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Abstract

Introduction—We describe Alzheimer’s Disease Neuroimaging Initiative (ADNI) Biomarker 

Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (Aβ1–42), t-tau, and 

p-tau181 analytical performance, definition of Alzheimer’s disease (AD) profile for plaque, and 

tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; 

progress in standardization; and new studies using ADNI biofluids.

Methods—Review publications authored or coauthored by ADNI Biomarker core faculty and 

selected non-ADNI studies to deepen the understanding and interpretation of CSF Aβ1–42, t-tau, 

and p-tau181 data.

Results—CSFAD biomarker measurements with the qualified AlzBio3 immunoassay detects 

neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies 

in non-ADNI living subjects followed by the autopsy confirmation of AD. Collaboration across 

ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals 

because of genetic/environmental factors that increase/decrease resilience to AD pathologies.

Discussion—Further studies will refine this model and enable the use of biomarkers studied in 

ADNI clinically and in disease-modifying therapeutic trials.
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1. Introduction

Alzheimer’s disease (AD), the most common form of dementia [1,2]. It is a complex 

progressive neurodegenerative disease that leads to the loss of memory and cognitive 

function. The disease is pathologically characterized by amyloid-β (Aβ) plaques and 

neurofibrillary tangles (NFTs) that are composed largely of fibrillar forms of Aβ and 

hyperphosphorylated tau (p-tau), respectively. During the past two decades cumulative 

molecular and clinical studies have provided evidence for our understanding of the 

molecular characteristics and progressive pathologic features of AD. These pathologic 

changes are reflected in cerebrospinal fluid (CSF), respectively, by lowered levels of Aβ1–42 

followed by increased total tau (t-tau) or p-tau181. In the Biomarker Core of the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI-1) located at the Perelman School of Medicine of 

the University of Pennsylvania (Penn), we defined cut points for the use of these biomarkers 

and their ratios using an ADNI-independent autopsy-based Penn AD cohort and age-

matched living normal control (NC) subjects. Cognitive decline in AD patients closely 

correlates to neurofibrillary tangles (NFTs), synapse loss, and neurodegeneration [3–5]. 

However, there is a growing awareness for the occurrence of one or more copathologies in 

sporadic AD including Lewy bodies (LBs), vascular disease, transactive response DNA 

binding protein 43 kDa (TDP-43) inclusions, and hippocampal sclerosis which most likely 
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contributes to the variable timeline for the progression of AD [6] as reflected in the imaging, 

CSF biomarkers, and clinical features of patients with dementia of the AD type (DAT) (Fig. 

1).

AD can be divided into different phases: (1) a preclinical phase in which subjects are 

cognitively normal but have mild AD pathology, (2) a prodromal phase known as mild 

cognitive impairment (MCI), and (3) a phase when patients show dementia with 

impairments in multiple domains and loss of function in activities of daily living [4,7–9]. On 

the basis of the prevailing scientific evidence, CSF Aβ1–42 and the tau proteins have been 

incorporated into the revised research diagnostic criteria for AD together with β-amyloid 

positron emission tomography (PET) imaging [10–13], and tau amyloid PET imaging is now 

also available [14,15]. It is being added to the ADNI portfolio of imaging technologies. 

ADNI-1 studies reported evidence of AD pathology in one-third of the cognitively intact 

elderly NC subjects solely based on CSF Aβ1–42 [16,17]. It is time to consider developing 

strategies to identify AD at the presymptomatic and prodromal phases to optimize the 

potential efficacy of disease-modifying therapies, and to enable drug development aimed at 

AD prevention. A key goal of ADNI continues to be the improvement of the standardization 

of biomarker measurements to enable their use in clinical AD trials, across multiple testing 

laboratories, and in routine clinical practice. Thus, the standardization of both preanalytical 

(at the level of biofluid sample collection, handling, aliquot preparation, and storage) and 

analytical sources of variability continues to be a priority of the Penn Biomarker Core and 

we continue to collaborate with biomarker scientists on these issues. We participated in 

recent consensus group and we are part of the Alzheimer’s Biomarker Standardization 

Initiative, providing a set of recommendations for 10 preanalytical factors [18]. We have 

continued the work of analytical method standardization in the Penn Biomarker Core of 

ADNI and also have collaborated with colleagues in the Global Biomarker Standardization 

Consortium (GBSC) in support of Aβ1–42 calibrator standardization, based on mass 

spectrometry, across various immunoassay platforms [19]. We expect that an outcome of all 

these efforts will be the availability of the most highly standardized methods for CSF Aβ1–42 

and tau proteins. In this review, we summarize progress by the Penn Biomarker Core of 

ADNI using the developed pathological CSF biomarker profile that sensitively detects Aβ 
amyloid plaque burden (below the threshold for the CSF Aβ1–42 concentration) and NFTs, 

synapse loss, and neurodegeneration (above-threshold for CSF tau protein concentrations) 

[16]. We continue the collaborative work to develop biomarker tests for α-synuclein (α-syn) 

to indicate the presence of concomitant LBs and forTDP-43 as an indicator of inclusions of 

this biomarker in early AD, early and late MCI, and NC subjects. The Penn Biomarker Core 

has collaborated with other ADNI Cores in multimodal data analyses across ADNI to 

temporally order changes in clinical measures, imaging data, and chemical biomarkers that 

refine and expand our understanding and interpretation of the pathophysiology involved in 

the disease progression from NC to MCI and from MCI to AD. The hypothetical model of 

the temporal evolution of changes in the AD biomarkers will be further developed within the 

Biomarker Core studies in the ADNI-2 grant (Fig. 1) and informs our plans for the ADNI-3 

competing renewal application.
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2. Biofluid repository update

2.1. Overview

From 2010 through 2015, the ADNI-1 and II biofluid repository at Penn continuously 

receives biofluids (CSF, plasma, and serum) shipped from all ADNI sites followed by 

aliquoting and monitoring after storage in −80°C freezers. This effort requires 24/7 attention 

by the Penn Biomarker Core team. Since its inception in 2004, no lost samples or other 

untoward misadventures were recorded. The biofluid samples are collected and shipped in 

accordance with ADNI biomarker standard operating procedures (SOPs) established in 

ADNI-1 after consultation with members of the Private Partners Scientific Board (PPSB) 

and other ADNI advisory biomarker scientists. We continue to work closely with the ADNI 

Clinical Core on recording essential details for each collected sample from the jointly 

developed biofluid tracking form. These SOPs are essential to ensure the integrity of 

samples, accurate identification of the samples received and aliquots prepared from them, 

and sample stability. Continuous vigilance of the characteristics of each received sample by 

Biomarker Core staff and regular communication with Clinical Core staff and individual 

sites regarding any issues that may arise involving mislabeled samples or other issues has 

enabled the correction of the issues related to this function of the Biomarker Core, and the 

regular communication between this Core and the ADNI sites facilitates the collection of 

accurate data for every collected sample.

