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Abstract  15 

The most commonly prescribed painkiller worldwide, paracetamol (acetaminophen, APAP) is 16 

also the predominant cause of acute liver failure (ALF), and therefore paracetamol-induced 17 

liver toxicity remains an important clinical problem. The standard clinical treatment framework 18 

for paracetamol overdose currently allows for antidote therapy decisions to be made based 19 

on a nomogram treatment line. This treatment threshold is lowered for patients adjudged to 20 

be highly susceptible to liver injury due to risk factors such as anorexia nervosa or bulimia. 21 

Additionally, both the original and adjusted clinical frameworks are highly dependent on 22 

knowledge from the patient regarding time since ingestion and initial dose amount, both of 23 

which are often highly unpredictable. We have recently developed a pre-clinical framework for 24 

predicting time since ingestion, initial dose amount and subsequent probability of liver injury 25 

based on novel biomarker concentrations. Here, we use identifiability analysis as a tool to 26 

increase confidence in our model parameter estimates and extend the framework to make 27 

predictions for both healthy and high-risk populations. Through pharmacokinetic-28 

pharmacodynamic model refinement, we identify thresholds that determine whether necrosis 29 

or apoptosis is the dominant form of cell death, which can be essential for effective ALF 30 

interventions. Using a single blood test, rather than the multiple tests required in the current 31 

clinical frameworks, our model provides overdose identification information applicable for 32 

healthy and high-risk individuals as well as quantitative measures of estimated liver injury 33 

probability.  34 

Keywords 35 

APAP; DILI; biomarkers; in-silico; pharmacokinetics; identifiability.   36 
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1 Introduction  37 

Paracetamol (acetaminophen, APAP), the most commonly prescribed painkiller in the world 38 

[1], is also the leading cause of acute liver failure (ALF) [2] and therefore represents a 39 

concerning global health issue [3]. In England and Wales, APAP poisoning results in 40 

approximately 40,000 hospital admissions, 20 liver transplants and 200 deaths per year [4]. 41 

Between 2015-2016, there was an 11% increase in deaths involving APAP in the UK [5]. In 42 

the USA, ALF is responsible for approximately 56,000 emergency room visits, 2,600 43 

hospitalisations and 500 deaths per year [6]. Considering this, the clinical overdose 44 

intervention treatment framework is found to be surprisingly sub-optimal. Administration 45 

decisions regarding the overdose antidote, N-Acetylcysteine (NAC), are currently based upon 46 

the nomogram treatment line [7] which, though influenced by a measurement of alanine 47 

aminotransferase (ALT), is also heavily dependent on patients’ knowledge of initial dose 48 

amount and time elapsed since ingestion; information which is often unreliable. Given this 49 

uncertainty, decisions on whether or not to administer the NAC antidote can be imprecise. 50 

Furthermore, unnecessary NAC administration can cause a range of side effects such as 51 

nausea, vomiting and anaphylactoid reaction, thereby exacerbating the problem of ill-informed 52 

treatment [8]. Such inaccurate treatment decisions have led to an estimated cost of £8.3 53 

million per year in the UK since 2012 [9]. 54 

APAP is predominantly metabolised in the liver via glucuronidation and sulphation pathways, 55 

with a small fraction being oxidised into the toxic metabolite, NAPQI. Detoxification of NAPQI 56 

occurs via conjugation with hepatic stores of glutathione (GSH) [10]. Therefore, although initial 57 

dose and time since ingestion are known to be the most important indicators of overdose 58 

severity level, additional factors affecting an individual’s ability to synthesise or maintain 59 

sufficiently high levels of GSH should also be considered [11]. Such factors may include age, 60 

pre-existing liver disease, concurrent use of alcohol and/or other liver-metabolised 61 

medications, genetic predispositions and acuity/chronicity of APAP use [3]. Patients with 62 
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known high-risk factors are currently measured against an amended nomogram treatment line 63 

when deciding whether or not to administer NAC [12].  64 

Crucially, the availability of GSH is known to be heavily dependent on the nutritional level of a 65 

patient. Therefore, malnourished patients, or those suffering from eating disorders (particularly 66 

anorexia or bulimia nervosa) are deemed to be at a particularly high risk of developing liver 67 

injury following overdose of APAP [11]. Eating disorder admissions have risen by 68 

approximately 34% since 2006 in the UK and, with anorexia having the highest mortality rate 69 

of all psychiatric disorders (often linked to suicide) [13], it is essential that quick and accurate 70 

treatment decisions for these high-risk patients can be made so that fatalities can be avoided. 71 

In addition to an increase in those patients with eating disorders, the prescription of 72 

medications combining APAP with opioids is likely to increase the incidence of unintentional 73 

APAP overdose, particularly in the USA where there is currently an opioid addiction epidemic 74 

[14]. Furthermore, the number of alcohol-related hospital admissions in England rose by 22% 75 

in the 10-year period leading up to 2016 [15]. Since patients with opioid and alcohol-related 76 

issues are known to have a higher susceptibility to APAP toxicity, there is an increasingly 77 

urgent need to improve intervention efficacy for the growing number of patients in these high-78 

risk groups. 79 

Some of the most important goals of medicine are to reduce pain and prolong life [16] and 80 

scientific research has allowed for significant advancements in achieving these goals. 81 

However, there is also an increasing impetus to reduce the extent of animal testing required 82 

to conduct medical research [17]. Quantitative systems toxicology (QST) modelling comprises 83 

a useful tool to reduce and refine animal testing and is now considered as both an essential 84 

component of modern toxicity testing and a foundation for individualised therapeutic treatment 85 

[18]. However, the utility of a QST model, as an abstract representation of the true biology, is 86 

limited by its simplifying assumptions and consequently there are often multiple aspects of the 87 

model that contain uncertainty. Not all states of a dynamic model can be directly measured 88 
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experimentally, and conversely, not all experimental data may be useful for model calibration, 89 

since the data itself may contain errors not accounted for by the model. These limitations can 90 

raise scepticism around QST model predictions and while it would be unrealistic to attempt to 91 

completely eradicate every level of error, it is crucial that any parameter uncertainties should 92 

be assessed, reported and minimised in order for these models to be truly useful in their 93 

predictions [19]. There are many existing and developing techniques to quantify uncertainty, 94 

and the chosen method often depends on the aims of the model. Identifiability analysis can 95 

be employed to determine whether model parameters can be uniquely identified based upon 96 

the structure of the model and data used, and sensitivity analyses can provide quantification 97 

of the dependency of model outputs to perturbations in the model parameters. 98 

We have recently developed a framework that uses a single sample, rather than multiple 99 

sample, approach to biomarker quantification in order to predict the probability of liver injury 100 

[20]. This model was optimised against fed mouse data and therefore is limited to applications 101 

relating to individuals with unimpaired clearance capacity. Through the application of 102 

uncertainty quantification techniques, we here identify areas within the original model structure 103 

that require improvement and use this knowledge to make the structure more relevant to the 104 

APAP toxicity clinical environment. There are many other in-silico models which focus on 105 

describing and understanding APAP-induced toxicity. Howell et al. [21] combined a large-106 

scale, mechanistic mathematical model (DILIsym®) with in-vitro data to compare DILI 107 

responses across species. Whilst their model has potential utility for in-vitro to in-vivo 108 

extrapolation, parameter identifiability was not assessed within their study. Reith et al. [22] 109 

clarified the role of glucuronidation and sulphation pathways in the hepatic metabolism of 110 

