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Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
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Abstract

This report reviews the achievements of the Crystal Barrel experiment at the Low En-
ergy Antiproton Ring (LEAR) at CERN. During seven years of operation Crystal Barrel
has collected very large statistical samples in pp annihilation, especially at rest and with
emphasis on final states with high neutral multiplicity. The measured rates for annihila-
tion into various two-body channels and for electromagnetic processes have been used to
test simple models for the annihilation mechanism based on the quark internal structure
of hadrons. From three-body annihilations three scalar mesons, a0(1450), f0(1370) and
f0(1500) have been established in various decay modes. One of them, f0(1500), may be
identified with the expected ground state scalar glueball.
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1 Introduction

Low energy antiproton-proton annihilation at rest is a valuable tool to investigate phenom-
ena in the low energy regime of Quantum Chromodynamics (QCD). Due to the absence
of Pauli blocking, the antiproton and proton overlap and one expects the interactions
between constituent quarks and antiquarks (annihilation, pair creation or rearrangement)
to play an important role in the annihilation process. From bubble chamber experiments
performed in the sixties (Armenteros and French, 1969) one knows that annihilation pro-
ceeds through qq intermediate meson resonances. The ω(782), f1(1285), E/η(1440) and
K1(1270) mesons were discovered and numerous properties of other mesons (a0(980),
K∗(892), φ(1020), a2(1320)) were studied in low energy pp annihilation. With the advent
of QCD one now also predicts states made exclusively of gluons (glueballs), of a mixture
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of quarks and gluons (hybrids) and multiquark states, all of which can be produced in pp
annihilation.

With the invention of stochastic cooling and the operation of the Low Energy An-
tiproton Ring (LEAR) from 1983 to 1996, intense and pure accelerator beams of low
momentum antiprotons between 60 and 1940 MeV/s were available at CERN. It is im-
pressive to compare the high flux of today’s antiproton beams (> 106 p/s) with the rate
of about 1 p every 15 minutes in the early work when the antiproton was discovered, back
in 1955 (Chamberlain, 1955).

This survey covers the results obtained with the Crystal Barrel, designed to study low
energy pp annihilation with very high statistics, in particular annihilation into n charged
particles (n-prong) and m neutrals (π0, η, η′ or ω) with m ≥ 2, leading to final states with
several photons. These annihilation channels occur with a probability of about 50% and
have not been investigated previously. They are often simpler to analyze due to C-parity
conservation which limits the range of possible quantum numbers for the intermediate
resonances and the pp initial states.

The experiment started data taking in late 1989 and was completed in autumn 1996
with the closure of LEAR. Most of the data analyzed so far were taken with stopping
antiprotons in liquid hydrogen on which I shall therefore concentrate. This article is
organized as follows: After a brief reminder of the physical processes involved when an-
tiprotons are stopped in liquid hydrogen (section 2), I shall describe in section 3 the
Crystal Barrel apparatus and its performances. The review then covers results relevant
to the annihilation mechanism and the roles of quarks in the annihilation process (section
4). Electromagnetic processes are covered in section 5. The observation of a strangeness
enhancement may possibly be related to the presence of strange quarks in the nucleon
(section 6). After describing the mathematical tools for extracting masses and spins of
intermediate resonances (section 7) I shall review in sections 8 to 10 what is considered
to be the main achievement, the discovery of several new mesons, in particular a scalar
(JP = 0+) state around 1500 MeV, which is generally interpreted as the ground state
glueball. Section 11 finally describes the status of pseudoscalars in the 1400 MeV region.

In this review I shall concentrate on results published by the Crystal Barrel Collabo-
ration or submitted for publication before summer 19971. Alternative analyses have been
performed by other groups using more flexible parametrizations and also data from pre-
vious experiments (e.g. Bugg (1994, 1996), Abele (1996a)). I shall only refer to them
without describing them in detail since they basically lead to the same results. Results on
pd annihilation will not be reviewed here. They include the observation of the channels
pd→ π0n, ηn, ωn (Amsler, 1995a), pd→ ∆(1232)π0 (Amsler, 1995b) which involve both
nucleons in the reaction process.

2 Proton-Antiproton Annihilation at Rest

Earlier investigations of low energy pp annihilation have dealt mainly with final states in-
volving charged mesons (π±,K±) or KS → π+π−, with at most one missing (undetected)
π0, due to the lack of a good γ detection facility (for reviews, see Armenteros and French
(1969), Sedlák and Šimák (1988) and Amsler and Myhrer (1991)).