2.2. Current status of the ADNI biofluid bank

2.2.1. ADNI-1, 2, and Grand Opportunity—From April 21, 2010 and from March 7, 

2011, the dates that the first ADNI-Grand Opportunity (GO) and first ADNI-2 biofluid 

samples were received, respectively, through January 26, 2015, a total of 9461 biofluids 

were received, processed, and 164,120 aliquots prepared (1279 CSF, 8182 plasma, and 

serum samples; 39,561 CSF aliquots, 124,559 plasma and serum aliquots), bar code labeled, 

and stored in dedicated ADNI freezers at −80°C (Fig. 2). The totals for ADNI-1, ADNI-2, 

and ADNI-GO are summarized in Fig. 2. Temperature monitoring of each freezer is done 

everyday, 365 days a year, with a telephone alarm system, and one Penn Biomarker Core 

staff person is always “oncall” to respond to an alarm. For each primary biofluid sample 

collected, the following information is maintained in the ADNI Biomarker Core database at 

Penn: biofluid type (CSF, plasma, serum, urine [only ADNI-1]), coded subject and visit ID, 

six digit license plate number, visit date and time, date and time of receipt, condition of 

samples as received, biofluid sample volume and number of aliquots, and the details of 

sample preparation such as time from collection to time of transfer, and to time of freezing 

are recorded for each sample from each study site. The database is backed up daily on each 

of two external “brick” hard drives. The latter are stored outside the Biomarker Core 

laboratory in a secure location in a different building to ensure data security in the event of a 

catastrophic failure of the server in which the database resides.

2.2.2. Rationale for sample preparation preanalytical steps—The preanalytical 

steps involved in sample preparation and the analytical method itself are two well-known 

sources of variability in CSF biomarker measurements. An important basis for the 

preparation procedure for samples at each ADNI site was the principle of keeping the 
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number of steps involved to the minimum and keeping the time at room temperature before 

freezing samples on dry ice to the minimum practically possible. For example, CSF samples 

are collected in labeled polypropylene collection tubes followed by transfer to labeled 

polypropylene transfer tubes (n = 2), with no centrifugation step, then are placed on dry ice 

immediately, and shipped on dry ice to the Penn ADNI Biomarker Core laboratory where 

they subsequently are thawed at room temperature. Within 30 minutes of thawing the CSFs 

are aliquoted into 0.5-mL polypropylene tubes and placed in storage boxes in designated 

locations in −80°C freezers. This streamlined process does include one additional thaw–

freeze step compared with protocols that prepare and label individual aliquots at local sites 

but reduces risk for variable sample preparation and contributes to consistency of sample 

handling in our experience. The data on sample preparation times for ADNI biofluids are 

summarized in Fig. 2 showing average times of 52.4 and 75.5 minutes from sample 

collection to freezing the samples for CSF and plasma, respectively. The fastidiousness with 

which staff at the ADNI sites prepare and ship biofluid samples is noteworthy. The use of 

centrifugation of CSF before freezing has been a debated topic but investigators have shown 

for Aβ1–42 and tau proteins no difference in results comparing centrifuged versus not 

centrifuged samples [18]. A just published systematic study of preanalytical factors 

confirmed the lack of effect of not-centrifuging versus centrifugation of CSF samples and 

also the stability of Aβ1–42 and tau protein concentrations out to three freeze–thaw cycles 

but with decreases after four cycles for Aβ1–42 and t-tau but not p-tau181 [127]. The use of a 

second thaw–freeze cycle in the ADNI study for CSF samples is within the observed 

stability in this and other studies (data on file in the ADNI Biomarker Core laboratory).

2.2.3. Shipments of biofluid aliquots to investigators for studies approved by 
the ADNI National Institute on Aging(NIA) Resource Allocation Review 
Committee—An integral part of the responsibilities of the Penn Biomarker Core is to 

respond to requests for biofluids that are approved by the Resource Allocation Review 

Committee (RARC). The 18 RARC-approved requests for ADNI biofluids are summarized 

in the latest edition of the annual Biofluids reports that are available on the Laboratory of 

Neuroimaing (LONI) ADNI website (https://ida.loni.usc.edu/pages/access/studyData.jsp?

categoryId=11&subCategoryId=58).

Results from the most recent downloaded and published studies are discussed in later 

sections of this review.

3. Qualification of the analytical performance of CSF biomarker 

immunoassays

With the development of Aβ1–42, total tau (t-tau), and tau phosphorylated at threonine 181 

(p-tau181)-specific monoclonal antibodies, efforts to develop singleplex and multiplex 

platforms to measure the AD biomarkers in human CSF have emerged. Based on reported 

studies, the precision performance of the enzyme-linked immunosorbent assay (ELISA) and 

multiplex Luminex-xMAP platforms, two of the most widely used platforms for the 

measurement of CSF biomarkers, supports their intended use to detect AD Aβ plaque and 

NFT pathology by measuring CSF Aβ1–42 and tau [20]. ADNI adopted the Luminex xMAP 
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platform and the multiplex INNO-BIA Alz-Bio3 immunoassay to measure the CSF AD 

biomarkers based on reported within-center precision performance and equivalent clinical 

utility to that of the INNOTEST ELISA immunoassay [21]. Precision performance was most 

recently documented for 133 runs, using four different kit lots, and completed over the time 

frame from August 2013 through January 2015. The study included a formally outlined, 

prospective quality control strategy [20]. Using an AD-like abnormal CSF and a normal CSF 

pool, the percent coefficient of variation (%CV) values obtained were 9.2% and 10.2%, 

7.4% and 10.1%, 11.2% and 12.2%, for respectively, Aβ1–42, t-tau, and ptau181 using the 

Luminex-xMAP platform in the Penn ADNI Biomarker Core laboratory [22], which 

confirmed previously published within-center data [23].

Of note, the concentrations of each biomarker measured by xMAP in the same CSF samples 

differ from those measured by ELISA, although the concentrations are highly correlated 

[24–26]. Several studies including a study led by the ADNI Biomarker Core assessed the 

interlaboratory variability of the CSF AD biomarkers described previously. Briefly, these 

studies showed that following a well-vetted protocol the substantial intercenter variability of 

both immunoassay platforms [23,27,28] can be improved on. The studies suggested that 

several factors can account for interlaboratory variability for CSF AD biomarker 

measurements. Besides preanalytical factors, for instance, any analytical step not included in 

the manufacturer’s formal protocol (e.g., repeated pipetting of reagents or samples, transfer 

of samples to an intermediary 96-well plate, differences in data processing, selection of 

calibration curves, criteria used for acceptance of individual runs based on internal quality 

control samples) that might be used by analysts can be a significant source of unexpected 

variability.

