promoter with three LEF-1 repeats was mediated by estradiol. We established a cell line that constitutively expresses a dominant-negative LEF-1 and it was used in a gene expression microarray analysis. In this way, genes that respond to estradiol or Wnt3a, sensitive to LEF-1, could be identified and validated. Together, these data demonstrate the existence of a new signaling pathway controlled by estradiol in neurons. This pathway shares some elements of the insulin-like growth factor-1/Insulin and Wnt signaling pathways, however, our data strongly suggest that it is different from that of both these ligands. These findings may reveal a set of new physiological roles for estrogens, at least in the Central Nervous System (CNS)

    Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation

    Get PDF
    Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of -cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce -cell damage. Interestingly, three of the compounds analyzed-benzbromarone, quercetin, and folic acid-are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma cells by modulating the aggregation propensity of amylin

    Alteración en los circuitos inhibidores en corteza somatosensorial e hipocampo en el modelo murino de síndrome de Down Ts65Dn

    Get PDF
    El síndrome de Down, con una incidencia de uno de cada 1000 nacimientos vivos, es la alteración genética más común asociada con retraso mental. La trisomía del cromosoma 21 induce un fenotipo variable que presenta, entre otros, defectos cardíacos o desarrollo temprano de la enfermedad de Alzheimer pero cuyo único aspecto común es un cierto grado de retraso mental. El mecanismo que provoca este retraso no está totalmente elucidado. Existen evidencias que apuntan a defectos en la formación de redes neurales, alteraciones en el procesamiento de la información y/o defectos en la capacidad plástica del cerebro. A nivel celular se ha observado que los individuos con síndrome de Down presentan alteraciones en la morfología, densidad y distribución de espinas en las dendritas de las neuronas piramidales corticales, así como en las neuronas granulares y piramidales del hipocampo. Muchas de estas alteraciones se mantienen en los modelos murinos de síndrome de Down, entre ellos el más ampliamente utilizado es el ratón Ts65Dn que presenta una trisomía parcial del cromosoma 16 murino. Nuestra hipótesis es que el déficit observado en la arborización dendrítica en los individuos con síndrome de Down puede estar motivado por desregulación en el balance entre la excitación y la inhibición y por tanto encontrase relacionado con alteraciones en las neuronas inhibidoras en las regiones correspondientes y en su conexión con las neuronas principales. Por tanto, hemos caracterizado la expresión de marcadores sinápticos y de las diversas poblaciones de interneuronas en corteza somatosensorial e hipocampo en ratones Ts65Dn de 3 meses de edad utilizando técnicas inmunohistoquímicas y analizando la expresión mediante recuentos y densitometrías. Hemos observado un incremento en los contactos inhibidores totales en las dos regiones analizadas. Se observa un incremento en el número de neuronas inhibidoras, fundamentalmente aquellas que expresan la proteína ligante de calcio calretinina

    Astrocytic glycogen accumulation drives the pathophysiology of neurodegeneration in Lafora disease

    Get PDF
    The hallmark of Lafora disease, a fatal neurodegenerative disorder, is the accumulation of intracellular glycogen aggregates, called Lafora bodies. Until recently, it was widely believed that brain Lafora bodies were present exclusively in neurons and thus that Lafora disease pathology derived from their accumulation in this cell population. However, recent evidence indicates that Lafora bodies are also present in astrocytes. To define the role of astrocytic Lafora bodies in Lafora disease pathology, we deleted glycogen synthase specifically from astrocytes in a mouse model of the disease (malinKO). Strikingly, blocking glycogen synthesis in astrocytes-thus impeding Lafora bodies accumulation in this cell type-prevented the increase in neurodegeneration markers, autophagy impairment, and metabolic changes characteristic of the malinKO model. Conversely, mice that overaccumulate glycogen in astrocytes showed an increase in these markers. These results unveil the deleterious consequences of the deregulation of glycogen metabolism in astrocytes and change the perspective that Lafora disease is caused solely by alterations in neuron

    Lack of p62 Impairs Glycogen Aggregation and Exacerbates Pathology in a Mouse Model of Myoclonic Epilepsy of Lafora

    Full text link
    Lafora disease (LD) is a fatal childhood-onset dementia characterized by the extensive accumulation of glycogen aggregates-the so-called Lafora Bodies (LBs)-in several organs. The accumulation of LBs in the brain underlies the neurological phenotype of the disease. LBs are composed of abnormal glycogen and various associated proteins, including p62, an autophagy adaptor that participates in the aggregation and clearance of misfolded proteins. To study the role of p62 in the formation of LBs and its participation in the pathology of LD, we generated a mouse model of the disease (malinKO) lacking p62. Deletion of p62 prevented LB accumulation in skeletal muscle and cardiac tissue. In the brain, the absence of p62 altered LB morphology and increased susceptibility to epilepsy. These results demonstrate that p62 participates in the formation of LBs and suggest that the sequestration of abnormal glycogen into LBs is a protective mechanism through which it reduces the deleterious consequences of its accumulation in the brain

    I.amAble: aprendizaje e inclusión educativa mediante talleres científicos

    Get PDF
    I.amAble ha ofrecido a estudiantes universitarios de física, química, veterinaria, biología y educación la oportunidad de complementar su formación mediante el diseño, la realización y la evaluación de talleres científicos que faciliten la inclusión de personas con diversidad cognitiva. Los talleres han sido diseñados por el alumnado universitario de ciencias y perfilados por estudiantes de educación para ser llevados a cabo por alumnado preuniversitario en parejas, de forma que un miembro pertenezca a un centro de secundaria ordinario y el otro miembro a un centro de educación especial. Aquellos talleres que se han considerado más adecuados por su adaptabilidad se han llevado a la práctica guiados por estudiantes de ciencias y de educación. Los miembros del proyecto, que incluyen representantes de todos los estamentos universitarios, han supervisado todas las tareas descritas anteriormente. Además de los miembros de la Universidad Complutense, también figuran personas voluntarias de otras instituciones científicas y educativas. El alumnado universitario ha tenido la posibilidad, no sólo de asentar y profundizar algunos contenidos científicos o poner en práctica algunas de las enseñanzas adquiridas, sino también de desarrollar su empatía, su capacidad de comunicar e improvisar y de adaptarse a un público heterogéneo. Ello ha mejorado sus perspectivas laborales, especialmente dentro de la educación formal e informal (animación sociocultural, museos científicos...). Además, han contribuido a facilitar la inclusión educativa de las personas con diversidad funcional y a mejorar la cultura científica de la sociedad. Con este proyecto, inspirado en la metodología Aprendizaje-Servicio (ApS), se ha pretendido también mejorar la accesibilidad a las experiencias y contenidos científicos y facilitar la inclusión educativa de las personas con diversidad funcional, especialmente diversidad cognitiva o intelectual. En la primera edición de I.amAble (2016-17) se hizo hincapié en el diseño y selección de fichas para hacer talleres (aunque también se realizaron talleres). En la segunda edición (2017-18) se puso un mayor énfasis en llevar los talleres a un mayor número de centros educativos. En la pasada edición (2018-19) se puso el acento en los procesos de evaluación. En esta cuarta edición (2019-20), se han seguido trabajando y puliendo todos esos aspectos, pero se ha priorizado la transformación de I.amAble en un proyecto de tipo aprendizaje-servicio, integrándolo en asignaturas formales, concretamente en Complementos de Física y Complementos de Química, del Máster en Formación de Profesorado, en la especialidad de Física y Química
    corecore