The average charged pion multiplicity is 3.0 ± 0.2 for annihilation at rest and the
average π0 multiplicity is 2.0 ± 0.2. The fraction of purely neutral annihilations (mainly
from channels like 3π0, 5π0, 2π0η and 4π0η decaying to photons only) is (3.9 ± 0.3)
% (Amsler, 1993a). This number is in good agreement with an earlier estimate from

1All Crystal Barrel publications are listed with their full titles in the reference section.
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bubble chambers, (4.1 +0.2
−0.6) % (Ghesquière, 1974). In addition to pions, η mesons are

produced with a rate of about 7 % (Chiba, 1987) and kaons with a rate of about 6% of
all annihilations (Sedlák and Šimák, 1988).

In fireball models the pion multiplicity N = N+ + N− + N0 follows a Gaussian dis-
tribution (Orfanidis and Rittenberg, 1973). The pion multiplicity distribution at rest in
liquid hydrogen is shown in Fig. 1. Following the model of Pais (1960) one expects on sta-
tistical grounds the branching ratios to be distributed according to 1/(N+!N−!N0!) for a
given multiplicity N . The open squares show the predictions normalized to the measured
branching ratios from channels with charged pions and N0 ≤ 1 (Armenteros and French,
1969). The full circles show the data from bubble chambers, together with Crystal Barrel
results for N0 > 1. The fit to the data (curve) leads to σ = 1 for a Gauss distribution
assuming 〈N〉 = 5. The open circles show an estimate from bubble chamber experiments
which appears to overestimate the contribution from N = 5 (Ghesquière, 1974).

2.1 S- and P-wave annihilation at rest

Stopping antiprotons in hydrogen are captured to form antiprotonic hydrogen atoms (pro-
tonium). The probability of forming a pp atom is highest for states with principal quan-
tum number n ∼ 30 corresponding to the binding energy (13.6 eV) of the K-shell electron
ejected during the capture process. Two competing de-excitation mechanisms occur: (i)
the cascade to lower levels by X-ray or external Auger emission of electrons from neigh-
bouring H2-molecules and (ii) Stark mixing between the various angular momentum states
due to collisions with neighbouring H2 molecules. Details on the cascade process can be
found in Batty (1989). In liquid hydrogen, Stark mixing dominates (Day, 1960) and the
pp system annihilates with the angular momentum ` = 0 from high S levels (S-wave an-
nihilation) due to the absence of angular momentum barrier. The initial states are the
spin singlet (s = 0) 1S0 and the spin triplet (s = 1) 3S1 levels with parity P = (−1)`+1

and C-parity C = (−1)`+s, hence with quantum numbers

JPC(1S0) = 0−+ and JPC(3S1) = 1−−. (1)

The cascade, important in low density hydrogen (e.g. in gas), populates mainly the
n = 2 level (2P) from which the pp atom annihilates due its small size: The Kα transition
from 2P to 1S has been observed at LEAR in gaseous hydrogen (Ahmad, 1985; Baker,
1988). Compared to annihilation, it is suppressed with a probability of (98 ± 1) %
at atmospheric pressure. Annihilation with relative angular momentum ` = 1 (P-wave
annihilation) can therefore be selected by detecting the L X-rays to the 2P levels, in
coincidence with the annihilation products. This procedure permits the spectroscopy of
intermediate meson resonances produced from the P-states

JPC(1P1) = 1+−, JPC(3P0) = 0++,

JPC(3P1) = 1++ and JPC(3P2) = 2++. (2)

Annihilation from P-states has led to the discovery of the f2(1565) meson (May, 1989).
The much reduced Stark mixing in low density hydrogen also allows annihilation from

higher P levels. At 1 bar, S- and P-waves each contribute about 50% to annihilation
(Doser, 1988). Annihilation from D-waves is negligible due to the very small overlap of
the p and p wave functions.

The assumption of S-wave dominance in liquid hydrogen is often a crucial ingredient to
the amplitude analyses when determining the spin and parity of an intermediate resonance
in the annihilation process, since the quantum numbers of the initial state must be known.
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The precise fraction of P-wave annihilation in liquid has been the subject of a longstanding
controversy. The reaction pp→ π0π0 can only proceed through the P-states 0++ or 2++

(see section 4.1) while π+π− also proceeds from S-states (1−−). The annihilation rate
B(π0π0) for this channel in liquid has been measured earlier by several groups but with
inconsistent results (Devons, 1971; Adiels, 1987; Chiba, 1988).