Our recent application of a unified detailed test procedure for the Luminex INNO_BIA 

AlzBio3 platform across three independent laboratories showed acceptable interlaboratory 

variation. In this pilot study, we observed a strong correlation of concentrations for each 

analyte between the participating centers (R2 > 0.95; linear regression: center versus overall 

center mean) and average total interlaboratory variability for 10 pools of CSF (variability 

components “run” and “lab”) over eight runs were 16.5% for t-tau, 10.9% for Aβ1–42, and 

9.2% for p-tau181. Therefore, we are convinced that the implementation of a unified SOP, 

careful documentation of critical parameters of the test procedure, and the rigorous 

adherence to detailed test instructions can result in improved CSF analyte concentration 

reproducibility across laboratories [29]. In addition, the experience of trained personnel who 

are very familiar with this complex procedure is essential to decrease variability. Further 

improvements in immunoassay performance within and between centers can be anticipated 

as manufacturers develop fully automated platforms that will reduce substantially the 

number of manual steps and minimize matrix interferences. A proof-of-principle study 

reported by Figurski et al showed that combining the standard bead-based xMAP plasma 

Aβ1–42 immunoassay with a robotic pipetting technique achieved a 50% improvement in 

precision performance compared with other published studies [30].
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4. Progress in clinical utility of CSF AD biomarkers

4.1. CSF Aβ1–42, t-tau, and p-tau181 measurements

CSF Aβ1–42, t-tau, and p-tau181 have been extensively studied for the early detection of AD 

before and after the start of ADNI in 2004 [31–35]. For the ADNI Biomarker Core, the 

publication by Shaw et al. [16] was a major milestone (Table 1). It reported cut points using 

Receiver Operating Characteristic (ROC) analysis for the discrimination of AD patients 

from NC subjects based on an ADNI-independent autopsy-confirmed cohort. The defined 

cut points were successfully applied to the ADNI-1 cohort and these values have been used 

in many other clinical studies [36] and clinical trials. DeMeyer and collaborators 

independently confirmed the clinical utility of these cut points using a mixture-modeling 

approach in the ADNI-1 study subjects and in an ADNI-independent Belgian autopsy-based 

study cohort [17]. Toledo and coworkers provided additional validation data using more than 

1000 ADNI subjects (ADNI 1, GO, 2), including follow-up samples. Mixture modeling 

approaches applied to CSF in combination with PETAβ amyloid imaging data led to 

converging cut point values similar to the previously established levels [37] (Table 1).

Two independent analyses of the ADNI-1 data set provided evidence that the CSF 

Alzheimer profile characterized by decreased Aβ1–42 or an elevated tau/Aβ1–42 ratio clearly 

identifies subjects positive for Aβ plaque and tangle burden who are therefore at risk for 

progression to AD [16,17], and this finding is consistent with that reported in many other 

studies [34,38–42]. These CSF biomarker data support their use for the early detection of 

AD despite the fact that different analytical platforms were used and that the patient 

populations were heterogeneous, and they also provide support for the revised research 

diagnostic criteria for AD dementia [11], MCI due to AD [10,12], and the definition of 

preclinical stages of AD [13]. However, differences in the concentration values for the AD 

CSF biomarkers across numerous studies that used different analytical platforms (i.e., 

ELISA, Luminex-xMAP, and Mesoscale Discovery platforms) have been observed. 

Therefore, reduction and control of analytical variability across laboratories is an important 

goal in this field, and efforts to minimize the analytical variability are underway (reviewed in 

[20] and see later for a more detailed discussion). The observed low agreement between the 

different proposed imaging and CSF neurodegeneration biomarkers indicates that each of 

these technologies has a different sensitivity and specificity to detect the earliest preclinical 

changes or to differentiate AD-related pathology from other neurodegenerative diseases 

[46].

The main findings from studies of the ADNI cohort since its inception in 2004 were recently 

updated, well-summarized, and discussed for their considerable clinical implications by 

Weiner and collaborators [47].

4.2. The heterogeneous pathologic features of AD

The brains of patients who have late-onset AD verified by neuropathologic diagnosis at 

autopsy have widespread distribution of amyloid-β plaques and neurofibrillary tangles that 

are the pathologic hallmarks of this disease. In addition, a significant number of AD patients 

at autopsy have one of more concomitant pathologic findings (comorbidities) including LBs, 
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vascular disease, TDP-43, hippocampal sclerosis, and argyrophilic grain disease. In the 

review of the first series of 22 brain autopsy cases of ADNI subjects that included 20 

subjects with a clinical diagnosis of AD and 2 with MCI, all had evidence of plaque and 

tangle pathology. Importantly, only four had pure AD pathology with the remainder having 

coincident pathologic diagnoses of dementia with Lewy bodies (DLB), TDP-43 

proteinopathy, argyrophilic grain disease, and hippocampal sclerosis [46]. This series is 

small in number and the future reporting of the neuropathologic findings in ADNI patients 

will help to substantiate these findings and enable correlation studies with CSF biomarkers. 

In a study of the association of AD CSF biomarkers in patients with autopsy-confirmed 

coincident neuropathology that included 142 Penn Alzheimer’s Disease Core Center 

(ADCC) subjects with “pure” AD, and AD combined with frontotemporal lobar 

degeneration (FTLD) pathology, including tau (FTLD-Tau) and TDP-43 (FTLD-TDP) 

inclusions or LBs [48], it was shown that CSF Aβ1–42 and t-tau levels outperformed clinical 

diagnosis to predict the presence of AD neuropathology. Vascular pathology is also 

frequently observed in demented subjects with AD pathology, and studies using ADNI 

subjects [49] and non-ADNI subjects [50] showed that vascular pathology measured by 

magnetic resonance imaging (MRI) may be associated with regional neurodegeneration or 

with CSF AD profile.

4.2.1. Detection of LB pathology in AD patients—The heterogeneous 

neuropathologic features frequently observed in clinically diagnosed AD patients may be 

reflected by distinct changes in additional CSF biomarkers such as decreased α-syn levels 

that are characteristic of LB pathology. The combination of AD-associated biomarkers with 

other CSF protein signatures has the potential to improve the diagnostic or prognostic 

performance as compared with tau and Aβ alone based on a study in 389 ADNI and 102 

subjects of the Parkinson’s Progression Markers Initiative [51]. Wang and collaborators 

reported additional diagnostic utility for phosphorylated CSF α-syn levels [52]. A mismatch 

between CSF α-syn and p-tau181 (lower level of α-syn and higher p-tau181 level) was tested 

in ADNI subjects to account for expected lower α-syn due to PD pathology compared with 

an increase associated with AD pathology. The inclusion of this mismatch in AD classifiers 

may improve the clinical performance of these CSF biomarkers [51].