APAP. Ochoa et al. [23] reported a physiologically-based pharmacokinetic (PBPK) modelling 111 

approach to predict APAP and toxic metabolite concentrations, which were then used to 112 

estimate spatiotemporal cell integrity and the elimination rates of various substances. 113 

Zurlinden et al. [24] used a Bayesian inference approach within a PBPK model to estimate 114 
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initial APAP dose and quantify its uncertainty based on conventional biomarkers. Our model 115 

aims to optimise patient stratification and overdose treatment by incorporating a panel of novel 116 

mechanism-based biomarkers of increased sensitivity [25]. Remien et al. [26] also used 117 

conventional biomarkers to predict initial dose and time since overdose. Our work in [20] 118 

extended this previous work with the inclusion of novel biomarkers HMGB1 and K18. However, 119 

there is currently only one in-silico APAP model which takes into consideration individuals that 120 

may have depleted GSH stores. Navid et al. (2013) developed a multi-compartmental PBPK 121 

model of APAP metabolism in order to understand how nutritional deficiencies and certain 122 

lifestyle choices, such as alcohol consumption, affect GSH regeneration [27].  123 

PBPK models are increasingly being utilised to account for blood flow between organs, tissue 124 

partitioning, and predicting localised drug concentrations at the site of action [24, 28]. 125 

However, these large-scale models, while more physiologically relevant, favour complexity at 126 

the expense of mathematical tractability and subsequently contain an increased number of 127 

parameters that require estimation. The large scale of the models and amount of parameters 128 

to be optimised, often outweighing the amount and quality of data available for such a task, 129 

renders identifiability of model parameters problematic. Since the distribution and metabolism 130 

of APAP is well known, we opt for a smaller scale model which focuses on liver toxicity 131 

biomarkers. The smaller scale model allows for closer scrutiny of the model itself via 132 

techniques such as sensitivity analysis and identifiability analysis, providing mechanistic 133 

insight into structure, parameterisation and interactions within the system.  134 

In this study, we extend our original APAP overdose framework [20] to quantify the effects of 135 

various factors that impact upon GSH availability to develop an improved overdose 136 

identification framework. The mathematical model is refined using techniques from uncertainty 137 

analysis to account for mechanistic changes indicative of suppressed GSH capacity and 138 

optimised against additional data to improve its scope and predictive potential. Analysis of this 139 
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improved model provides predictions of initial dose, time since ingestion and probability of liver 140 

injury for both healthy and high-risk populations. 141 

2 Methods 142 

2.1 Experimental data description 143 

The mathematical model is parameterised against multiple experimental datasets. For the 144 

APAP PK element of the model, four datasets from two separate published studies [25, 26] 145 

recording APAP concentration over time in mice following intraperitoneal administration of  50, 146 

150, 500 and 530 mg/kg doses are used in both the original and extended framework. For the 147 

biomarker PD element of the model, in the original framework one experimental dataset is 148 

used [30] which records biomarkers (GSH, ALT, HMGB1, full and fragmented K18) over time 149 

following a 530 mg/kg APAP dose. In the extended framework, this dataset is also used, but 150 

with the addition of two other datasets from two separate studies [20, 27]. The first, [20], 151 

provides dose response data for mouse biomarker concentrations GSH, ALT, HMGB1 and 152 

fragmented K18 at 5 hours following APAP doses [0,150,300,530,750,1000] mg/kg. The 153 

second, [31], provides biomarker concentrations GSH, ALT, HMGB1, full and fragmented K18 154 

at 5 and 24 hours for both fed and fasted mice following a 530mg/kg APAP dose. All datasets 155 

described were used for optimisation of the model parameters. The data consists of a wide 156 

range of dosing scenarios to the extent that we do not extrapolate beyond these calibration 157 

ranges in subsequent model simulations. 158 

2.2 Parameter optimisation  159 

A multi-start technique is applied during parameter optimisation in an attempt to find the 160 

globally optimal parameter set following the restructuration of the original model [20]. All 161 

dynamic models are optimised by minimising the sum of squared errors (SSE) between model 162 

simulated output and the experimental data described in section 2.1 (fminsearch, Matlab [32]). 163 

The Matlab minimisation function uses a Nelder-Mead search algorithm to iteratively search 164 
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the parameter space until a local minimum is found [33]. Latin hypercube sampling was used 165 

to generate 1000 different initial estimates for each parameter (ranges defined in the 166 

supplementary material).  167 

2.3 Identifiability analysis 168 

Identifiability analysis is performed to visualise changes in SSE (deviation between model 169 

output and experimental data) following parameter perturbations and, subsequently, to 170 

determine the identifiability of each parameter in the model. We apply a method of identifiability 171 

analysis similar to the profile likelihood approach defined by the FRIAS research group [34]. 172 

Parameter estimates are either identifiable (unique minimum), practically unidentifiable 173 

(monotonic response), or structurally unidentifiable (negligible response) [35]. During this 174 

analysis, each individual parameter is tested separately for identifiability. This “test parameter” 175 

is varied by 20% intervals (from -50% to +200% of its original value). In each iteration, the 176 

modified test parameter is fixed, while all the other parameters in the model are varied in two 177 

ways: fixed at the optimum values (as found from previous multi-start optimisation); or 178 

randomly sampled from a Latin hypercube (bounds for sampling can be found in the 179 

supplementary material). For each test parameter iteration, the parameter set corresponding 180 

to the lowest SSE value is then identified. In this analysis, an identifiable parameter is defined 181 

as a parameter which, when perturbed from its initial (optimal) value (both positively and 182 

negatively), results in an increased SSE and therefore predicts a greater error between the 183 

model output and the data. If the SSE increases on only one side (i.e. in the positive or 184 

negative direction) of the test parameter, and remains relatively unchanged on the other side, 185 

this parameter is defined as practically unidentifiable; that is, either increasing or decreasing 186 

the test parameter value causes an increased error between the model output and the data. 187 

However, since the error between model output reduces as we head towards the test 188 

parameter, but then remains relatively unchanged for further perturbations in that direction, 189 

we cannot be confident that the parameter is uniquely optimal, since there are multiple values 190 
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that provide the same approximate SSE. However, since the optimum path does change in 191 

one direction, we have confidence that we are capturing some of the structure, and often these 192 

kind of ‘practical unidentifiabilities’ can be resolved by including more calibration data [34]. If 193 

the SSE value does not change either side of the original test parameter value, this parameter 194 

is known as structurally unidentifiable. This means that parameter optimisation via data-fitting 195 

is relatively insensitive to the choice of this parameter; the parameter cannot be uniquely 196 

determined and therefore even if removed entirely, values of other parameters could be 197 

suitably adjusted to compensate for the change in the model structure. During both sensitivity 198 

and identifiability analyses, model parameters are perturbed and subsequent changes in 199 

model output are studied. However, parameters are not re-optimised during sensitivity 200 

analysis. Identifiability analysis seeks to determine whether distinct model parameterisations 201 

could provide the same model solution. 202 

2.4 Model refinement 203 

2.4.1 APAP pharmacokinetic model 204 

Three datasets from three separate published studies [20, 26, 27] were used to parameterise 205 

the APAP pharmacokinetic (PK) model which is developed as an extension to our previous 206 

framework [20]. The PK model structure remains unchanged and is summarised below for 207 

completeness. Note that all the data used was obtained in studies of APAP dosing in mice 208 

