37 research outputs found

    The Alzheimer's Disease Neuroimaging Initiative 2 Biomarker Core: A review of progress and plans

    Get PDF
    INTRODUCTION: We describe Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (Aβ1-42), t-tau, and p-tau181 analytical performance, definition of Alzheimer's disease (AD) profile for plaque, and tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; progress in standardization; and new studies using ADNI biofluids. METHODS: Review publications authored or coauthored by ADNI Biomarker core faculty and selected non-ADNI studies to deepen the understanding and interpretation of CSF Aβ1-42, t-tau, and p-tau181 data. RESULTS: CSF AD biomarker measurements with the qualified AlzBio3 immunoassay detects neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies in non-ADNI living subjects followed by the autopsy confirmation of AD. Collaboration across ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals because of genetic/environmental factors that increase/decrease resilience to AD pathologies. DISCUSSION: Further studies will refine this model and enable the use of biomarkers studied in ADNI clinically and in disease-modifying therapeutic trials

    Plasma amyloid‐beta levels in a pre‐symptomatic dutch‐type hereditary cerebral amyloid angiopathy pedigree: A cross‐sectional and longitudinal investigation

    Get PDF
    Plasma amyloid‐beta (Aβ) has long been investigated as a blood biomarker candidate for Cerebral Amyloid Angiopathy (CAA), however previous findings have been inconsistent which could be attributed to the use of less sensitive assays. This study investigates plasma Aβ alterations between pre‐symptomatic Dutch‐type hereditary CAA (D‐CAA) mutation‐carriers (MC) and non-carriers (NC) using two Aβ measurement platforms. Seventeen pre‐symptomatic members of a D‐ CAA pedigree were assembled and followed up 3–4 years later (NC = 8;MC = 9). Plasma Aβ1‐40 and Aβ1‐42 were cross‐sectionally and longitudinally analysed at baseline (T1) and follow‐up (T2) and were found to be lower in MCs compared to NCs, cross‐sectionally after adjusting for covari-ates, at both T1(Aβ1‐40: p = 0.001; Aβ1‐42: p = 0.0004) and T2 (Aβ1‐40: p = 0.001; Aβ1‐42: p = 0.016) employing the Single Molecule Array (Simoa) platform, however no significant differences were observed using the xMAP platform. Further, pairwise longitudinal analyses of plasma Aβ1‐40 revealed decreased levels in MCs using data from the Simoa platform (p = 0.041) and pairwise longitudinal analyses of plasma Aβ1‐42 revealed decreased levels in MCs using data from the xMAP platform (p = 0.041). Findings from the Simoa platform suggest that plasma Aβ may add value to a panel of biomarkers for the diagnosis of pre‐symptomatic CAA, however, further validation studies in larger sample sets are required

    Diagnostic value of cerebrospinal fluid A beta ratios in preclinical Alzheimer's disease

    Get PDF
    Introduction: In this study of preclinical Alzheimer's disease (AD) we assessed the added diagnostic value of using cerebrospinal fluid (CSF) A beta ratios rather than A beta 42 in isolation for detecting individuals who are positive on amyloid positron emission tomography (PET). Methods: Thirty-eight community-recruited cognitively intact older adults (mean age 73, range 65-80 years) underwent F-18-flutemetamol PET and CSF measurement of A beta 1-42, A beta 1-40, A beta 1-38, and total tau (ttau). F-18-flutemetamol retention was quantified using standardized uptake value ratios in a composite cortical region (SUVRcomp) with reference to cerebellar grey matter. Based on a prior autopsy validation study, the SUVRcomp cut-off was 1.57. Sensitivities, specificities and cut-offs were defined based on receiver operating characteristic analysis with CSF analytes as variables of interest and F-18-flutemetamol positivity as the classifier. We also determined sensitivities and CSF cut-off values at fixed specificities of 90 % and 95 %. Results: Seven out of 38 subjects (18 %) were positive on amyloid PET. A beta 42/ttau, A beta 42/A beta 40, A beta 42/A beta 38, and A beta 42 had the highest accuracy to identify amyloid-positive subjects (area under the curve (AUC) >= 0.908). A beta 40 and A beta 38 had significantly lower discriminative power (AUC = 0.571). When specificity was fixed at 90 % and 95 %, A beta 42/ttau had the highest sensitivity among the different CSF markers (85.71 % and 71.43 %, respectively). Sensitivity of A beta 42 alone was significantly lower under these conditions (57.14 % and 42.86 %, respectively). Conclusion: For the CSF-based definition of preclinical AD, if a high specificity is required, our data support the use of A beta 42/ttau rather than using A beta 42 in isolation