4.2.2. Variable rates of decline for CSF Aβ1–42 may reflect AD disease 
heterogeneity—In addition to neuropathologic heterogeneity, the observation of 

longitudinal changes in CSF biomarker levels in the ADNI cohort revealed that there are 

distinct populations of subjects with normal baseline CSF Aβ1–42 values: those who remain 

stable and others who show a decline during follow-up (Fig. 3A–C) [43,45,53]. In the ADNI 

add-on study of the longitudinal trajectories of CSF biomarkers in 141 subjects with three or 

more CSFs collected longitudinally between 2005 and 2014, there were 35 whose baseline 

Aβ1–42 concentration values were above the 192 pg/mL cut point. The finding that 15 of 

these subjects (seven cognitively normal, eight MCI), followed longitudinally for 3–4 years 

from baseline, with normal baseline CSF Aβ1–42 had values declining toward the abnormal 

range at a mean annual change of −9.2 pg/mL is consistent with the hypothesis that these are 

individuals who have AD-like neuropathologic changes taking place in their brains at the 

time of their baseline visit as compared with the 20 subjects whose normal baseline values 
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were stable at a mean annual change of −0.5 pg/mL [53]. Interestingly, the majority (all but 

two) of the stable and decliner subjects was APOE ε4 negative (see Fig. 3B) and these 

patient subgroups were not statistically different at BASELINE for mean cognitive and 

memory tests, had comparable hippocampal volume values, but their Aβ1–42 values differed, 

257 versus 211 pg/mL (P < .001) [45], respectively. These preliminary data support the 

continued need for longitudinal lumbar punctures and CSF analyses in ADNI subjects to 

generate more statistically robust numbers of subjects with prolonged longitudinal 

biomarker profiles. ADNI is well positioned to provide larger numbers of subjects whose 

biomarker levels will move from normal values to pathological values as described in these 

ADNI studies [43,45,53] (Fig. 3A–C). Future studies are needed to assess what biomarker, 

imaging, and/or genetic factors predict which MCI and cognitively normal subjects with 

above cut point values for CSF Aβ1–42 are at risk to decline to pathologic values and 

significant Aβ plaque burden and progression to AD.

4.3. Multimodal approach including CSF biomarkers

Disease progression and AD endophenotypes appear to be influenced by both genetic and 

environmental factors. Baseline and longitudinal data from ADNI were used to explore the 

association between biomarkers and clinical parameters at different stages of the disease. As 

suggested by Jack and colleagues [54] and tested by Caroli and Frisoni [55] and others 

[56,57], individual biomarkers vary in their rate of change across different stages of AD. 

Results from the ADNI cohort supported the model of temporal progression of biomarker 

abnormalities [54,58]: a reduction in CSF Aβ1–42 (or increased plaque burden measured by 

Aβ amyloid PET) in cognitively normal NC subjects occurs first, followed by t-tau 

elevation, hippocampal atrophy, and ultimately clinical deterioration.

Based on this model of the dynamics for AD biomarkers according to the disease stage of 

AD, Walhovd reported an optimum combination of imaging and CSF biomarkers to 

differentiate NC from AD subjects. They have found that imaging biomarkers, but not CSF 

biomarkers, were significantly associated with changes in cognitive scores in the MCI group 

[59]. In non-ADNI subjects with MCI and evidence of Aβ amyloid pathology, the 

abnormality in injury markers (high CSF t-tau and hippocampal atrophy) could help to 

identify those subjects with MCI due to AD who will more rapidly progress to dementia 

[60].

Genetic factors, such as the APOE ε4 allele, may influence this rate of change. In addition to 

the effect of genetic factors on neurodegeneration, several other factors (e.g., smoking, body 

mass index) may modulate the disease trajectory although these results have been the subject 

of contradictory reports [61,62]. Based on the small number of cases that came to autopsy in 

the ADNI study, we found that, even in a study that was focused on typical AD cases, most 

of the subjects had coincident or comorbid neurodegenerative disease pathologies such as 

LBs or TDP-43 inclusions that were not diagnosed before death (Fig. 3D) [46]. These 

findings underscore the complexity of different factors that can contribute to DAT. The 

existence of heterogeneous subgroups with different clinical characteristics might have 

different prognoses and would potentially need different treatment approaches. In summary, 

combined multimodal analyses including CSF biomarkers, genetic factors, and different 
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imaging biomarkers and blood-based biomarkers continue to be a long-term aim for 

achievement of more accurate discrimination of AD from other neurodegenerative diseases 

and more accurate prediction of time course of disease progression in the individual patient 

[46].

The Biomarker Core will further determine in ADNI 3 which additional biomarkers could 

add to the predictive performance of CSF Aβ1–42, t-tau, and p-tau181.

5. Candidate new biomarkers

5.1. β-site amyloid precursor protein-cleaving enzyme 1 and soluble amyloid precursor 
proteins

β-site amyloid precursor protein-cleaving enzyme 1 (BACE1, β-secretase) is a membranous 

enzyme responsible to the production of Aβ species from amyloid precursor protein (APP). 

A sensitive and specific activity assay for BACE1 was previously developed [63,64]. The 

assay detected BACE1 enzyme activity in extracts of human brain tissues and, unexpectedly, 

in human CSF [65]. The expression level and activity of BACE1 in CSF was tested in ante-

mortem CSF samples of NC, MCI, and AD patients. BACE1 levels and activity were 

significantly increased in CSF of the MCI group as compared with NC and AD subjects 

[66]. Addition of CSF BACE1 activity and concentrations of α- and β-cleaved soluble APP 

(sAPPα and sAPPβ, respectively) could not improve the separation of AD from NC as 

compared with the performance of the classical AD biomarkers (Aβ1–42 and tau) [67]. When 

AD patients were classified in terms of disease severity, only MCI showed higher BACE 1 

activity as compared with AD or NC [66]. A recent study in the ADNI cohort found no 

significant differences in CSF BACE1 activity and sAPPβ concentrations between NC and 

stable MCI, progressive MCI, or AD patients, and no correlation with CSF Aβ1–42 or with 

plasma Aβ1–42 and Aβ1–40, but found some correlation with CSF tau levels [68]. Another 

study in ADNI-1 cohort with a small number of subjects with 2 years follow-up replicated 

negative results for diagnostic performance. There was no effect of APOE ε4 positive 

genotype on BACE1 activity or sAPPβ concentration, but males showed higher sAPPβ 
concentration than females. The significant correlation of BACE1 activity and sAPPβ 
concentration with tau proteins, consistent with the previous study, suggested that their 

correlation may be linked with neuronal/synapse number in the brain [69]. Although these 

results do not support the diagnostic utility of BACE1 activity in CSF, the correlation of 

BACE1 activity with sAPPβ and axonal degeneration supports their role as biomarkers for 

pharmacodynamics monitoring of BACE1-targeted clinical trials. Confounding factors 

including demographics may influence the poor diagnostic utility of CSF BACE1 activity 

for AD. More studies related BACE1 activity or protein levels are required.