(fed or fasted). Two ordinary differential equations (ODEs) are used to represent changes in 209 

APAP concentration within two PK compartments (central and peripheral) in the following 210 

system, 211 

 𝑑[𝐶$]
𝑑𝑡

=
𝑘)𝐷+𝑒-./0

𝑉$
+ 𝑘345𝐶67

𝑉6
𝑉$
− 𝑘43[𝐶$] − 𝑘9:[𝐶$], (1) 

 𝑑5𝐶67
𝑑𝑡

= 	𝑘43[𝐶$]
𝑉$
𝑉6
− 𝑘345𝐶67, (2) 
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where [𝐶$]	is the central compartment concentration (µmol/l) of APAP; [𝐶6]	is the peripheral 212 

compartment concentration (µmol/l) of APAP; and 𝑘) represents the absorption rate (h-1) from 213 

where APAP is administered (the peritoneal cavity in this case). The initial dose (µmol/kg) is 214 

given by 𝐷+; 𝑘34 represents the transfer rate (h-1) from peripheral to central compartment; 𝑘43 215 

represents the transfer rate (h-1) from central to peripheral compartment; 𝑉6 is the theoretical 216 

volume (l/kg) of the peripheral compartment; 𝑉$ is the theoretical volume (l/kg) of the central 217 

compartment; 𝑘9: represents the overall elimination rate (summation of excretion and 218 

metabolism processes) (h-1); and 𝑡 represents the time variable (h). Further details of the 219 

APAP pharmacokinetic model can be found in our previous publication [20]. 220 

2.4.2 Pharmacodynamic models 221 

Previously, the pharmacodynamic (PD) element of the model was parameterised using a 222 

dataset consisting of GSH and biomarker (ALT, HMGB1, full and fragmented K18) time-course 223 

concentrations following a 530 mg/kg intraperitoneal APAP dose [20]. In this paper, we extend 224 

this optimisation to also include dose-response data consisting of plasma biomarker 225 

concentrations at 5 hours following APAP doses ranging from 0-1000 mg/kg [20] and a dataset 226 

consisting of biomarker concentrations at 5 and 24 hours for both fed and fasted mice following 227 

a 530 mg/kg APAP dose [31]. This extension is necessary in order to account for differing 228 

mechanisms of cell death, i.e. apoptosis versus necrosis, and also to account for an increased 229 

dosing range more representative of the clinical environment. 230 

2.4.2.1 Glutathione dynamics 231 

In our model, paracetamol toxicity biomarker dynamics are assumed to be directly dependent 232 

on GSH depletion; i.e., during APAP overdose cases when GSH pools deplete, NAPQI 233 

accumulates potentially leading to liver toxicity and associated biomarker release. The GSH 234 

model component  remains identical to our previously defined model [20], namely: 235 
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𝑑[𝑔𝑠ℎ]
𝑑𝑡

= 𝑘@(𝑔𝑠ℎ+ − [𝑔𝑠ℎ]) −
𝜉𝑘9:𝐶$[𝑔𝑠ℎ]
[𝑔𝑠ℎ] + 𝑘6D

	, (3) 

where 𝑘@ is the basal removal rate (h-1) of GSH (including background usage); 𝑔𝑠ℎ+ is the 236 

baseline concentration (µmol/l) of GSH in the APAP-free steady state; 𝜉 is the proportion of 237 

eliminated APAP that is transformed into NAPQI; 𝑘9: is the APAP elimination rate; 𝑘6D is the 238 

ratio of NAPQI forming other protein adducts, relative to being detoxified by GSH, and 239 

[𝑔𝑠ℎ]	represents the concentration (µmol/l) of GSH. Further details on the derivation of the 240 

GSH model can be found in the supplementary material of our previous study [20]. For the 241 

fasted case, basal GSH dynamics are modified to simulate a delay in GSH repletion due to 242 

depleted co-factors stemming from the reduced food intake. These slower dynamics are 243 

incorporated by rescaling 𝑘@ by an additional parameter, 𝛿 < 1 (so that 𝑘@ becomes 𝛿𝑘@ < 𝑘@). 244 

2.4.2.2 ALT and HMGB1 dynamics 245 

The toxic response of biomarkers ALT and HMGB1 to APAP overdose is mathematically 246 

modelled as in the previous study [20], namely: 247 

𝑑[𝑟]
𝑑𝑡

= 𝑟+𝑘@H0 I
𝑅K+L + 𝑔𝑠ℎ+L

𝑅K+L
M I1 −

𝑔O)P[𝑔𝑠ℎ]L

𝑅K+L + [𝑔𝑠ℎ]L
M − 𝑘@H0[𝑟], (4) 

Where [𝑟] is the biomarker concentration (µmol/l), 𝑟+ is the respective biomarker baseline 248 

(µmol/l); 𝑘@H0 is the natural decay rate (h-1) of the biomarker; 𝑅K+ represents the concentration 249 

(µmol/l) of (GSH) at which the biomarker response to GSH is half its maximal rate; and 𝑛 is a 250 

Hill coefficient indicating the steepness of the biomarker response [36]. Parameter 𝑔O)P 251 

represents the maximal regulatory effect of GSH on biomarker production. In the fed case, we 252 

set 𝑔O)P = 1 such that GSH depletion is solely responsible for augmented biomarker 253 

production and therefore for the APAP-free steady state, the biomarker is only produced at 254 

low, basal levels maintaining the background steady state value, 𝑟+. This element of the model 255 

is therefore identical to the previous study. However, experimental observations show that 256 
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background biomarker levels are higher for fasted animals. We therefore take 𝑔O)P < 1	in the 257 

fasted case to account for these higher background values.  258 

2.4.2.3 K18 dynamics 259 

Keratin-18 (K18) is an intermediate filament protein expressed in abundant levels in 260 

hepatocytes that undergoes caspase-mediated cleavage during apoptosis, resulting in the 261 

release of fragmented K18 upon cell death. This feature makes K18 a useful biomarker to 262 

distinguish between apoptosis and necrosis as the presence of full (as opposed to fragmented) 263 

K18 instead suggests the occurrence of necrosis [37]. Full and fragmented K18 are therefore 264 

modelled as necrotic and apoptotic forms of the same single biomarker, K18. However, we 265 

could not find sufficient data for K18 to properly parameterise a model of the form (4) for both 266 

full and fragmented K18. We therefore adopt a simple form of K18 using piecewise linear 267 

representations of (4), as illustrated in Figure 1. That is, the dynamics of the necrotic marker, 268 

full K18, are modelled in the following way,   269 

𝑑[𝑘18]
𝑑𝑡

= 𝑟+4S𝑘@H04S + 𝑘OTP𝑘UL4S𝐻W𝑔𝑠ℎXY − [𝑔𝑠ℎ]Z − 𝑘@H0
4S [𝑘18], (5) 

where 𝑟+4S is the baseline concentration (µmol/l) of full K18; 𝑘@H04S  is the natural decay rate of 270 

the biomarker; 𝑘UL4S is the production rate of the biomarker; 𝑔𝑠ℎXY is the GSH threshold below 271 

which additional K18 production is induced due to cell death; [𝑘18]	represents the 272 

concentration of full K18 (µmol/l); and 𝑘O)P is a measure of the production capability of full 273 