Crystal Barrel has determined the branching ratio for pp → π0π0 in liquid by mea-
suring the angles and energies of the four decay photons (Amsler, 1992a). The main
difficulties in selecting this channel are annihilation into 3π0 which occurs with a much
higher rate and, most importantly, P-wave annihilation in flight. The former background
source can be reduced with the good γ detection efficiency and large solid angle of Crystal
Barrel, while the latter can be eliminated thanks to the very narrow stop distribution from
cooled low-energy antiprotons from LEAR (0.5 mm at 200 MeV/c). The small contami-
nation from annihilation in flight can easily be subtracted from the stopping distribution
by measuring the annihilation vertex. The latter was determined by performing a 5 con-
straints (5C) fit to pp → π0π0, assuming energy conservation, two invariant 2γ-masses
consistent with 2π0 and momentum conservation perpendicular to the beam axis. The
branching ratio for π0π0 is

B(π0π0) = (6.93 ± 0.43) × 10−4, (3)

in agreement with Devons (1971) but much larger than Adiels (1987) and Chiba (1988).
From the annihilation rate B(π+π−)2P into π+π− from atomic 2P-states (Doser, 1988)
one can, in principle, extract the fraction fp of P -wave annihilation in liquid2:

fp = 2
B(π0π0)

B(π+π−)2P
= (28.8 ± 3.5)%. (4)

This is a surprisingly large contribution. However, Eq. (4) assumes that the population
of the fine and hyperfine structure states is the same for the 2P as for the higher P
levels which is in general not true. In liquid, strong Stark mixing constantly repopulates
the levels. A P-state with large hadronic width, for instance 3P0 (Carbonell, 1989), will
therefore contribute more to annihilation than expected from a pure statistical population.
On the other hand, in low pressure gas or for states with low principal quantum numbers
the levels are populated according to their statistical weights. The branching ratio for
annihilation into a given final state is given in terms of the branching ratios BS

i and BP
i

from the two S-, respectively the four P-states (Batty, 1996):

B = [1− fP (ρ)]
2∑
i=1

wSi E
S
i (ρ)BS

i

+fP (ρ)
4∑
i=1

wPi E
P
i (ρ)BP

i , (5)

where ρ is the target density. The purely statistical weights are

wSi =
2Ji + 1

4
, wPi =

2Ji + 1

12
. (6)

The enhancement factors Ei describe the departure from pure statistical population
(Ei=1). For π0π0 in liquid one obtains

B(π0π0) = fP (liq)[
1

12
E3P0

(liq)B3P0
(π0π0)

2In Doser (1988) fp was found to be (8.6 ± 1.1) %, when using the most precise measurement for π0π0

available at that time (Adiels, 1987).
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+
5

12
E3P2

(liq)B3P2
(π0π0)], (7)

and for π+π− from 2P states

B(π+π−)2P = 2[
1

12
B3P0

(π0π0) +
5

12
B3P2

(π0π0)]. (8)

It is obviously not possible to determine fP (liq) unless the enhancement factors are unity
(and hence Eq. (4) follows). The enhancement factors have been calculated with an
X-ray cascade calculation (Batty, 1996) using the observed yields of K and L X-rays in
antiprotonic atoms and the predicted hadronic widths from optical potential models of the
pp interaction (Carbonell, 1989). For example, Batty (1996) finds typically E3P0

(liq) ∼
2.3 and E3P2

(liq) ∼ 1.0. The branching ratios Bi and fP (ρ) were then fitted to the
measured two-body branching ratios for pp→ π0π0, π+π−, K+K−, KSKS and KSKL at
various target densities, with and without L X-ray coincidence. The fraction of P-wave
annihilation is shown in Fig. 2 as a function of density. In liquid hydrogen one obtains

fP (liq) = (13± 4)%, (9)

a more realistic value when compared to Eq. (4).

3 The Crystal Barrel Experiment

3.1 Detector

Figure 3 shows a sketch of the Crystal Barrel detector (Aker, 1992). The incoming
antiprotons entered a 1.5 T solenoidal magnet along its axis and interacted in a liquid
hydrogen target, 44 mm long and 17 mm in diameter. A segmented silicon counter in
front of the target defined the incoming beam. The final state charge multiplicity was
determined online with two cylindrical proportional wire chambers (PWC). The charged
particle momentum was measured by a jet drift chamber (JDC) which also provided π/K
separation below 500 MeV/c by ionization sampling.