5.2. Novel biomarkers discovered by rules based medicine multiplex immunoassay

A RARC approved add-on study used a Luminex bead-based immunoassay technology 

developed by Rules Based Medicine (RBM, Austin, TX) to screen CSF and plasma samples 

obtained from the ADNI cohort. First, a pilot study was conducted with non-ADNI Penn 

CSF samples to interrogate levels of 151 analytes with the Human Discovery Multi-Analyte 

Profile™ (MAP) panel. The panel was enriched in cytokines, chemokines, and growth 
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factors, and AD biomarkers in non-ADNI Penn CSF samples. This revealed novel CSF 

biomarkers (i.e., complement 3, neuronal cell adhesion molecule, and platelet-derived 

growth factor) that appeared to improve the distinction between AD and non-AD cases 

(including cognitively normal subjects) compared with established AD biomarkers alone 

[70]. Another study using non-ADNI CSF samples and a slightly larger number of analytes 

(N = 190) in the Human Discovery MAP 1.0 panel supported the results of the prior study 

and found additional CSF biomarkers (i.e., cystatin C, vascular endothelial growth factor 

(VEGF), tumor necrosis factor-related apoptosis-inducing ligand receptor 3, plasminogen 

activator inhibitor-1, pancreatic polypeptide, N-terminal prohormone of brain natriuretic 

peptide, matrix metalloproteinase-10, macrophage migration inhibitory factor, growth 

related oncogene-alpha, fibrinogen, FAS, and eotaxin-3) to improve the diagnostic utility for 

AD [71]. In an RBM study using CSF samples from the ADNI cohort, several markers were 

associated with neurodegeneration in Aβ amyloid-positive subjects but not in Aβ amyloid-

negative subjects. Lower levels of trefoil factor 3, VEGF, and chromogranin A, and a higher 

level of cystatin C were significantly associated with increased rates of neurodegeneration, 

indicating that these candidate markers potentially provide prognostic information and 

insights into AD pathobiology [72]. In another analysis of the multiplex RBM study of 

ADNI 1 CSF samples, high CSF apolipoprotein ε (apoE) levels were shown to be associated 

with a slower cognitive decline and decreased brain atrophy [126].

The RBM studies using ADNI CSF samples have been reported or are ongoing. RBM 

studies of targeted multiplex analysis of plasma proteins in ADNI samples supported the 

potential utility of a plasma proteome signature as a screening tool [73,74]. Of note, changes 

in the level of some plasma proteins (e.g., pancreatic polypeptide) were consistent with the 

results observed in CSF samples, and with results found in studies of non-ADNI cohorts 

[74,75]. These results also have been linked to genome-wide association studies (GWAS) 

[76] and provided novel insights into pathways and proteins that are associated with AD 

onset and progression.

5.3. Biomarkers quantified by multiple reaction monitoring tandem mass spectrometry

5.3.1. Amyloid beta (Aβ1–42)—Current immunoassays for Aβ measurement in CSF have 

several limitations including widely differing concentrations across the immunoassay 

platforms, using aliquots from the same samples, matrix effects, and lack of a CSF-based 

standard reference material and methodology [77]. The ADNI Biomarker Core continues to 

focus on assessments of CSF assays and other methodological issues related to the chemical 

biomarker studies conducted in the ADNI Biomarker Core at Penn. For example, Korecka et 

al. [78] established a calibrator surrogate matrix for the quantification of Aβ1–42 in human 

CSF. The analytical methodology was based on a 2-dimensional ultraperformance liquid 

chromatography/tandem mass spectrometry (2D-UPLC/MS-MS) platform and validated 

quality control samples were prepared for the liquid chromatography tandem mass 

spectrometry (LC/MS-MS) methodology. The surrogate matrix was artificial CSF containing 

4 mg/mL of bovine serum albumin which provided linear and reproducible calibration 

comparable with human pooled CSF as calibration matrix. The appropriate cleaning of the 

trapping and analytical columns provided daily trouble-free runs. Analyses of non-ADNI 

CSF Aβ1–42 showed that UPLC/MS-MS distinguished neuropathologically diagnosed AD 
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subjects from healthy NCs. The concentration of Aβ1–42 measured by the 2D UPLC/MS-MS 

system was on average 4.5 times higher compared with the concentration determined by 

Luminex-AlzBio3 immunoassay, however, the clinical utility was comparable [78]. ROC 

curve and correlation analyses evaluated the diagnostic utility of this mass spectrometry 

method compared with the AlzBio3 immunoassay for the detection of the AD CSF 

biomarker Aβ1–42. Comparison of ROC curves for these two assays showed no statistically 

significant difference (P =.2229). Linear regression analysis of Aβ1–42 concentrations 

measured by this mass spectrometry-based method compared with the AlzBio3 

immunoassay showed significantly higher but highly correlated results. Thus, this newly 

established surrogate matrix for 2D-UPLC/MS-MS measurement of Aβ1–42 provides 

selective, reproducible, and accurate results. The documented analytical performance and 

diagnostic performance for AD patients versus NCs supports consideration of this approach 

as a candidate reference method. This technique has also been evaluated in Round Robin 

studies, and compared with another mass spectrometry-based candidate RMP for CSF 

Aβ1–42 [79] with excellent results. Indeed the formal paperwork documenting the full details 

of this method has been submitted to the Joint Committee for Traceability in Laboratory 

Medicine as a candidate reference method.

5.3.2. Targeted mass spectrometry proteomic study—As the third part (the RBM 

study was the first, the BACE activity study the second) of the multiphased effort of the 

Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium to identify 

CSF-based biomarkers in AD and to qualify multiple peptides in CSF, a targeted mass 

spectrometry proteomic study was performed by a subgroup of the industry PPSB of ADNI 

in collaboration with the FNIH Biomarker Consortium. The targeted proteins and peptides 

were selected based on their relevance to AD and results from RBM studies. Using the final 

panel consisting of 567 peptides representing 221 proteins, 320 of 567 peptides were 

detectable in >10% of 306 ADNI CSF samples. Multiple approaches to statistical analyses 

assessed whether these analytes were associated with diagnosis (NC vs. MCI and AD) or 

with the progression of MCI patients to DAT. The results identified several potential 

diagnostic or predictive biomarkers. For instance, hemoglobin A, hemoglobin B, superoxide 

dismutase showed value for differentiating patients, and neuronal pentaxin-2, neurosecretory 

protein nerve growth factor (VGF), and secretogranin-2 predict the progression of MCI to 

AD. These data provide a novel tool to improve diagnostic accuracy, predict the disease 

progression, evaluate treatment efficacy, and early diagnosis of AD [80]. Further studies are 

warranted to confirm these initial studies using isotope labeled internal standards and 

validated quantitative multiple reaction monitoring liquid chromatography/tandem mass 

spectrometry (mrm LC/MS-MS) methodology and/or validated immunoassays.

5.4. Neurogranin

Synaptic pathology seems to occur early in AD [81,82] and is the best correlate to the 

cognitive dysfunction in AD patients. Neurogranin is a postsynaptic protein expressed in 

dendritic spines and is implicated in synaptic plasticity. In the post-mortem brain tissue from 

early onset and late-onset AD patients, a reduction of neurogranin levels was observed as 

compared with NC subjects [83]. A preliminary study measuring neurogranin in CSF by 

semiquantitative immunoblot analysis after enrichment showed a significant increase of 
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neurogranin in the AD group compared with the NC group [84]. Based on this finding, using 

a newly developed monoclonal antibody and ELISA method, Kvartsberg et al. [85] 

supported the prior findings in two pilot cohorts and one independent validation cohort. 