K18 (i.e., 0<𝑘O)P<1; since there is a finite quantity of cells, there is a maximum amount of 274 

biomarker that can be produced). In the fed case, we take 𝑘O)P = 1. Since fasting in mice 275 

causes extensive cell loss at early time points [31], the amount of biomarker able to be 276 

produced from a smaller amount of cells will therefore be smaller. To account for this, in the 277 

fasted case, we take  𝑘O)P < 1.𝐻(𝑥) is the Heaviside function where 𝐻(𝑥) = 1 when 𝑥 > 0 278 

and 𝐻(𝑥) = 0 when 𝑥 < 0. 279 
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 280 

Figure 1: Relationship between full and fragmented K18 biomarker production and GSH 281 
concentration. Black lines represent the full K18 relationship, and red lines represent the 282 
fragmented K18 relationship (solid lines represent the fed case and dashed lines represent 283 
the fasted case). As GSH depletes from baseline, 𝑔𝑠ℎ+, and reaches a certain threshold, 284 
𝑔𝑠ℎXY, production of full and fragmented K18 begins. Full K18 production continues for any 285 
GSH concentration below this threshold; however, fragmented K18 production ceases beyond 286 
a GSH concentration of 𝑔𝑠ℎX_ in the fed case and 𝑔𝑠ℎX_ + 𝜀 in the fasted case. 287 

Similarly, the dynamics of fragmented K18 are modelled in the following way,  288 

𝑑[𝑓𝑘18]
𝑑𝑡

= 𝑟+
b4S𝑘@H0

b4S + 𝑘UL
b4S c𝐻W[𝑔𝑠ℎ] − 𝑔𝑠ℎX_ − 𝜀Z − 𝐻W[𝑔𝑠ℎ] − g𝑠ℎXYZe − 𝑘@H0

b4S[𝑓𝑘18], (6) 

where	𝑟+
b4S is the baseline concentration (µmol/l) of fragmented K18; 𝑘@H0

b4S is the natural decay 289 

rate (h-1) of the biomarker; 𝑘UL
b4S is the production rate (h-1) of the biomarker; 𝑔𝑠ℎXY is the GSH 290 

threshold below which augmented production of fragmented K18 production is initiated, 291 

and	𝑔𝑠ℎX_ is the GSH threshold below which augmented production ceases due to a switch 292 

from apoptosis to necrosis. [𝑓𝑘18]	is the concentration (µmol/l) of fragmented K18. For the fed 293 

case, production begins at 𝑔𝑠ℎXY	and ceases at 𝑔𝑠ℎX_.	For the fasted case however, necrosis 294 

will be more apparent than apoptosis, and less GSH depletion will be required before 295 

apoptosis is no longer sustainable. To account for this, 𝜀 represents the change in GSH 296 
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threshold denoting the switch to necrosis, i.e., 𝜀 = 0 in the fed case and 𝜀 > 0 in the fasted 297 

case.  298 

 All initial conditions and parameter values for the PKPD model can be found in the 299 

supplementary material. 300 

2.5 Statistical analysis 301 

2.5.1 Virtual population simulation  302 

Model predictions are made for three virtually simulated populations: healthy, high-risk, and a 303 

mixture of healthy and high-risk individuals. Healthy populations are based on biomarker 304 

concentrations simulated with parameter values derived from fed data. High-risk populations 305 

are based on biomarker concentrations simulated with parameter values derived from fasted 306 

data. The mixed population is based on a weighting of the biomarker concentrations simulated 307 

with parameter values derived from fed/fasted data, with respect to the proportion of 308 

healthy/high risk patients that are seen in the clinic. Craig et al. [38] analysed overdose 309 

patterns in 663 patients over 16 years and found that 42.3% patients had psychiatric history, 310 

45.3% had alcohol abuse, and 44.7% combined the overdose with alcohol. In line with this, 311 

44.1% of the population is assumed to be high-risk and 55.9% are assumed to be healthy in 312 

our mixed population case.  313 

Each virtual population dataset consists of 1000 independent and individually distributed in-314 

silico individuals, given a random dose selected from a uniform distribution of range 0-1000 315 

mg/kg. Biomarker concentrations are subsequently extracted at a random time-point from a 316 

uniform range between 0-24 hours. Simulated concentrations are normalised in the range [0,1] 317 

using the min-max normalisation method [39] to account for varying orders of magnitude. 318 

Experimental noise is replicated in the in-silico data by applying observed in-vivo standard 319 

deviations in biomarker concentrations from an APAP study performed by Antoine et al. (2009) 320 

(ALT s.d = 11.22, HMGB1 s.d = 0.00097, K18 s.d = 2.39, fragmented K18 s.d = 0.12 µmol/l). 321 
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2.5.2 Predicting time since administration and initial dose 322 

2.5.2.1 Multiple linear regression 323 

Normality tests indicate that the simulated data is non-normally distributed [40]. Improvements 324 

to the linear model, made by employing interaction/polynomic terms, are insignificant, and 325 

hence a robust multiple linear regression model [41]  is applied to the in-silico-derived data in 326 

order to predict time since administration and initial dose. 327 

2.5.2.2 Visualisation 328 

For each in-silico individual, the t-Distributed Stochastic Neighbour Embedding (T-SNE) 329 

method [42] is applied to visualise the dataset constituted by the aforementioned variables 330 

(APAP, GSH, ALT, HMGB1, K18, fragmented K18). Two-dimensional scatter plots of the 331 

embedded data are employed in order to examine class structure and separability whilst 332 

retaining model variation.  333 

2.5.2.3 Classification 334 

In order to test the predictive potential of biomarker concentrations, critical ranges for 335 

predicting time since administration are defined as (0-2], (2-5], (5-10], (10-15] and (15-24] 336 

hours. For dose, the ranges are [0-200], [201-400] and [401-1000] mg/kg, capturing 337 

therapeutic, small, and large (overdoses), respectively. A number of classification techniques 338 

are applied and compared, further details of which can be found in the supplementary 339 

information of our previous study [20].  340 

2.5.3 Predicting probability of liver injury 341 

Our previously defined binary logistic regression framework [20] uses experimental biomarker 342 

time-course data [30] to predict a corresponding histology score for each mouse. The whole 343 

panel of biomarkers was tested, and analysis found HMGB1 concentration to be the most 344 
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significant in predicting the probability of liver injury. The resultant  logistic regression model 345 

is used here in combination with PK-PD model simulations to predict the drug-induced liver 346 

injury (DILI) probability [43].  347 

3 Results  348 

3.1 Identifiability analysis – original model structure 349 

Parameters in the original model structure are individually perturbed to visualise resultant 350 

differences between model output and experimental data. These changes are assessed to 351 

determine the identifiability of each parameter and identify where changes may be necessary. 352 

As seen in Figure 2, 10 out of 21 parameters are identifiable. The ALT component of the model 353 

is identifiable, and all but one of the parameters in the PK component are identifiable. 354 