    Recovery rates of spiked calibrators into individual CSF samples.

    No full text
    <p>Recombinant calibrators were spiked at three different concentrations into four CSF samples. Concentrations of spike solutions and endogenous protein concentrations were determined in parallel. Recovery rates were calculated taking into account both the endogenous CSF concentration and the protein concentration of the spike solutions. A: aSyn, B: Aβ<sub>42</sub>, C: DJ-1, D: t-tau protein.</p

    Linearity testing for serial dilution of proteins spiked into CSF samples.

    No full text
    <p>Three CSF samples were spiked with approximately 100 times the endogenous concentration of aSyn, DJ-1 and t-tau protein as well as 25 times of endogenous Aβ<sub>42</sub> concentration. CSF samples were serially diluted by a factor of two for analysis. Protein concentrations were normalized for the fourth dilution. Relative protein concentrations are presented. A: aSyn, B: Aβ<sub>42</sub>, C: DJ-1, D: t-tau protein.</p

    A First Tetraplex Assay for the Simultaneous Quantification of Total α-Synuclein, Tau, β-Amyloid<sub>42</sub> and DJ-1 in Human Cerebrospinal Fluid

    No full text
    <div><p>The quantification of four distinct proteins (α-synuclein, β-amyloid<sub>1-42</sub>, DJ-1, and total tau) in cerebrospinal fluid (CSF) has been proposed as a laboratory-based platform for the diagnosis of Parkinson’s disease (PD) and Alzheimer’s disease (AD). While there is some clinical utility in measuring these markers individually, their usage in routine clinical testing remains challenging, in part due to substantial overlap of concentrations between healthy controls and diseased subjects. In contrast, measurement of different analytes in a single sample from individual patients in parallel appears to considerably improve the accuracy of AD or PD diagnosis. Here, we report the development and initial characterization of a first, electrochemiluminescence-based multiplex immunoassay for the simultaneous quantification of all four proteins (‘tetraplex’) in as little as 50 μl of CSF. In analytical performance experiments, we assessed its sensitivity, spike-recovery rate, parallelism and dilution linearity as well as the intra- and inter-assay variability. Using our in-house calibrators, we recorded a lower limit of detection for α-synuclein, β-amyloid<sub>42</sub>, DJ-1, and t-tau of 1.95, 1.24, 5.63, and 4.05 pg/ml, respectively. The corresponding, linear concentration range covered >3 orders of magnitude. In diluted CSF samples (up to 1:4), spike-recovery rates ranged from a low of 55% for β-amyloid<sub>42</sub> to a high of 98% for DJ-1. Hillslopes ranged from 1.03 to 1.30, and inter-assay variability demonstrated very high reproducibility. Our newly established tetraplex assay represents a significant technical advance for fluid-based biomarker studies in neurodegenerative disorders allowing the simultaneous measurement of four pivotal makers in single CSF specimens. It provides exceptional sensitivity, accuracy and speed.</p></div

    Parallelism of analyte quantification in serially diluted CSF samples.

    No full text
    <p>Pooled CSF and three individual CSF samples were serially diluted by a factor of two for analysis. Protein concentrations were normalized for the 1:8 dilutions. A: aSyn, B: Aβ<sub>42</sub>, C: DJ-1, D: t-tau protein.</p
    corecore