They observed a marked increase in CSF neurogranin level in AD and found that high level 

of neurogranin in MCI stage subjects predicted the progression to AD particularly in Aβ 
amyloid-positive MCI patients during the follow-up period. These results suggested that 

CSF neurogranin may be a useful biomarker in addition to the established CSF AD 

biomarkers and has potential as a prognostic biomarker. To confirm these results, a study to 

measure CSF neurogranin using electrochemiluminescence technology in ADNI-1 samples 

has been conducted and data were recently uploaded to the ADNI database (https://

ida.loni.usc.edu). The study demonstrated that CSF neurogranin levels in AD and 

progressive MCI patients, particularly in Aβ amyloidpositive patients, are higher than NC 

subjects, and that high baseline neurogranin levels in the MCI group predicted disease 

progression as reflected by cognitive decline, decrease of cortical glucose metabolism 

evaluated by FDG-PET, and hippocampal volume loss measured by MRI during follow-up 

period.

6. Progress in standardization of CSF AD biomarker measurements

A hallmark of ADNI is the longstanding commitment to the standardization of all 

methodologies used in this study. As discussed earlier there is a wide variance across centers 

using various immunoassays, especially for the measurement of Aβ1–42. An important 

ingredient of the process of standardization of these methods is collaboration with other 

organizations and laboratories to produce protocols that provide for this on a worldwide 

basis and with as much expertise as can be assembled. It is also worth noting that the 

Coalition Against Major Diseases has worked diligently to engage the discussion with the 

United States Food and Drug Administration (US FDA) regarding the qualification of MRI-

based hippocampal volume and CSF AD biomarkers for specified use in treatment trials. A 

formal letter of support was issued by the FDA on 2/26/2015 to CAMD “…to encourage the 

further study and use of CSF analytes Ab1-42, t-tau and phopsho-tau, as exploratory 

prognostic biomarkers for enrichment in trials for Alzheimer’s disease” (http://

www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/UCM439713.pdf). A very 

important part of those formal discussions has been the foundational value of highly 

standardized preanalytical and analytical methodology [86]. A major commitment to 

improve on the standardization of CSFAD biomarker measurement, that the ADNI 

Biomarker Core participates in, is the joint effort involving AD biomarker researchers from 

academic, industrial, and governmental laboratories, under the auspices of the Alzheimer’s 

Association GBSC and the International Federation of Clinical Chemistry (IFCC) and the 

Institute for Reference Materials and measurements (IRMM) [19]. Among the projects that 

are well-underway in this program are the joint study and development of mass spectrometry 

accuracy-based measurement of Aβ1–42 in CSF. Four participating centers including 

colleagues from Waters, PPD, the University of Gothenburg, and Penn, all use a common 

direct sample preparation method and clean-up step but different calibrator matrices and 

batches of Aβ1–42 standard [78,79,87,88]; all use isotope-labeled Aβ1–42 as internal 

standard. A pilot interlaboratory study was conducted in which aliquots from 12 CSF pools 
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that covered a 4.5-fold range of Aβ1–42 concentration were analyzed for the documentation 

of interlaboratory variation: R2 = 0.98; average intralaboratory %CV of 4.7%; 

interlaboratory %CV of 12.2% that improved to 8.3% when adjusted using a common 

calibrator (Pannee J, et al., manuscript in review). This was a proof-of-principle study that 

showed very good concordance across the four laboratories and provided evidence that the 

use of a common calibrator could further improve interlaboratory agreement. That 

hypothesis was first tested in a two-center (UGot and Penn) study in which the participating 

laboratories used Aβ1–42 standard prepared by IRMM for calibrator preparation in each 

center, and the linear regression analyses of 10 CSF pools in this preliminary study (R2 = 

0.99; Y = 1.021X-11.8) support the hypothesis that use of a common calibrator standard can 

provide for near-equivalent results in two different laboratories using two different 

calibration matrices [78,88]. The development of a reference Aβ1–42 standard has been 

underway by the IRMM during the past year and should have final Aβ1–42 mass assignment 

in the near future, pending final amino acid analysis-based mass analyses. This reference 

preparation has been used for a follow-up five-center interlaboratory study all using this 

common standard for calibrator preparation, and results of this study are expected to be 

available later this year, and provide a further test for the impact of use of a common 

calibration standard on interlab-performance. In addition to this interlaboratory study, the 

IRMM has organized a commutability study in which seven different immunoassays are 

compared with each other and to reference LC/MS-MS using aliquots from 32 different CSF 

samples. The results of these studies will hopefully provide the first major step toward the 

goal of true harmonization and ultimately, achievement of a common cut point for Aβ1–42. 

The IRMM working in concert with the GBSC team and direction of the IFCC CSF 

biomarker working group, chaired by Kaj Blennow, is developing a CSF-based certified 

reference material (CRM), consisting of aliquots of a large (5L) volume CSF pools, will 

have Aβ1–42 values assigned measured using qualified mrm/LC/tandem mass spectrometry 

reference methods. The CRM will have three different levels (low, intermediate, and high) of 

Aβ1–42 to cover the measuring range. Once available, this standard reference material would 

serve as a common commutable reference point for manufacturers of immunoassays to 

calibrate their standards against. This step could go a long way toward the goal of greatly 

improved agreement across the various immunoassay platforms (see Table 2 for basic 

information on new automated immunoassays).

7. Update on the blood-based AD biomarker development project

7.1. Blood-based proteome biomarkers

Although imaging and CSF biomarkers are the most promising tools to detect early AD in 

the controlled settings of a clinical study and demonstrate how AD biomarkers relate to AD 

pathophysiology, these modalities have the disadvantage of cost and invasiveness. It has 

been widely recognized that there remains a very compelling need for less costly and less 

invasive, and more widely available blood-based biomarkers for AD. Considering the 

multistage diagnostic process that is common in medical practice, simple and cost-effective 

blood-based biomarkers can enhance the utility of CSF and imaging biomarkers. One of the 

earliest blood-based biomarker studies were conducted by Ray et al. [89]. They identified 18 

plasma proteins of 120 proteins using the predictive analysis of microarray that 

Kang et al. Page 14

Alzheimers Dement. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



discriminated AD from nondemented NC subjects with close to 90% accuracy and predicted 

the progression of MCI with overall 81% agreement. Although this work has not been 

replicated, numerous profiling approaches using proteomic technology including RBM 

Human Discovery MAP system and multiplex array ELISA were conducted within and 

outside ADNI and some promising candidates were detected (e.g., N-terminal prohormone 

of brain natriuretic peptide and pancreatic polypeptide) for early diagnosis and severity of 

AD [73–75,90–94]. A recent systematic review and replication study found that nine of the 

previous reported candidates were associated with AD-related phenotypes, and the 

association of pancreatic prohormone and insulin-like growth factor-binding protein 2 with 

AD was replicated [95]. A recent study of pairwise gene–protein relationship integrating 

multiplex-panel plasma proteomics and targeted genes from GWAS data in ADNI and non-

ADNI cohorts proposed the consideration of genetic variation when plasma protein levels 

are evaluated [96]. Therefore, combinations of these proteins appear to be promising 

directions to pursue for blood-based AD biomarkers, although validation studies should be 

conducted in large longitudinal population-based cohorts. Furthermore, these blood-based 

profiles of proteins will provide an insight for pathology and/or pathogenesis of AD [97]. 