However, the HMGB1 component of the model is structurally unidentifiable, and practical 355 

unidentifiabilities exist in all other elements of the model. Five parameters are identified as 356 

practically unidentifiable. There are 3 within the GSH component: the ratio of NAPQI forming 357 

other protein adducts relative to being detoxified by GSH (𝑘6D); the proportion of eliminated 358 

APAP that is transformed into NAPQI (𝜉); the basal removal rate of GSH (𝑘@). The remaining 359 

practical unidentifiabilities are found within the K18 and fragmented K18 components of the 360 

model: the decay rate of full K18 (𝐾18.@H0); and the fragmented K18 hill coefficient (𝑓18L). 361 

The remaining 6 parameters are structurally unidentifiable. These include the theoretical 362 

volume of the peripheral compartment (𝑉6) from the PK component and all parameters from 363 

the HMGB1 component:  the hill coefficient (𝐻L); the GSH concentration at which the 364 

augmented production rate of HMGB1 reaches 50% of its maximum (𝐻ghK+); and the decay 365 

rate (𝐻.@H0). Two out of three parameters within the fragmented K18 component are 366 

structurally unidentifiable: the GSH concentration at which the augmented production rate of 367 

fragmented K18 reaches 50% of its maximum (𝑓18ghK+); and the decay rate (𝑓18.@H0). 368 
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 369 

Figure 2: Identifiability analysis of the original model structure [20]. Each test parameter, 370 
was fixed at 20% intervals, and the other parameters in the model allowed to vary. The 371 
percentage change of resultant optimised function values (SSE) are plotted at each interval 372 
(on log-scale). The lowest SSE change is represented by a white box; darker colours show an 373 
increase in SSE change. The highest SSE change is represented by a black box. Blue dashed 374 
bounds indicate where the parameter is identifiable at the 0.5% level. Red bounds indicate 375 
where the parameter is identifiable at the 1% level. A parameter is identifiable at the 1% level 376 
if it is bounded by red in both the positive and negative parameter-change directions. If the 377 
parameter is bounded by red in one direction and blue in the other direction, it is identifiable 378 
at the 0.5% level but practically unidentifiable at the 1% level. A parameter is practically 379 
unidentifiable if it is bounded by red/blue in either the positive or negative parameter change 380 
direction, and unbounded in the opposite direction. A parameter is structurally unidentifiable if 381 
it is unbounded in both positive and negative parameter-change directions (no red/black 382 
bounds exist for the whole range of parameter changes). For example, 𝐴ghK+ is identifiable at 383 
the 1% level, 𝐾18ghK+ is identifiable at the 0.5% level but practically unidentifiable at the 1% 384 
level, 𝑓18L is practically unidentifiable, 𝑉6 is structurally unidentifiable. 385 

3.2 Re-parameterisation 386 

Following model restructuration and re-parameterisation against the multiple datasets 387 

(increased dose range and fasted data), we identify a number of parameter adjustments. In 388 
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cases where parameters are common to both model structures, percentage changes in their 389 

values following re-parameterisation are shown in Table 1. The baseline level of GSH, 𝐺𝑆𝐻+, 390 

is now optimised against the data rather than fixed as in the previous model. The resultant 391 

value reduces by almost 20% to 559.47 µmol/l. The proportion of CYP-activated APAP that is 392 

transformed into NAPQI, 𝜉, increases to around 80%, but there is also an increased level of 393 

NAPQI detoxification resulting from the re-parameterisation (represented by a 22.1% 394 

decrease in parameter 𝑘6D, the ratio of NAPQI forming other protein adducts relative to 395 

detoxification). The new parameter, 𝛿, incorporates an effective delay in GSH repletion in the 396 

fasted case due to depleted co-factors. The optimised value is 0.0483 and considerably 397 

reduces the timescale of GSH dynamics in the fasted case. 398 
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  Optimised value  

Model Parameter Original Re-parameterised % change  

APAP 𝑘T (h-1) 9.05 8.6152 -4.8% 

𝑘9: (h-1) 0.52 0.5459 +5% 

𝑘43 (h-1) 0.42 0.4502 +7.2% 

𝑉$ (l/kg) 0.02 0.0220 +10% 

𝑉l (l/kg) 0.01 0.2102 +2000% 

𝑘34 (h-1) 1.01 1.0315 +2.1% 

GSH 𝑔𝑠ℎ+ (µmol/l) 696.9136  559.47497 -19.7% 

𝑘6D  71.06 55.33401 -22.1% 

𝜉  0.68 0.80571 +18.5% 

𝑘@ (h-1) 0.25 0.78807 +215% 

ALT 𝑅+ (µmol/l) 0.7626 0.7626 0% 

𝑛  9.26 4.3324 -53.2% 

𝑅K+ (µmol/l) 227.67 35.6531 -84.3% 

𝑘@H0 (h-1) 0.0002 0.0004 +1% 

HMGB1 𝑅+ (µmol/l) 0.0005 0.0005 0% 

𝑛  4.90 2.3445 -51.2% 

𝑅K+ (µmol/l) 399.08 75.2828 -81.1% 

𝑘@H0 (h-1) 0.35 0.0964 -72.5% 

Full K18 𝑟+4S(µmol/l) 0.0146 0.0088 -39.73% 

𝑘@H04S  (h-1) 0.0007 0.0031 +342.9% 

Fragmented-K18 𝑟+
b4S(µmol/l) 0.0642 0.0977 +52.2% 

𝑘@H0
b4S(h-1)  0.02 0.0031 -84.5% 

Table 1: Parameter changes following model refinement. Any parameter that remained 399 
within the new model structure is defined, with its original value and the re-parameterised 400 
value. Percentage changes are also defined. 401 

Following re-parameterisation, we found that an increased amount of GSH depletion is 402 

required for the GSH-induced ALT response to be half of its maximal value, i.e., 67% GSH 403 
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depletion was required before whereas almost 94% is required now. Although more GSH 404 

depletion is also required for HMGB1 induction, this biomarker response is still faster than that 405 

of ALT, since it has reached 50% maximal response rate at around 86.5% GSH depletion. For 406 

Full-K18, results from the optimisation suggest that augmented production of the biomarker 407 

will occur when GSH decreases below 174.5205 µmol/l (~68.8% depletion). Fragmented K18 408 

is also induced at this level of GSH; however, if GSH is further depleted to 167.3663 µmol/l, 409 

augmented production of this apoptosis marker would cease, and the necrotic, full version of 410 

the biomarker would then dominate. In the fasted case, this threshold increases by 5.0457 411 

µmol/l (𝜀) such that the necrotic switch (as indicated by the absence of K18 fragmentation) 412 

occurs when GSH is depleted beyond 172.412 µmol/l. Optimised model simulations are 413 

plotted and compared with the time-course data (Figure 3) and the dose-response data (Figure 414 

4). Dose-response data was unavailable for full K18 at the time of investigation. Therefore, 415 

the K18 parameters within the model structure are predominantly optimised against high-dose 416 

data which may explain the slight under-prediction shown in the fragmented K18 simulations. 417 
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A 

 

 

B  

 

Figure 3: Model simulations versus time-course data. (A): APAP concentration simulations 418 
are plotted for 50 (green), 150 (blue), 500 (pink) and 530 (black) mg/kg doses of APAP. (B): 419 
Fed and fasted simulations (green and red respectively) are plotted for GSH and biomarkers 420 
(ALT, HMGB1, Full and fragmented K18) following a 530 mg/kg dose of APAP.  421 

