150 research outputs found

    Uncertainty analysis in systems biology

    Get PDF

    Optimal experiment design for model selection of biochemical networks

    Get PDF
    Background Mathematical modeling is often used to formalize hypotheses on how a biochemical network operates by discriminating between competing models. Bayesian model selection offers a way to determine the amount of evidence that data provides to support one model over the other while favoring simple models. In practice, the amount of experimental data is often insufficient to make a clear distinction between competing models. Often one would like to perform a new experiment which would discriminate between competing hypotheses. Results We developed a novel method to perform Optimal Experiment Design to predict which experiments would most effectively allow model selection. A Bayesian approach is applied to infer model parameter distributions. These distributions are sampled and used to simulate from multivariate predictive densities. The method is based on a k-Nearest Neighbor estimate of the Jensen Shannon divergence between the multivariate predictive densities of competing models. Conclusions We show that the method successfully uses predictive differences to enable model selection by applying it on several test cases. Because the design criterion is based on predictive distributions and such distributions can be computed for a wide range of model quantities, the approach is very flexible. The method reveals specific combinations of experiments which improve discriminability even in cases where data is scarce. The proposed approach can be used in conjunction with existing Bayesian methodologies where (approximate) posteriors have been determined, making use of relations that exist within the inferred posteriors

    Parameter adaptations during phenotype transitions in progressive diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of phenotype transitions is important to understand progressive diseases, e.g., diabetes mellitus, metabolic syndrome, and cardiovascular diseases. A challenge remains to explain phenotype transitions in terms of adaptations in molecular components and interactions in underlying biological systems.</p> <p>Results</p> <p>Here, mathematical modeling is used to describe the different phenotypes by integrating experimental data on metabolic pools and fluxes. Subsequently, trajectories of parameter adaptations are identified that are essential for the phenotypical changes. These changes in parameters reflect progressive adaptations at the transcriptome and proteome level, which occur at larger timescales. The approach was employed to study the metabolic processes underlying liver X receptor induced hepatic steatosis. Model analysis predicts which molecular processes adapt in time after pharmacological activation of the liver X receptor. Our results show that hepatic triglyceride fluxes are increased and triglycerides are especially stored in cytosolic fractions, rather than in endoplasmic reticulum fractions. Furthermore, the model reveals several possible scenarios for adaptations in cholesterol metabolism. According to the analysis, the additional quantification of one cholesterol flux is sufficient to exclude many of these hypotheses.</p> <p>Conclusions</p> <p>We propose a generic computational approach to analyze biological systems evolving through various phenotypes and to predict which molecular processes are responsible for the transition. For the case of liver X receptor induced hepatic steatosis the novel approach yields information about the redistribution of fluxes and pools of triglycerides and cholesterols that was not directly apparent from the experimental data. Model analysis provides guidance which specific molecular processes to study in more detail to obtain further understanding of the underlying biological system.</p

    ISHCCO Qualification Framework For Construction Safety Coordinators

    Get PDF
    ISHCCO (International Safety and Health Construction Coordinators Organization - www.ishcco.org) represents an European umbrella association of the national professional associations of Health and Safety Construction Coordinators (HSCC). One of the statutory aims of ISHCCO is to promote excellence in education, training and professional development in the countries of the national members. Since ISHCCO was founded in 2003 it has been working on the development of such a catalogue of criteria for the promotion and acceptance of qualification framework for HSCC. The ISHCCO qualification framework (IQF) developed enables benchmarking based on technical standards and European legislation complying with international and national criteria. IQF, like the European Qualification Framework, has three dimensions for the competences of HSCC: knowledge, skills and attitudes. What is described is the process followed to define these competences, the application of IQF for levels 5, 6 and 7 of EQF (technician, bachelor and master) and the connection with the European Directive 92/57 about temporary or mobile construction sites. The types of projects considered in IQF include requirements for simple projects, medium building construction and civil engineering projects and highly specialized construction projects or major projects. The target groups in construction are experts, institutions, professional associations, chambers of commerce, construction sector companies, authorities and building owner/clients. IQF can be used to define learning outcomes of HSCC training courses and respective contents and assessment

    An integrated strategy for prediction uncertainty analysis

    Get PDF
    Motivation: To further our understanding of the mechanisms underlying biochemical pathways mathematical modelling is used. Since many parameter values are unknown they need to be estimated using experimental observations. The complexity of models necessary to describe biological pathways in combination with the limited amount of quantitative data results in large parameter uncertainty which propagates into model predictions. Therefore prediction uncertainty analysis is an important topic that needs to be addressed in Systems Biology modelling

    A Bayesian approach to targeted experiment design

    Get PDF
    Motivation: Systems biology employs mathematical modelling to further our understanding of biochemical pathways. Since the amount of experimental data on which the models are parameterized is often limited, these models exhibit large uncertainty in both parameters and predictions. Statistical methods can be used to select experiments that will reduce such uncertainty in an optimal manner. However, existing methods for optimal experiment design (OED) rely on assumptions that are inappropriate when data are scarce considering model complexity

    Geodesic Monte Carlo on embedded manifolds

    Get PDF
    Markov chain Monte Carlo methods explicitly defined on the manifold of probability distributions have recently been established. These methods are constructed from diffusions across the manifold and the solution of the equations describing geodesic flows in the Hamilton–Jacobi representation. This paper takes the differential geometric basis of Markov chain Monte Carlo further by considering methods to simulate from probability distributions that themselves are defined on a manifold, with common examples being classes of distributions describing directional statistics. Proposal mechanisms are developed based on the geodesic flows over the manifolds of support for the distributions, and illustrative examples are provided for the hypersphere and Stiefel manifold of orthonormal matrices

    Model Based Targeting of IL-6-Induced Inflammatory Responses in Cultured Primary Hepatocytes to Improve Application of the JAK Inhibitor Ruxolitinib.

    Get PDF
    IL-6 is a central mediator of the immediate induction of hepatic acute phase proteins (APP) in the liver during infection and after injury, but increased IL-6 activity has been associated with multiple pathological conditions. In hepatocytes, IL-6 activates JAK1-STAT3 signaling that induces the negative feedback regulator SOCS3 and expression of APPs. While different inhibitors of IL-6-induced JAK1-STAT3-signaling have been developed, understanding their precise impact on signaling dynamics requires a systems biology approach. Here we present a mathematical model of IL-6-induced JAK1-STAT3 signaling that quantitatively links physiological IL-6 concentrations to the dynamics of IL-6-induced signal transduction and expression of target genes in hepatocytes. The mathematical model consists of coupled ordinary differential equations (ODE) and the model parameters were estimated by a maximum likelihood approach, whereas identifiability of the dynamic model parameters was ensured by the Profile Likelihood. Using model simulations coupled with experimental validation we could optimize the long-term impact of the JAK-inhibitor Ruxolitinib, a therapeutic compound that is quickly metabolized. Model-predicted doses and timing of treatments helps to improve the reduction of inflammatory APP gene expression in primary mouse hepatocytes close to levels observed during regenerative conditions. The concept of improved efficacy of the inhibitor through multiple treatments at optimized time intervals was confirmed in primary human hepatocytes. Thus, combining quantitative data generation with mathematical modeling suggests that repetitive treatment with Ruxolitinib is required to effectively target excessive inflammatory responses without exceeding doses recommended by the clinical guidelines
    corecore