46 research outputs found

    Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe

    Get PDF
    Anthelmintic resistance has been increasingly reported in cattle worldwide over the last decade, although reports from Europe are more limited. The objective of the present study was to evaluate the efficacy of injectable formulations of ivermectin and moxidectin at 0.2 mg per kg bodyweight against naturally acquired gastro-intestinal nematodes in cattle. A total of 753 animals on 40 farms were enrolled in Germany (12 farms), the UK (10 farms), Italy (10 farms), and France (8 farms). Animals were selected based on pre-treatment faecal egg counts and were allocated to one of the two treatment groups. Each treatment group consisted of between 7 and 10 animals. A post-treatment faecal egg count was performed 14 days (±2 days) after treatment. The observed percentage reduction was calculated for each treatment group based on the arithmetic mean faecal egg count before and after treatment. The resistance status was evaluated based on the reduction in arithmetic mean faecal egg count and both the lower and upper 95% confidence limits. A decreased efficacy was observed in half or more of the farms in Germany, France and the UK. For moxidectin, resistance was confirmed on 3 farms in France, and on 1 farm in Germany and the UK. For ivermectin, resistance was confirmed on 3 farms in the UK, and on 1 farm in Germany and France. The remaining farms with decreased efficacy were classified as having an inconclusive resistance status based on the available data. After treatment Cooperia spp. larvae were most frequently identified, though Ostertagia ostertagi was also found, in particular within the UK and Germany. The present study reports lower than expected efficacy for ivermectin and moxidectin (based on the reduction in egg excretion after treatment) on European cattle farms, with confirmed anthelmintic resistance on 12.5% of the farms

    Genetic parameters for faecal egg count, packed-cell volume and body-weight in Santa Inês lambs

    Get PDF
    Worm infection is one of the main factors responsible for economic losses in sheep breeding in Brazil. Random regression analysis was used to estimate genetic parameters for the factors faecal egg-count (FEC), packed-cell volume (PCV) and body weight (BW) in Santa Inês lambs. Data from 119 female, offspring of nine rams, were collected between December, 2005 and December, 2006, from the experimental flock of Embrapa Tabuleiros Costeiros, the Brazilian Agricultural Research Corporation located in Frei Paulo, SE, Brazil. After weaning, females were drenched until the faecal egg count had dropped to zero. Two natural challenges were undertaken. FEC heritability was extremely variable, this increasing from 0.04 to 0.27 in the first challenge and from 0.01 to 0.52 during the second. PCV heritability peaks were 0.31 and 0.12 in the first and second challenges, respectively. In the second challenge, BW heritability was close to 0.90. The genetic correlations among these traits did not differ from zero. There is the possibility of increasing parasite resistance in Santa Inês by selecting those animals with lower FEC. Selection to increase resistance will not adversely affect lamb-growth, although lambs with a slow growth-rate may be more susceptible to infection

    The unique resistance and resilience of the Nigerian West African Dwarf goat to gastrointestinal nematode infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>West African Dwarf (WAD) goats serve an important role in the rural village economy of West Africa, especially among small-holder livestock owners. They have been shown to be trypanotolerant and to resist infections with <it>Haemonchus contortus </it>more effectively than any other known breed of goat.</p> <p>Methods</p> <p>In this paper we review what is known about the origins of this goat breed, explain its economic importance in rural West Africa and review the current status of our knowledge about its ability to resist parasitic infections.</p> <p>Conclusions</p> <p>We suggest that its unique capacity to show both trypanotolerance and resistance to gastrointestinal (GI) nematode infections is immunologically based and genetically endowed, and that knowledge of the underlying genes could be exploited to improve the capacity of more productive wool and milk producing, but GI nematode susceptible, breeds of goats to resist infection, without recourse to anthelmintics. Either conventional breeding allowing introgression of resistance alleles into susceptible breeds, or transgenesis could be exploited for this purpose. Appropriate legal protection of the resistance alleles of WAD goats might provide a much needed source of revenue for the countries in West Africa where the WAD goats exist and where currently living standards among rural populations are among the lowest in the world.</p

    Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems

    Get PDF
    AbstractThe control of gastrointestinal nematodes (GIN) is mainly based on the use of drugs, grazing management, use of copper oxide wire particles and bioactive forages. Resistance to anthelmintic drugs in small ruminants is documented worldwide. Host genetic resistance to parasites, has been increasingly used as a complementary control strategy, along with the conventional intervention methods mentioned above. Genetic diversity in resistance to GIN has been well studied in experimental and commercial flocks in temperate climates and more developed economies. However, there are very few report outputs from the more extensive low-input/output smallholder systems in developing and emerging countries. Furthermore, results on quantitative trait loci (QTL) associated with nematode resistance from various studies have not always been consistent, mainly due to the different nematodes studied, different host breeds, ages, climates, natural infections versus artificial challenges, infection level at sampling periods, among others. The increasing use of genetic markers (Single Nucleotide Polymorphisms, SNPs) in GWAS or the use of whole genome sequence data and a plethora of analytic methods offer the potential to identify loci or regions associated nematode resistance. Genomic selection as a genome-wide level method overcomes the need to identify candidate genes. Benefits in genomic selection are now being realised in dairy cattle and sheep under commercial settings in the more advanced countries. However, despite the commercial benefits of using these tools, there are practical problems associated with incorporating the use of marker-assisted selection or genomic selection in low-input/output smallholder farming systems breeding schemes. Unlike anthelmintic resistance, there is no empirical evidence suggesting that nematodes will evolve rapidly in response to resistant hosts. The strategy of nematode control has evolved to a more practical manipulation of host-parasite equilibrium in grazing systems by implementation of various strategies, in which improvement of genetic resistance of small ruminant should be included. Therefore, selection for resistant hosts can be considered as one of the sustainable control strategy, although it will be most effective when used to complement other control strategies such as grazing management and improving efficiency of anthelmintics currently

    A numerical analysis of flexure induced cylindrical cracks during indentation of thin hard films on soft substrates

    No full text
    In this paper, the fracture behavior of a thin hard film, perfectly bonded to a soft substrate, containing circumferential (cylindrical) cracks subjected to spherical indentation is studied using the finite element method. These cracks emanate upwards from the film–substrate interface and are driven by the flexure of the film over the soft substrate under indentation. The film is taken to be linear elastic while the substrate obeys an elastic–plastic constitutive model with linear strain hardening. Three values for the substrate yield strength are considered in the analysis. The variation of energy release rate and mode mixity are examined as functions of crack length and load, for cracks located near and away from the indentation axis. The results show that, when the crack length is small, predominantly mode I conditions prevail due to tensile radial stresses near the interface. As the crack length increases, the mode mixity gradually changes from mode I to II. For cracks located near the axis, the crack growth process is stable over a range of crack lengths up to about a third of the film thickness and thereafter becomes unstable. The role of the substrate yield strength on the above issues is investigated

    A numerical analysis of spherical indentation response of thin hard films on soft substrates

    No full text
    In this paper, finite element simulations of spherical indentation of a thin hard film deposited on a soft substrate are carried out. The primary objective of this work is to understand the operative mode of deformation of the film corresponding to various stages of indentation. The transition from contact dominant behaviour to that governed by flexure of the film on the plastically yielding substrate is investigated from analysis of the load versus displacement curve as well as the stress distribution in the film. It is found that onset of bending deformation in the film occurs when the contact radius is about 0.2–0.3 of the film thickness. Further, distinct membrane stresses arise in the film for indentation depth greater than half the film thickness. The implications of these results on indentation fracture of the film are briefly discussed. Finally, the effects of substrate yield strength and presence of residual stresses on the indentation response are examined

    Comparative efficacy of tulathromycin and tildipirosin for the treatment of experimental Mycoplasma bovis infection in calves

    No full text
    The objective of this negative controlled, blinded, randomised, parallel group study was to compare the efficacy of two injectable macrolide antimicrobials, tulathromycin and tildipirosin, administered by single subcutaneous injection at dose rates of 2.5 and 4.0 mg kg−1 bodyweight, respectively, in the treatment of an experimentally induced Mycoplasma bovis infection in calves. A total of 238 M. bovis-negative calves were challenged on three consecutive days with M. bovis by endobronchial deposition. Post-challenge, a total of 126 animals fulfilled the inclusion criteria and were randomly allocated to three treatment groups: tulathromycin, tildipirosin and saline. Clinical observations for signs of respiratory disease and injection site assessments were conducted daily for 14 days post-treatment. The animals were then killed, the lungs were examined for evidence of lesions, and samples collected for bacterial isolation. Calves treated with tulathromycin had a lower percentage of lung with lesions (P = 0.0079), lower mortality (P = 0.0477), fewer days with depressed demeanour (P = 0.0486) and higher body weight (P = 0.0112) than calves administered tildipirosin
    corecore