 422 
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 423 

Figure 4: Model simulations versus dose-response data. Dashed lines represent dose-424 
response simulations of GSH and biomarkers (ALT, HMGB1 and fragmented K18) in fed mice 425 
for a range of APAP doses (0,150,300,530,750,1000 mg/kg). Solid lines represent the 426 
experimental data each model was calibrated against. 427 

 428 

3.3 Identifiability analysis – re-parameterised model 429 

Parameters in the refined model are individually perturbed to visualise resultant differences 430 

between model output and experimental data. These changes are assessed to determine the 431 

identifiability of each parameter. 16 out of 27 parameters are now identifiable. Parameter 432 

identifiability has remained for the ALT component, and the GSH component of the model is 433 

now also completely identifiable. The PK component remains identifiable, other than the 434 

volume of the peripheral compartment (𝑉6), which remains structurally unidentifiable. There 435 

are some unidentifiabilities still present within this updated model. Other structurally 436 

unidentifiable parameters include: 𝐻ghK+, 𝐻.@H0	and 𝐻mO)P from the HMGB1 component; and  437 

𝐾18.@H0, 𝑓.UL, 𝑓.@H0,	𝑔𝑠ℎX_ and 𝜀 from the full and fragmented K18 component. Practical 438 
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unidentifiabilities remain for two parameters: the HMGB1 hill coefficient (𝐻L) and the 439 

production capability of full K18 (𝑘O)P). 440 

 441 

Figure 5: Identifiability analysis of the re-parameterised model structure. Figure 442 
annotation is the same as for Figure 2. Example results from figure: 𝐴ghK+ is identifiable at the 443 
1% level, 𝐻L is practically unidentifiable, 𝑉6 is structurally unidentifiable. 444 

Less than half of the parameters (47%) are identifiable in the original model structure (Figure 445 

6). Only the ALT component of the model is completely identifiable. 24% of the model 446 

parameters are practically unidentifiable and 29% are structurally unidentifiable. However, 447 

following model refinement, the identifiability results have improved; the percentage of 448 

identifiable parameters has increased to above half of the parameters (60%). Parameter 449 



24 
 
 

identifiability has been maintained for the ALT component of the model and the percentage of 450 

practical unidentifiabilities has reduced from 24% to 7%. The percentage of structural 451 

unidentifiabilities is approximately the same (29% compared to 33%). Whilst the GSH 452 

component is unidentifiable in the original model, it is now completely identifiable in the refined 453 

model. Although unidentifiabilities have improved for parameters in the HMGB1, K18 and f-454 

K18 components, there are still some that remain. 455 

 456 

Figure 6: Parameter identifiability comparison between the original and refined model. 457 
Each column represents a different sub-component of the APAP PKPD model. Each element 458 
(or square) represents the parameter’s identifiability within the model. Triangles in the bottom 459 
left-hand corner of each element represent the parameter’s identifiability in the original model 460 
structure. Triangles in the top right-hand corner of each element represent the parameter’s 461 
identifiability in the refined model structure. If the triangle is red, the parameter is structurally 462 
unidentifiable; if the triangle is yellow, the parameter is practically unidentifiable; if the triangle 463 
is green, the parameter is identifiable. If the triangle is grey, the parameter was not present 464 
within the corresponding model structure, and therefore could not be tested for identifiability. 465 

 466 

 467 
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3.4 Predicting an exact time since administration of initial APAP dose 468 

Simulations of the refined model create in-silico derived populations. Robust multiple linear 469 

regression is applied to biomarker concentrations from each population in order to predict an 470 

exact time since ingestion and initial APAP dose. For the healthy population, an exact time 471 

since administration can be estimated with an error of approximately 3.9 hours, and an exact 472 

initial dose amount can be estimated with an error of approximately 66.14 mg/kg (Table 2). 473 

  
Healthy Population 
 

 
High-risk Population 

 
Mixed Population 

Predictors 
 

Time 
 

Dose Time 
 

Dose Time 
 

Dose 

APAP Conc. -16.549*** 
(1.1785) 
 

673.985*** 
(17.0745) 

-9.5093*** 
(0.5963) 
 

1295.366*** 
(47.8525) 

-18.122*** 
(0.9542) 
 

909.341*** 
(17.8005) 

ALT conc. 8.972*** 
(0.9533) 
 
 

515.625*** 
(13.8110) 

5.5034*** 
(0.6537) 
 

695.2118*** 
(52.4551) 

1.4573 
(0.9228) 
 
 

655.0837*** 
(17.2145) 

HMGB1 conc. -22.035*** 
(0.9113) 
 

-23.3880 
(13.2028) 

-8.8119*** 
(0.5440) 
 

367.0774*** 
(43.6578) 

-17.869*** 
(0.7705) 
 

289.2333*** 
(14.3736) 

FullK18 conc. 7.521*** 
(1.0632) 
 

479.137*** 
(15.4035) 

21.0427*** 
(0.4743) 
 

-154.2403*** 
(38.0652) 

22.3833*** 
(0.9145) 
 

229.0486*** 
(17.0605) 

Fragmented 
K18 conc. 

-4.599* 
(1.3895) 

151.975*** 
(20.1309) 
 

3.8472*** 
(0.5962) 

86.7133 
(47.8445) 

-0.1079 
(0.8321) 

33.8383* 
(15.5231) 
 
 

Constant 14.918*** 
(0.3074) 
 

77.247*** 
(4.4529) 

5.8083*** 
(0.2527) 

-80.145*** 
(20.2759) 

12.6308*** 
(0.3694) 
 

-65.6354*** 
(6.8914) 

Residual Std. 
Error  
(df == 994) 

 
3.907 

 
66.14 

 
2.118 

 
184.1 

 
3.485 

 
73.73 

 
Note: 
*p<0.05; 
**p<0.01; 
***p<0 

      

Table 2: Robust multiple linear regression analysis results. Independent variable 474 
coefficients for predicting time and dose respectively for healthy, high-risk and mixed 475 
populations. The first number in each element of the table represents the biomarker coefficient 476 
in the regression model and the second number represents the corresponding error. For 477 
example, -16.549 is the APAP concentration coefficient in the healthy population model 478 
predicting time since administration, and this coefficient has an error of 1.1785. The standard 479 
error of overall model predictions is provided. The significance of each biomarker in the model 480 
is indicated by the number of asterisks (see note). 481 
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Time since administration can be predicted more accurately in the high-risk population, with a 482 

standard error of 2.118 hours. It is much harder to predict the initial dose in the high-risk 483 

population, however, with the standard error being almost triple that of the model for the 484 

healthy population (184.1 mg/kg). Predictions for an assumed mixed population are similar to 485 

that of the healthy population, with a slight improvement in predicting time since administration 486 

(standard error 3.485 hours) and a slight reduction in accuracy for predicting initial dose 487 