However, the current blood-based proteomic or multiplex approaches as potential diagnostic 

and/or prognostic AD biomarkers are far from realistic clinical practice and validation 

studies are needed. Instead, these may play an increasing role in development of therapeutic 

targets or in monitoring response to therapy. Indeed, a recent study of subjects in the ADNI 

cohort using a multiplex immunoassay panel suggested that the incorporation of plasma 

biomarkers could yield high sensitivity and improved specificity, supporting their usefulness 

as a screening tool [73].

7.2. Plasma Aβ species

Like CSF, plasma Aβ species have been one of the first targets investigated, and are the most 

extensively studied peripheral marker for AD and still of substantial interest. However, the 

results of plasma level or ratio of Aβ species in sporadic AD, compared with NC, have been 

contradictory. Increased levels of Aβ1–42 in AD were reported [98], but another study 

reported the opposite [99,100]. In studies that classified subjects not only based on clinical 

diagnosis but also on AD-like CSF signature, that is, high t-tau and low Aβ1–42, the group of 

NC and MCI subjects with an AD-like CSF signature showed lower plasma Aβ1–42/Aβ1–40 

ratio when compared with subjects with a normal CSF signature [101] and this also is the 

case for studies of MCI and AD patients [102]. Taken together, studies to determine plasma 

Aβ levels have not been useful as a diagnostic tool. Instead of diagnosis, when cognitive 

measures were used as outcome, the association between plasma Aβ levels or ratios and rate 

of cognitive decline was not consistent [101,103–105]. A recent study in the ADNI cohort 

measuring plasma Aβ species with other imaging and CSF biomarkers revealed that plasma 

Aβ1–42 showed only mild correlation with other biomarkers of Aβ pathology (CSF for 

soluble Aβ and Pittsburgh compound B (PiB)/AV-45 PET for insoluble Aβ measurement) 

and infarctions (white matter hyperintensity revealed by MRI), and a number of health 

conditions were associated with altered concentrations of plasma Aβ [30,106]. Weak 

association of plasma Aβ levels with cognitive changes consistent with previous conflicting 

results may be influenced by variable health factors [107]. It is not clear whether the level of 

plasma Aβ1–42 or Aβ1–40 reflects Aβ production and/or clearance in the brain because Aβ 
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species in the blood are not all from the brain. Considering the production of Aβ1–42, β-

secretase is a rate-limiting enzyme in Aβ-APP processing. Perneczky et al. reported that 

CSF β-secretase activity was not correlated with CSF Aβ1–42, plasma Aβ1–42, and plasma 

Aβ1–40, but with t-tau and p-tau in CSF, indicating that CSF levels of Aβ1–42 most likely 

reflect its deposition by decreased clearance rather than increased production in sporadic AD 

[68]. These studies and a recent review underlined the need for a better understanding of the 

biology and dynamics of plasma Aβ particularly in sporadic AD and for longer-term studies 

to determine the clinical performance of plasma Aβ [108]. However, with the improvement 

of the assay conditions, standardization of preanalytical and analytical processes, and full 

consideration of confounding factors affecting plasma Aβ levels, it is possible that plasma 

Aβ levels may become useful as a biomarker of brain Aβ amyloidosis and 

pharmacodynamics of Aβ-targeted therapy in AD.

7.3. Genetic biomarkers

The high heritability of late-onset AD (~80% heritability from twin studies) [109,110] 

derived a number of genetic association studies, and APOE ε4 allele is the best established 

genetic risk factor for risk to develop AD. The role of the ε4 allele as a modulator of the 

relationship between plasma Aβ and Aβ pathology in the brain (Aβ amyloid PET) was 

assessed in ADNI subjects. In APOE ε4− but not ε4+ subjects, there was a positive 

correlation between plasma Aβ1–40/Aβ1–42 ratio and [11C]PiB uptake [111]. Another study 

demonstrated that the expression pattern of plasma proteins determined by multiplex RBM 

panel was associated with APOE allelic status [73]. These results suggest that APOE 
genotype is associated with a unique plasma protein profile irrespective of diagnosis, 

indicating the importance of APOE genotype on plasma biomarker profiles.

Recent GWAS and meta-analysis studies identified and confirmed additional genetic variants 

associated with AD including CLU, PICALM, CR1, MS4A4A, CD2AP, CD33, EPHA1, 
BIN1 and ABCA7 and APOE [112–116]. Some specific single nucleotide variants in novel 

genes detected by robust sequencing technology (e.g., next-generation sequencing) were 

significantly associated with the progression of hippocampal atrophy in MCI patients 

without APOE ε4 allele [117,118]. These genetic data may have predictive value when 

combined with imaging and/or fluid biomarkers, and provide novel candidate 

therapeutic.target

7.4. Novel neuron-specific blood exosome biomarkers

Recently, two articles in non-ADNI cohorts were published and reported on the clinical 

utility to discriminate MCI/AD from matched NC subjects or patients with frontotemporal 

degeneration (FTD) using neural-derived blood exosomal proteins [119,120]. Fiandaca et al. 

measured AD-related proteins (i.e., Aβ1–42 and tau proteins) in neural-derived exosomes 

separated from peripheral blood (plasma), and found 96.4% accuracy for AD and 87.5% for 

FTD from NC subjects. They suggested that levels of phosphorylated tau and Aβ1–42 in 

extracts of neural-derived plasma exosomes predict the development of AD up to 10 years 

before clinical onset. Kapogiannis et al. examined phosphorylated type 1 insulin receptor 

substrate (IRS-1) related to insulin signaling pathways in neural exosomes in blood, and 

showed a complete separation of AD from NC subjects with normal cognition and without 

Kang et al. Page 16

Alzheimers Dement. Author manuscript; available in PMC 2016 November 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



insulin resistance using an insulin resistance index (p-Ser 312-IRS-1/pan pY-IRS-1 ratio). 

This finding supported an observation of increased extent of IRS-1/-2 abnormalities in MCI 

and AD patients in a large number of autopsy-derived brain samples [121]. However, they 

showed a lack of any relationship of levels of the IRS-1 proteins to severity and stage of AD, 

and some overlap between AD and cognitively intact NC subjects with insulin resistance. 

These studies show promise to identify novel blood-based biomarkers specific to brain 

pathology that may give insights in the understanding of pathogenesis in preclinical stage of 

AD. However, further studies will be needed to validate these findings in independent 

clinical cohorts with larger numbers of subjects and with longitudinal clinical, CSF and 

imaging data including the ADNI cohort. Furthermore, the standardization of methodologies 

to extract neural-derived exosome and to measure exosomal proteins using ELISA will be 

required to confirm the validity of this approach.

7.5. Standardization of blood-based biomarker measurement

For the standardization of preanalytical variables for blood-based biomarker studies, the first 

set of guidelines was recently published by an international working group of the Standards 

for Alzheimer’s Research in Blood biomarkers (STAR-B) and Blood-Based Biomarker 

Interest Group (BBBIG) after initial overview regarding the status of the field [122,123]. 