Photons were detected in a barrel-shaped assembly of 1,380 CsI(Tl) crystals, 16.1
radiation lengths long (30 cm), with photodiode readout. The crystals were oriented
towards the interaction point and covered a solid angle of 0.97 ×4π. Each crystal, wrapped
in teflon and aluminized mylar, was enclosed in a 100 µm thick titanium container. The
light (peaking at 550 nm) was collected at the rear end by a wavelength shifter and the
re-emitted light was detected by a photodiode glued on the edge of the wavelength shifter.
With the low electronic noise of typically 220 keV the energy resolution was

σ

E
=

0.025

E[GeV]
1
4

(10)

and photons could be detected efficiently down to 4 MeV. The angular resolution was
typically σ = 20 mrad for both polar and azimuthal angles. The mass resolution was σ
= 10 MeV for π0 and 17 MeV for η → 2γ.

A rough calibration of the electromagnetic calorimeter was first obtained with travers-
ing minimum ionizing pions which deposit 170 MeV in the crystals. The final calibration
was achieved with 0-prong events using 2γ invariant masses from π0 decays. An energy
dependent correction was applied to take shower leakage at the rear end of the crystals
into account. The stability of the calibration was monitored with a light pulser system.
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The JDC had 30 sectors, each with 23 sense wires at radial distances between 63 mm
and 239 mm) read out on both ends by 100 MHz flash ADC’s. The position resolution
in the plane transverse to the beam axis (rφ coordinates) was σ = 125 µm using slow
gas, a 90:10 % CO2/isobutane mixture. The coordinate z along the wire was determined
by charge division with a resolution of σ = 8 mm. This led to a momentum resolution
for pions of σ/p '2 % at 200 MeV/c, rising to ' 7% at 1 GeV/c for those tracks that
traversed all JDC layers.

The z coordinates were calibrated by fitting straight tracks from 4-prong events with-
out magnetic field. The momentum calibration was performed with monoenergetic pions
and kaons from the two-body final states π+π− and K+K−. Pressure and temperature
dependent drift time tables were generated and fitted to the measured momentum distri-
bution.

In 1994 the JDC was replaced by a new jet drift chamber with only 15 sectors for the
6 innermost layers. In 1995 the PWC’s were also replaced by a microstrip vertex detector
(SVX) consisting of 15 single-sided silicon detectors arranged in a windmill configuration
at a radial distance of 13 mm around the target (Fig. 4). Each detector had 128 strips with
a pitch of 50 µm running parallel to the beam axis. The increase of charge multiplicity
between the SVX and the inner layers of the JDC permitted to trigger on KS → π+π−.
The SVX also provided an improved vertex resolution in rφ and a better momentum
resolution.

For annihilation at rest in liquid hydrogen the p incident momentum was 200 MeV/c
with typically 104 incident p/s to minimize pile-up in the crystals. For annihilation in
gaseous hydrogen the liquid target was replaced by a hydrogen flask at 13 bar. The
incident momentum was 105 MeV/c. Since the annihilation rate was higher than the
maximum possible data acquisition speed, a multilevel trigger could be used. The two
PWC’s and the inner layers (2 - 5) of the JDC determined the charged multiplicity of the
final state. Events with long tracks could be selected for optimum momentum resolution
by counting the charged multiplicity in the outer layers (20 and 21) of the JDC. A hard-
wired processor determined the cluster multiplicity in the barrel. A processor then fetched
the digitized energy deposits in the barrel, computed all two-photon invariant masses thus
providing a trigger on the π0 or η multiplicity (Urner, 1995).

3.2 Photon reconstruction

We now briefly describe the photon reconstruction which is particularly relevant to the
results reviewed in this article. Photon induced electromagnetic showers spread out over
several crystals. The size of a cluster depends on the photon energy and varies from 1
to about 20 crystals. The reconstruction of photons is done by searching for clusters of
neighbouring crystals with energy deposits of at least 1 MeV. The threshold for cluster
identification (typically between 4 and 20 MeV) depends on the annihilation channel being
studied. Local maxima with a predefined threshold (typically between 10 and 20 MeV)
are then searched for within clusters. When only one local maximum is found, the photon
energy is defined as the cluster energy and the direction is given by the center of gravity of
the crystals, weighted by their energies. When n local maxima are found within a cluster,
the latter is assumed to contain showers from n photons. In this case the cluster energy
EC is shared between the n subclusters of nine crystals with energies Ei around the local
maxima. Hence the photon energies are given by

Eγ,i =
Ei∑n
j=1Ej

EC . (11)
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Additional clusters mocking photons are due to shower fluctuations which may develop
small but well separated satellites in the vicinity of the main shower. These “split-offs”
can be removed by requiring a minimum separation between the showers. However, this
cut may reduce the detection efficiency for high energy π0’s since photons from π0 decay
cluster around the minimum opening angle. The opening angle between two photons with
energies E1 ≤ E2 from π0 decay is given by

cosφ = 1−
(1 +R)2

2γ2R
with R =

E1

E2
, (12)

where γ = Eπ0/mπ0 . Hence for all pairs of neighbouring clusters one calculates R and
removes the low energy clusters whenever cosφ is larger than given by Eq. (12), assuming
the maximum possible value of γ in the annihilation channel under consideration (Pietra,
1996).