(standard error 73.73 mg/kg). All biomarkers are significant in predicting time since 488 

administration in a healthy population and high-risk population independently. However, when 489 

assuming a mixed population, ALT and fragmented K18 are no longer significant. When 490 

predicting dose in a mixed population, all biomarkers are significant; however, HMGB1 is not 491 

significant in the healthy population, and fragmented K18 is not significant in the high-risk 492 

population. 493 

3.5 Identifying time/dose category following APAP dose 494 

T-SNE visualisation is applied to the in-silico derived data to investigate time/dose class 495 

structure and separability and subsequently various classification techniques are also 496 

employed, using the biomarker concentrations of the in-silico observations in an attempt to 497 

classify a time/dose category. Differences in levels of discrimination regarding initial dose and 498 

time since administration for healthy, high-risk and mixed populations can be seen for each 499 

case by embedding the in-silico derived data in 2-dimensions using T-SNE (Figure 7). Both 500 

variables, time since administration and initial dose, can be reasonably separated in all 501 

healthy, high-risk and mixed populations. This result is supported by the reasonable accuracy 502 

rates of the classification techniques. Visualising the healthy population (Figure 7A), shows 503 

that there is a cluster of observations on the right-hand-side where the time since 504 

administration is difficult to discriminate from the biomarker concentrations. Visualising this 505 

same cluster of observations with regards to the initial dose, however, shows that these 506 

correspond to low-dose situations (Figure 7B). From measuring biomarker concentrations, a 507 
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correct time since administration category could be predicted with 69.9% accuracy for the 508 

healthy population, and a correct dose category can be predicted with 91.5% accuracy. These 509 

results are indicated in Table 3. A time since administration category is easier to predict in the 510 

high-risk category (80.4% accuracy). However, predictions for initial dose are less accurate 511 

than the healthy population (79%). If an observation is assumed to be taken from a mixed 512 

population, the prediction accuracy is similar to that of a healthy population, with results of 513 

69.94% and 89.5% for time since administration and initial dose respectively. In our previous 514 

study, a correct time category could be predicted with 72.8% accuracy and a correct dose 515 

category could be predicted with 86.5% accuracy [20]. For a healthy population, the time 516 

classification results have slightly worsened. However, the dose classification results have 517 

slightly improved. 518 
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 519 

Figure 7. Visualisation and classification of time-since-administration and dose results 520 
for healthy, high-risk and mixed populations. For time-since-administration, dark green 521 
represents class [0-2), orange represents [2-5), blue represents [5-10), pink represents [10-522 
15) and pale green represents [15-24) hours. For dose, green represents [0-200], orange 523 
represents [201-400] and blue represents [401-1000] mg/kg. TSNE visualisations of in-silico 524 
mouse observations with respect to time since administration and dose can be seen in (A)-(B) 525 
for the healthy population, (C)-(D) for the high-risk population and (E)-(F) for the average 526 
population. 527 

 528 
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Healthy Population 
 

 
High-risk Population 

 
Mixed Population 

Classification  
Method 
 

Time 
 

Dose Time 
 

Dose Time 
 

Dose 

KNN 
Regression 

66.2% 91.5% 80.4% 79% 69.5% 87.4% 

Naïve Bayes 
 

64.4% 91.3% 76.2%        72.7%      68.2% 88.5% 

Multinomial 
logistic 
regression 
 

68% 90.8% 73.1% 77.1% 75.7% 89.5% 

Ordinal logistic 
regression 
 

53.7% 90% 67.8% 78.1% 57.2% 87.5% 

Linear 
discriminant 
Analysis 
 

59.3% 90.7% 72.5% 77.9% 65.8% 87.8% 

Quadratic 
discriminant 
analysis 

69.9% 90.4% 76.8% 71.7% 69.94% 86.8% 

Table 3: Classification accuracy of predictions based on biomarker concentrations for 529 
healthy, high-risk and mixed populations. For example, the Quadratic discriminant analysis 530 
model can predict the correct time since administration category in the healthy population with 531 
69.9% accuracy.  532 

 533 

Figure 8 shows how the probability of liver injury changes over time for both healthy and high-534 

risk populations, for doses between 0-1000 mg/kg. The model-derived probabilities are 535 

dependent only on HMGB1 concentration (as predicted by our previous logistic regression 536 

model [20]). A threshold probability of 0.5 is used to determine the likelihood of DILI. Any 537 

observation within the white contour boundary is therefore predicted to be representative of 538 

probable liver injury.  539 
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 540 

Figure 8. Proposed framework for predicting probability of liver injury dependent upon 541 
dose, time and HMGB1 concentration. The plotted frameworks are representative of both 542 
healthy (A) and high-risk (B) populations. In each, the white contour indicates the threshold of 543 
0.5 probability of liver injury; the red dashed-line represents the currently used APAP dose for 544 
toxicity studies in mice; the white dashed-line represents toxic dose as proposed by our model; 545 
and the green dashed-line indicates currently considered therapeutic dose for mice. In the 546 
high-risk population, the toxic dose proposed by our model and the therapeutic dose are 547 
identical. 548 

For the healthy population, the time-frame for biomarker concentrations representing those of 549 

probable liver injury is around 2-18 hours. The dose threshold at which toxicity is predicted to 550 

be likely to occur is approximately 350 mg/kg. Note that this prediction is only slightly above 551 

the currently used toxic dose (300 mg/kg) [44]. The framework for a healthy population 552 

suggests that there is almost 100% chance of liver injury when the dose is only slightly higher 553 

than this amount. 554 
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For the fasted population, however, at the currently recommended therapeutic APAP dose (60 555 

mg/kg), there is approximately 50% chance of liver injury progression. For any dose above 556 

the known therapeutic threshold, liver injury progression is predicted to be highly probable 557 

(above 60%); beyond approximately 2.5 h post-dose, HMGB1 concentrations remain 558 

indicative of highly probable liver injury for the whole time-course. These results are 559 

summarised in Table 4. 560 

Population Dose likely to induce liver 
injury 

Time frame liver injury 
likely to occur 

Healthy >350 mg/kg 2-18 h 

High-risk >60 mg/kg >2.5 h 

Table 4: Critical dose and time ranges indicative of potential liver injury in both healthy 561 
and high-risk populations. 562 

3.6 Visualising the probability of liver injury following an APAP dose 563 

For each observation within the in-silico population, simulated HMGB1 concentrations, based 564 

on our findings in [20], are used within the logistic regression model to determine the 565 

corresponding probability of liver injury. Each in-silico observation is then visualised and 566 

discriminated by their resultant liver injury probability using the TSNE method (Figure 9). 567 

Relatively safe/unsafe observations are identifiable in both healthy and high-risk populations. 568 

For the healthy population (Figure 9A) most of the observations have less than around 35% 569 

chance of DILI progression. The small group of observations representing at-risk individuals 570 

can be identified at the top, right-hand side of the image, portrayed by red markers. In stark 571 

contrast, most of the in-silico observations have almost 100% chance of liver injury 572 

progression in the high-risk population, as can be seen by the dominance of red markers in 573 

Figure 9B. The observations corresponding to lower injury potential are indicated in the central 574 

and the left-hand side of the plot. 575 
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Figure 9: 2-dimensional TSNE visualisation of in-silico observations with respect to 577 
estimated probability of liver injury. Separated liver injury probabilities are visualised for a 578 
range of in-silico generated inputs for both healthy (A) and high-risk (B) populations. DILI 579 
probabilities (0-1) for each individual observation are indicated by the colour bar. 580 