The principle of the guidelines for preanalytical methods for blood-based AD biomarker by 

BBBIG/STAR-B working group are generally not specific but follow the regulatory good 

laboratory practice as defined by Clinical Laboratory Improvement Amendment in United 

States or international standards of Clinical Laboratory Standards Initiative. For blood-based 

biomarker studies in AD to progress, the adoption of guidelines to standardize preanalytical 

methods across cohorts and laboratories is required. Therefore, the BBBIG/STAR-B 

guidelines are a good starting point toward standardized methods that will be essential to 

move putative blood-based biomarkers forward in additional studies.

Changes in blood-based biochemical end points may not reflect pathology in the brain, 

compared with CSF signatures. Nevertheless, the recent literature suggests that several 

blood-based biomarkers or patterns will be useful to discriminate early AD and to predict 

the disease progression. However, the most important issues that remain are: adoption of 

standardized methodologies for sample collection and other preanalytical processes, method 

validation including establishing prospective quality control protocols and identification and 

control of matrix interferences consideration of how the diagnosis status is defined (e.g., 

pathology vs. clinical) and of comorbidities, confirmation of the results in independent 

studies, and independent assays [122]. In addition, blood-based biomarkers that can 

represent brain-specific pathology (e.g., neuron-specific exosome study) will warrant the 

clinical utility of blood-based biomarkers for the early detection of AD and prediction of the 

disease progression, and finally facilitate the clinical use of CSF and imaging biomarkers, 

the development of biomarkers closer to clinical routines and disease-modifying drug 

development. Regarding the role of the ADNI Biomarker Core in biomarker standardization, 

it should be noted that multiple collaborative efforts related to standardization consensus, 

discovery, or validation of novel blood-based biomarkers, collaborations with or support 

from international entities for blood-based biomarker development are emerging.
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RESEARCH IN CONTEXT

1. Systematic review: The authors described progress made by the ADNI 

Biomarker Core, on use and application of standardized methodology, 

based on reviews of the literature using traditional (eg, PubMed) 

sources and meeting abstracts on CSF and plasma biomarker data 

generated by the core. Selected non-ADNI studies were included to 

enable wider interpretation across different populations of AD and 

control subjects.

2. Interpretation: Plaque and tangle pathology are reliably detected in 

prodromal and preclinical stages of AD using CSFAβ1-42 and tau 

protein concentration measurements and cutpoints established in the 

ADNI study. The trajectories over time for these biomarkers 

characterize progression to the pathologic state and heterogeneity 

across each ADNI cohort.

3. Future directions: With an emphasis on the use of automated and 

highly standardized methods, and including new biomarker tests, the 

Penn ADNI Biomarker Core will continue studies of baseline and 

longitudinal samples to enhance the predictive performance of CSF and 

plasma biomarkers. Continued collaboration using multimodal 

approaches are planned.
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Fig. 1. 
This figure is a newly adapted schematic depicted in two previous Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) reviews [47,124] that updates the current understanding of 

the hypothetical time line for the onset and progression of Alzheimer’s disease (AD) 

neurodegeneration and cognitive impairments progressing from normal controls (NC) to 

mild cognitive impairment (MCI) and then to AD. Age is indicated at the bottom, whereas 

the green, blue, and red bars indicate the time at which preventive, disease-modifying, and 

symptomatic interventions, respectively, are likely to be most effective. Within the aqua bar 

are shown milestones in the pathobiology of AD that culminate in death and autopsy 

confirmation of AD. The proposed ADNI model of the temporal ordering of biomarkers of 

AD pathology relative to stages in the clinical onset and progression of AD is shown in the 

insert at the upper right based on Jack et al. [58], whereas the insert at the left illustrates the 

defining plaque and tangle pathologies of AD and common comorbid pathologies including 

Lewy body pathology (LBP), transactive response DNA binding protein 43 kDa (TDP-43), 

and hippocampal sclerosis. In the insert on the right, clinical disease is on the horizontal axis 

and it is divided into three stages; cognitively normal, MCI, and dementia. The vertical axis 

indicates the range from normal to abnormal for each of the biomarkers and for measures of 
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memory and functional impairments. The plot in the upper right of this figure is taken from 

reference #58 with permission.
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Fig. 2. 
Summary of (1) biofluid tracking: time from sample collection to freezing for Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) cerebrospinal fluid (CSF) and plasma samples and 

(2) ADNI GO/2 number of biofluids collected and number of aliquots in the Penn ADNI 

Biobank and the total of ADNI 1/2/GO biofluids collected and banked as of January 26, 

2015. This collection time data for each ADNI biofluid sample is tracked in the Penn ADNI 

Biofluid Biobank database.
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Fig. 3. 
(A) Plot of cerebrospinal fluid (CSF) amyloid beta (Aβ1–42) concentration (pg/mL) versus 

time (years) before florbetapir scan in the 27 normal, 17 mild cognitively impairment (MCI), 

and 16 Alzheimer’s disease (AD) subjects in the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study. These are the subjects who participated in the ADNI longitudinal 

CSF biomarker study and who also had a florbetapir scan. Each colored line corresponds to 

an individual subject and each point on a line corresponds to a CSFAβ1–42 value from a 

single lumbar puncture (with permission from reference #43). The horizontal dotted line in 

each panel represents the CSFAβ1–42 cutoff value of 192 pg/mL. (B) Plot of the change 

(pg/mL/year) in CSFAβ1–42 concentration during 3–4 years follow-up time (Y axis) versus 

CSFAβ1–42 concentration at baseline in the 141 ADNI subjects who participated in the 

longitudinal CSF biomarker study (with permission from reference #53). The green circle 

includes the 20 study participants whose baseline Aβ1–42 value was normal (above 192 

pg/mL) and whose Aβ1–42 value remained stable at an average yearly rate of −0.5 pg/mL/

year for 3–4 years; the red circle includes the 15 participants whose baseline Aβ1–42 value 

was normal and whose Aβ1–42 value declined at an average yearly rate of −9.2 pg/mL/year 
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over 3–4 years. (C) Plot of CSFAβ1–42 concentration (pg/mL) versus time for the 35 

participants whose Aβ1–42 values were normal (above the 192 pg/mL cutoff) in the ADNI 

longitudinal study. The horizontal dashed line corresponds to the Aβ1–42 cutoff value (with 

permission from reference #45). (D) Heatmaps summarizing the semiquantitative 

neuropathological grading (from left to right: amyloid deposits, neurofibrillary tangles 

(NFT), Lewy bodies (LBs), and neuronal cytoplasmatic TDP-immunoreactive inclusions 

(NCI) for the different neuropathologic diagnostic groups (from top to bottom: AD, AD + 

medial temporal lobe (MTL) pathology, AD + dementia with Lewy bodies (DLB), AD + 

DLB + MTL pathology, and DLB + MTL pathology) (with permission from reference #46).
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