15 research outputs found
Comprehensive and systematic characterization of multi-functionalized cisplatin nano-conjugate: from the chemistry and proteomic biocompatibility to the animal model
Background
Nowadays, nanoparticles (NPs) have evolved as multifunctional systems combining different custom anchorages which opens a wide range of applications in biomedical research. Thus, their pharmacological involvements require more comprehensive analysis and novel nanodrugs should be characterized by both chemically and biological point of view. Within the wide variety of biocompatible nanosystems, iron oxide nanoparticles (IONPs) present mostly of the required features which make them suitable for multifunctional NPs with many biopharmaceutical applications.
Results
Cisplatin-IONPs and different functionalization stages have been broadly evaluated. The potential application of these nanodrugs in onco-therapies has been assessed by studying in vitro biocompatibility (interactions with environment) by proteomics characterization the determination of protein corona in different proximal fluids (human plasma, rabbit plasma and fetal bovine serum),. Moreover, protein labeling and LC–MS/MS analysis provided more than 4000 proteins de novo synthetized as consequence of the nanodrugs presence defending cell signaling in different tumor cell types (data available via ProteomeXchanges with identified PXD026615). Further in vivo studies have provided a more integrative view of the biopharmaceutical perspectives of IONPs.
Conclusions
Pharmacological proteomic profile different behavior between species and different affinity of protein coating layers (soft and hard corona). Also, intracellular signaling exposed differences between tumor cell lines studied. First approaches in animal model reveal the potential of theses NPs as drug delivery vehicles and confirm cisplatin compounds as strengthened antitumoral agents
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
Antibacterial effect of phenolic compounds from different wines
The antimicrobial properties of pure phenolic compounds and polyphenols of different wines against pathogens were investigated. It was observed that bacterial species exhibited different sensitivities towards the different concentrations of phenolic compounds. Escherichia coli was the most sensitive bacterium and Flavobacterium sp. was resistant against all phenolic compounds tested. All wine samples showed antimicrobial properties and the inhibition increased when the polyphenols concentration of wines increased. Clarified wines were inactive against all bacteria, indicating that polyphenolic compounds present in red wines, are responsible for the antimicrobial effects observed. The different concentrations of polyphenols in wines could have an important impact on consumers with the consequent increase in wine commercialization.Fil: Rodriguez Vaquero, Maria Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Alberto, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Manca, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentin
Influence of phenolic compounds from wines on the growth of Listeria monocytogenes
The anti-microbial properties against Listeria monocytogenes of pure flavonoids rutin, catechin and quercetin; non-flavonoids gallic, vanillic, protocatechuic and caffeic acids and total polyphenols of three Argentinean wines, Cabernet Sauvignon, Malbec and Merlot varieties were investigated. The non-flavonoid caffeic acid and the flavonoids rutin and quercetin were the compounds with higher inhibitory activities on L. monocytogenes growth. The knowledge of the anti-listerial effect of different wines varieties could be the basis to demonstrate if the wine consumption with a meal may collaborate in the health protection against some foodborne organisms such as L. monocytogenes.Fil: Rodriguez Vaquero, Maria Jose. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Alberto, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Manca, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; Argentin
Enhancement of Tumor Cell Immunogenicity and Antitumor Properties Derived from Platinum-Conjugated Iron Nanoparticles
From chemistry design to clinical application, several approaches have been developed to overcome platinum drawbacks in antitumoral therapies. An in-depth understanding of intracellular signaling may hold the key to the relationship of both conventional drugs and nanoparticles. Within these strategies, first, nanotechnology has become an essential tool in oncotherapy, improving biopharmaceutical properties and providing new immunomodulatory profiles to conventional drugs mediated by activation of endoplasmic reticulum (ER) stress. Secondly, functional proteomics techniques based on microarrays have proven to be a successful method for high throughput screening of proteins and profiling of biomolecule mechanisms of action. Here, we conducted a systematic characterization of the antitumor profile of a platinum compound conjugated with iron oxide nanoparticles (IONPs). As a result of the nano-conjugation, cytotoxic and proteomics profiles revealed a significant improvement in the antitumor properties of the starting material, providing selectivity in certain tumor cell lines tested. Moreover, cell death patterns associated with immunogenic cell death (ICD) response have also been identified when ER signaling pathways have been triggered. The evaluation in several tumor cell lines and the analysis by functional proteomics techniques have shown novel perspectives on the design of new cisplatin-derived conjugates, the high value of IONPs as drug delivery systems and ICD as a rewarding approach for targeted oncotherapy and onco-immunotherapies