206 research outputs found

    New data on OZI rule violation in bar{p}p annihilation at rest

    Full text link
    The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+ pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen target are presented. It was found that the value of this ratio increases with the decreasing of the dipion mass, which demonstrates the difference in the phi and omega production mechanisms. An indication on the momentum transfer dependence of the apparent OZI rule violation for phi production from the 3S1 initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter

    Stable Maintenance of Multiple Plasmids in E. coli Using a Single Selective Marker

    Get PDF
    Plasmid-based genetic systems in Escherichia coli are a staple of synthetic biology. However, the use of plasmids imposes limitations on the size of synthetic gene circuits and the ease with which they can be placed into bacterial hosts. For instance, unique selective markers must be used for each plasmid to ensure their maintenance in the host. These selective markers are most often genes encoding resistance to antibiotics such as ampicillin or kanamycin. However, the simultaneous use of multiple antibiotics to retain different plasmids can place undue stress on the host and increase the cost of growth media. To address this problem, we have developed a method for stably transforming three different plasmids in E. coli using a single antibiotic selective marker. To do this, we first examined two different systems with which two plasmids may be maintained. These systems make use of either T7 RNA polymerase-specific regulation of the resistance gene or split antibiotic resistance enzymes encoded on separate plasmids. Finally, we combined the two methods to create a system with which three plasmids can be transformed and stably maintained using a single selective marker. This work shows that large-scale plasmid-based synthetic gene circuits need not be limited by the use of multiple antibiotic resistance genes

    Topical Gene Electrotransfer to the Epidermis of Hairless Guinea Pig by Non-invasive Multielectrode Array

    Get PDF
    Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after geneelectrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest geneelectrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient

    Dysmorphometrics: the modelling of morphological abnormalities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited.</p> <p>Methods</p> <p>A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram.</p> <p>Results</p> <p>We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities.</p> <p>Conclusion</p> <p>The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research.</p

    Live Tissue Imaging Shows Reef Corals Elevate pH under Their Calcifying Tissue Relative to Seawater

    Get PDF
    The threat posed to coral reefs by changes in seawater pH and carbonate chemistry (ocean acidification) raises the need for a better mechanistic understanding of physiological processes linked to coral calcification. Current models of coral calcification argue that corals elevate extracellular pH under their calcifying tissue relative to seawater to promote skeleton formation, but pH measurements taken from the calcifying tissue of living, intact corals have not been achieved to date. We performed live tissue imaging of the reef coral Stylophora pistillata to determine extracellular pH under the calcifying tissue and intracellular pH in calicoblastic cells. We worked with actively calcifying corals under flowing seawater and show that extracellular pH (pHe) under the calicoblastic epithelium is elevated by ∼0.5 and ∼0.2 pH units relative to the surrounding seawater in light and dark conditions respectively. By contrast, the intracellular pH (pHi) of the calicoblastic epithelium remains stable in the light and dark. Estimates of aragonite saturation states derived from our data indicate the elevation in subcalicoblastic pHe favour calcification and may thus be a critical step in the calcification process. However, the observed close association of the calicoblastic epithelium with the underlying crystals suggests that the calicoblastic cells influence the growth of the coral skeleton by other processes in addition to pHe modification. The procedure used in the current study provides a novel, tangible approach for future investigations into these processes and the impact of environmental change on the cellular mechanisms underpinning coral calcification

    The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization

    Get PDF
    15 pagesInternational audienceThe scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural viewpoints

    Proton-Antiproton Annihilation and Meson Spectroscopy with the Crystal Barrel

    Get PDF
    This report reviews the achievements of the Crystal Barrel experiment at the Low Energy Antiproton Ring (LEAR) at CERN. During seven years of operation Crystal Barrel has collected very large statistical samples in pbarp annihilation, especially at rest and with emphasis on final states with high neutral multiplicity. The measured rates for annihilation into various two-body channels and for electromagnetic processes have been used to test simple models for the annihilation mechanism based on the quark internal structure of hadrons. From three-body annihilations three scalar mesons, a0(1450), f0(1370) and f0(1500) have been established in various decay modes. One of them, f0(1500), may be identified with the expected ground state scalar glueball.Comment: 64 pages, LATEX file, 36 figures are available as ps files at http://afuz01.cern.ch/claude/ Submitted to Reviews of Modern Physic
    • …
    corecore