38 research outputs found

    Effects of olive oil and its minor phenolic constituents on obesity-induced cardiac metabolic changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Olive oil and its minor constituents have been recommended as important dietary therapeutic interventions in preventive medicine. However, a question remains to be addressed: what are the effects of olive oil and its phenolic compounds on obesity-induced cardiac metabolic changes?</p> <p>Methods</p> <p>Male Wistar rats were divided into two groups (<it>n </it>= 24/group): (C) receiving standard-chow; (Ob) receiving hypercaloric-chow. After 21 days C and Ob groups were divided into four subgroups (<it>n </it>= 6/group):(C) standard-chow and saline; (C-Olive)standard-chow and olive-oil (3.0 g/kg.day); (C-Oleuropein)standard-chow and oleuropein (0.023 mg/kg/day); (C-Cafeic) standard-chow and cafeic-acid (2.66 mg/kg/day); (Ob)receiving hypercaloric-chow and saline;(Ob-Olive) hypercaloric-chow and olive-oil;(Ob-Oleuropein) hypercaloric-chow and oleuropein;(Ob-Cafeic) hypercaloric-chow and cafeic-acid. Treatments were given twice a week during 21 days.</p> <p>Results</p> <p>After 42 days, obesity was evidenced in Ob rats from enhanced body-weight, surface-area, and body-mass-index. Energy-expenditure, oxygen consumption(VO<sub>2</sub>) and fat-oxidation were lower in Ob-group than in C. Despite no morphometric changes, Ob-Olive, Ob-Oleuropein and Ob-Cafeic groups had higher VO<sub>2</sub>, fat-oxidation, myocardial beta-hydroxyacyl coenzyme-A dehydrogenase and lower respiratory-quotient than Ob. Citrate-synthase was highest in Ob-Olive group. Myocardial lipid-hydroperoxide(LH) and antioxidant enzymes were unaffected by olive-oil and its compounds in obesity condition, whereas LH was lower and total-antioxidant-substances were higher in C-Olive and C-Oleuropein than in C.</p> <p>Conclusions</p> <p>The present study demonstrated for the first time that olive-oil, oleuropein and cafeic-acid enhanced fat-oxidation and optimized cardiac energy metabolism in obesity conditions. Olive oil and its phenolic compounds improved myocardial oxidative stress in standard-fed conditions.</p

    Mitochondrial Dysfunction and Adipogenic Reduction by Prohibitin Silencing in 3T3-L1 Cells

    Get PDF
    Increase in mitochondrial biogenesis has been shown to accompany brown and white adipose cell differentiation. Prohibitins (PHBs), comprised of two evolutionarily conserved proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), are present in a high molecular-weight complex in the inner membrane of mitochondria. However, little is known about the effect of mitochondrial PHBs in adipogenesis. In the present study, we demonstrate that the levels of both PHB1 and PHB2 are significantly increased during adipogenesis of 3T3-L1 preadipocytes, especially in mitochondria. Knockdown of PHB1 or PHB2 by oligonucleotide siRNA significantly reduced the expression of adipogenic markers, the accumulation of lipids and the phosphorylation of extracellular signal-regulated kinases. In addition, fragmentation of mitochondrial reticulum, loss of mitochondrial cristae, reduction of mitochondrial content, impairment of mitochondrial complex I activity and excessive production of ROS were observed upon PHB-silencing in 3T3-L1 cells. Our results suggest that PHBs are critical mediators in promoting 3T3-L1 adipocyte differentiation and may be the potential targets for obesity therapies

    CREB activation induced by mitochondrial dysfunction is a new signaling pathway that impairs cell proliferation

    No full text
    We characterized a new signaling pathway leading to the activation of cAMP-responsive element-binding protein (CREB) in several cell lines affected by mitochondrial dysfunction. In vitro kinase assays, inhibitors of several kinase pathways and overexpression of a dominant-negative mutant for calcium/calmodulin kinase IV (CaMKIV), which blocks the activation of CREB, showed that CaMKIV is activated by a mitochondrial activity impairment. A high calcium concentration leading to the disruption of the protein interaction with protein phosphatase 2A explains CaMKIV activation in these conditions. Transcrip tionally active phosphorylated CREB was also found in a ρ0 143B human osteosarcoma cell line and in a MERRF cybrid cell line mutated for tRNA(Lys) (A8344G). We also showed that phosphorylated CREB is involved in the proliferation defect induced by a mitochondrial dysfunction. Indeed, cell proliferation inhibition can be prevented by CaMKIV inhibition and CREB dominant-negative mutants. Finally, our data suggest that phosphorylated CREB recruits p53 tumor suppressor protein, modifies its transcriptional activity and increases the expression of p21(Waf1/Cip1), a p53-regulated cyclin-dependent kinase inhibitor