 581 

4 Discussion  582 

The current clinical APAP framework  is known to be inaccurate, mainly due to a dependency 583 

on known time of ingestion, but also due to inaccurate estimates of initial dose based on 584 

biomarkers currently criticised for being insensitive [25]. We previously reported a promising 585 

computational framework for predicting the probability of liver injury based on novel biomarker 586 

concentrations  [20]. However, the identifiability analysis performed within this study highlights 587 

parameter unidentifiabilities within the model that required addressing prior to any further 588 

clinical application. Results of the analysis show where the original model required structural 589 

changes and also where more data was required in order to increase confidence in 590 
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predictions. Therefore, we have re-structured the original model where necessary and re-591 

parameterised against additional data (from both fed and fasted mice). Identifiability analysis 592 

of the newly defined model structure found that only 7% of parameters are practically 593 

unidentifiable (compared with 24% previously).  594 

As well as improving confidence in the mathematical representation of the system, we have 595 

here provided a model that is more representative of the clinical environment by including a 596 

wider range of APAP doses. Furthermore, the new treatment framework can now be adjusted 597 

for individuals considered to be at high risk of APAP-induced liver injury [3]. To account for the 598 

fact that many overdose patients have an increased underlying susceptibility to APAP-induced 599 

liver injury, we optimise our model against both fed and fasted mouse data. Factors that result 600 

in an APAP overdose patient being deemed “high-risk” such as alcohol consumption or 601 

malnutrition are known to deplete intracellular GSH stores, which subsequently increases their 602 

risk of potential toxicity [45]. Fasted animals have also been shown to have depleted GSH 603 

stores [46] and hence they are considered to be representative of high-risk individuals in our 604 

framework. When training the biomarker models against multiple datasets and comparing to 605 

the original model [20], which is calibrated against only 530 mg/kg APAP dose time-course 606 

data, there are noticeable adjustments in the parameter values, particularly for the GSH 607 

model. Many of these changes are intuitive and may be representative of changes in 608 

mechanisms due to fasting. Additionally, changes may be attributable to the fact that the model 609 

can now better account for a larger variety of dosing scenarios. The significant changes in 610 

parameter values highlight the importance of optimising against a range of both therapeutic 611 

and toxic datasets and both healthy and unhealthy populations.  612 

The model we propose in this paper is more biologically relevant than our previous model [20]. 613 

Originally, we assume that full and fragmented K18 have similar mechanisms and act as 614 

independent biomarkers. However, full and fragmented K18 are known to be effectively 615 

necrotic/apoptotic versions of the same biomarker [47]. Incorporating this into our model 616 
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framework we confirm that necrosis is the pre-dominant form of cell death in mice APAP 617 

overdose cases [48]. An identifiability analysis on the new model structure identifies an 618 

increased confidence in parameter estimates for the GSH, HMGB1, full and fragmented K18 619 

components of the model structure. There are, however, some unidentifiabilities remaining, 620 

particularly within the HMGB1 and fragmented K18 components of the model, indicating that 621 

additional data and model development is still required in order to have full confidence in the 622 

uniqueness of chosen mechanistic parameter values. 623 

We provide a proof of-concept framework which can be used to make toxicity predictions for 624 

either a healthy, high-risk or mixed population. In practice, once a dose/time is determined 625 

using the multiple linear regression statistical model, probability of liver injury can be estimated 626 

based on the HMGB1-dependent logistic regression model, driven by PK simulations with the 627 

previously identified dose/time values. The range of doses for which the high-risk population 628 

is likely to suffer liver injury (based on predictions made within this in-silico framework) is 629 

extensive. Prediction accuracy of time since APAP administration and initial APAP dose is 630 

similar for the healthy and mixed populations, with a 3-4 h error for time since administration 631 

and a 65-75 mg/kg error for initial dose. The initial dose is much harder to predict in the high-632 

risk population (184.1 mg/kg error). This result is unsurprising since a much larger range of 633 

doses will have a toxic effect if the liver is already impaired. Both Figure 8 and Table 4 show 634 

that in a high-risk population, any dose above approximately 60 mg/kg is highly likely to induce 635 

liver injury and therefore determining the exact dose in this scenario is difficult. Time since 636 

administration, however, could be predicted more accurately than in a healthy/mixed 637 

population (2.118 h error). It has already been found that amending treatment thresholds  to 638 

account for high-risk individuals can better protect those with greater liver injury susceptibility 639 

[3].  Table 4 shows that liver injury in a healthy individual is predicted to occur within 2-18 640 

hours following an APAP dose. For a high-risk individual however, this likelihood is predicted 641 

to continue for the whole time-course investigated (24 hours). Results from this study further 642 
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endorse the idea that there are likely very different outcomes with respect to liver injury 643 

potential for healthy and high-risk individuals. More-informed decisions can therefore be made 644 

regarding optimal treatment if clinicians can identify those who are more susceptible to 645 

overdose. This would significantly improve patient outcomes while reducing the cost and 646 

burden of unnecessary antidote treatment.  647 

The model was recalibrated to improve confidence in our approach and ensure that predictions 648 

are more clinically applicable prior to developing a clinical extension of the framework. The 649 

model has been calibrated against mouse data due to the quantity and quality of the toxicity 650 

data available, necessary for the rigorous development of a mathematical framework. Whilst 651 

metabolic similarities do exist between rodent and human (for example CYP2E1 expression), 652 

expression levels of enzymes such as CYP1A2 are known to vary across species [49], 653 

meaning direct translation of rodent-based models to the human case is rarely feasible and 654 

additional work may be required. Animal models account for the complex, physiological 655 

interplay within organisms, and therefore are often investigated during pharmacological 656 

research prior to application in humans. Although clinical APAP data is available, it is often 657 

sparse, erroneous and inherently highly variable. A Population-Pharmacokinetics (Pop-PK) 658 

approach could potentially provide insight into the stochasticity of the errors involved, but 659 

initially we have focused on the mouse framework as a convenient testing and development 660 

toolkit to determine efficacy in a well-controlled environment. The promising results of this 661 

study now provide confidence in the feasibility of translating our approaches to the human 662 

clinical case. Identifiability analysis has provided insight into areas within our model structure 663 

that remain uncertain, and therefore require additional consideration and improvement in order 664 

to enhance confidence in translated predictions. Regarding translation, all biomarkers used in 665 

the study can be measured in both animals and humans via the same methodologies. 666 

Inevitably, there are apparent differences between humans and mice such as the expression 667 

of metabolising enzymes, the mass APAP dose required to induce toxicity and the kinetics of 668 
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the biomarker profiles [44, 45]. However, the essential mechanistic processes of APAP 669 

metabolism, toxicity and action of the antidote are directly comparable. Our model accounts 670 

for a dose range 0-1000 mg/kg in mouse and this can be amended as a parameter within our 671 

model structure to be applicable to the clinical situation. In terms of the biomarkers used, they 672 

have now been measured in a time-dependent manner in multiple human studies [33, 41]. In 673 

its current form, our framework accounts for varied dose ranges and provides promise for 674 

clinical use in determining initial dose, time since ingestion and estimated probability of liver 675 

injury for both healthy and high-risk individuals. Further model development, integration of 676 

additional experimental data and translation to the clinical environment is now required to 677 

significantly advance this research to provide a state-of-the-art alternative to the methods 678 

currently used and considerably improve individualised treatment of APAP overdose. 679 
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