    Mitochondrial dysfunction induces triglyceride accumulation in 3T3-L1 cells:Role of fatty acid β-oxidation and glucose

    No full text
    Mitochondrial cytopathy has been associated with modifications of lipid metabolism in various situations, such as the acquisition of an abnormal adipocyte phenotype observed in multiple symmetrical lipomatosis or triglyceride (TG) accumulation in muscles associated with the myoclonic epilepsy with ragged red fibers syndrome. However, the molecular signaling leading to fat metabolism dysregulation in cells with impaired mitochondrial activity is still poorly understood. Here, we found that preadipocytes incubated with inhibitors of mitochondrial respiration such as antimycin A (AA) accumulate TG vesicles but do not acquire specific markers of adipocytes. Although the uptake of TG precursors is not stimulated in 3T3-L1 cells with impaired mitochondrial activity, we found a strong stimulation of glucose uptake in AA-treated cells mediated by calcium and phosphatidylinositol 3-kinase/Akt1/glycogen synthase kinase 3beta, a pathway known to trigger the translocation of glucose transporter 4 to the plasma membrane in response to insulin. TG accumulation in AA-treated cells is mediated by a reduced peroxisome proliferator-activated receptor gamma activity that downregulates muscle carnitine palmitoyl transferase-1 expression and fatty acid beta-oxidation, and by a direct conversion of glucose into TGs accompanied by the activation of carbohydrate-responsive element binding protein, a lipogenic transcription factor. Taken together, these results could explain how mitochondrial impairment leads to the multivesicular phenotype found in some mitochondria-originating diseases associated with a dysfunction in fat metabolism

    Gene expression evidence for off-target effects caused by RNA interference-mediated gene silencing of Ubiquitin-63E in the cattle tick Rhipicephalus microplus

    Get PDF
    Knowledge of cattle tick (Rhipicephalus (Boophilus) microplus; Acari: Ixodidae) molecular and cellular pathways has been hampered by the lack of an annotated genome. In addition, most of the tick expressed sequence tags (ESTs) available to date consist of not, vert, similar50% unassigned sequences without predicted functions. The most common approach to address this has been the application of RNA interference (RNAi) methods to investigate genes and their pathways. This approach has been widely adopted in tick research despite minimal knowledge of the tick RNAi pathway and double-stranded RNA (dsRNA) uptake mechanisms. A strong knockdown phenotype of adult female ticks had previously been observed using a 594 bp dsRNA targeting the cattle tick homologue for the Drosophila Ubiquitin-63E gene leading to nil or deformed eggs. A NimbleGen cattle tick custom microarray based on the BmiGI.V2 database of R. microplus ESTs was used to evaluate the expression of mRNAs harvested from ticks treated with the tick Ubiquitin-63E 594 bp dsRNA compared with controls. A total of 144 ESTs including TC6372 (Ubiquitin-63E) were down-regulated with 136 ESTs up-regulated following treatment. The results obtained substantiated the knockdown phenotype with ESTs identified as being associated with ubiquitin proteolysis as well as oogenesis, embryogenesis, fatty acid synthesis and stress responses. A bioinformatics analysis was undertaken to predict off-target effects (OTE) resulting from the in silico dicing of the 594 bp Ubiquitin-63E dsRNA which identified 10 down-regulated ESTs (including TC6372) within the list of differentially expressed probes on the microarrays. Subsequent knockdown experiments utilising 196 and 109 bp dsRNAs, and a cocktail of short hairpin RNAs (shRNA) targeting Ubiquitin-63E, demonstrated similar phenotypes for the dsRNAs but nil effect following shRNA treatment. Quantitative reverse transcriptase PCR analysis confirmed differential expression of TC6372 and selected ESTs. Our study demonstrated the minimisation of predicted OTEs in the shorter dsRNA treatments (not, vert, similar100–200 bp) and the usefulness of microarrays to study knockdown phenotypes

    Synthetic Gene Complementation to Determine Off-Target Silencing

    No full text
    RNA interference (RNAi) is a conserved mechanism in a wide range of eukaryotes. Introduction of synthetic dsRNA could specifically target suppression of a gene or could result in off-target silencing of another gene due to sequence similarity. To verify if the observed phenotype in an RNAi transgenic line is due to silencing of a specific gene or if it is due to another nontarget gene, a synthetic gene complementation approach could be used. Synthetic gene complementation described in this method uses the technology of synthesizing a variant of a native gene (used in RNAi silencing) to maximize the difference in DNA sequences while coding for the exact same amino acids as the original native gene. This is achieved through the use of alternate codons. The new variant gene is expressed in the original RNAi transgenic lines and analyzed for complementation of the RNAi phenotype. Complementation of the RNAi-induced phenotype will indicate gene-specific silencing and not off-target silencing
    corecore