Clusters generated by ionizing particles can be removed by matching the impact points
extrapolated from the reconstructed tracks in the JDC. However, split-offs from charged
particles are more cumbersome to eliminate. They are initiated, for example, from neu-
trons which travel long distances before being absorbed. These split-offs can be suppressed
by requiring momentum and energy conservation in the annihilation process (kinematic
fits).

3.3 Available data

The bulk of the Crystal Barrel data consists in pp annihilation at rest and in flight in
liquid hydrogen. As discussed above, annihilation from initial P-states is enhanced when
using a gaseous target. Annihilation in deuterium at rest allows the formation of NN
bound states below 2mN , the spectator neutron (or proton) removing the excess energy
(for a review on baryonium states, see Amsler (1987)). With a spectator proton one gains
access to pn annihilation, a pure isospin I = 1 initial state.

The data collected by Crystal Barrel are shown in Table 1. Data were taken in liquid
hydrogen, gaseous hydrogen (13 bar) and in liquid deuterium with a minimum bias trigger
(requiring only an incident antiproton) or with the multiplicity trigger requiring 0-prong
or n-prong with long tracks in the JDC. In addition, data were collected with specialized
triggers enhancing specific final states. As a comparison, the largest earlier sample of
annihilations at rest in liquid was obtained by the CERN-Collège de France collaboration
with about 100,000 pionic events and 80,000 events containing at least one KS → π+π−

(Armenteros and French, 1969). The Asterix collaboration collected some 107 pionic
events in gaseous hydrogen at 1 bar (for a review and references see Amsler and Myhrer
(1991)). The total number of annihilations at rest in liquid hydrogen collected by Crystal
Barrel is 108. The triggered 0-prong sample alone corresponds to 6.3×108 annihilations.

4 Annihilation into Two Mesons

Consider a pair MM of charge conjugated mesons in the eigenstate of isospin I. The P -,
C- and G-parities are:

P (MM) = (−1)L, (13)

C(MM) = (−1)L+S , (14)

G(MM) = (−1)L+S+I , (15)
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where L is the relative angular momentum and S the total spin. For the pp system with
angular momentum ` and spin s one has

P (pp) = (−1)`+1, (16)

C(pp) = (−1)`+s, (17)

G(pp) = (−1)`+s+I . (18)

For annihilation into two mesons the two sets of equations relate the quantum numbers of
the initial state to those of the final state since P , C, G and I are conserved. In addition,
L, S, ` and s must be chosen so that the total angular momentum J is conserved:

|L− S| ≤ J ≤ L+ S, |`− s| ≤ J ≤ `+ s. (19)

Since P , C and G are multiplicative quantum numbers these relations are especially
restrictive for mesons that are eigenstates of C and G, e.g. for neutral non-strange mesons.
For example, for two identical neutral non-strange pseudoscalars (e.g. π0π0) with S = 0,
C = +1, Eq. (14) implies that L is even and then Eq. (16) requires ` to be odd
(annihilation from P-states only). Equation (15) further requires with G = +1 that I = 0
and hence with Eq. (18) annihilation from the (I = 0) 0++ or 2++ atomic states.

For a pair of non-identical neutral pseudoscalars (e.g. π0η) L may be odd and hence
the possible quantum numbers are 0++, 1−+, 2++, 3−+, etc. However, 1−+ and 3−+ do
not couple to pp since Eqs. (16) and (17) require ` even and s = 0 and hence J even. In
fact these “exotic” quantum numbers do not couple to any fermion-antifermion pair and
are, in particular, excluded for qq mesons.

4.1 Annihilation into two neutral mesons

Crystal Barrel has measured the branching ratios for pp annihilation into two neutral light
mesons from about 107 annihilations into 0-prong (Amsler, 1993b). These data have been
collected by vetoing charged particles with the PWC’s and the internal layers of the JDC.
The lowest γ-multiplicity was four (e.g. π0π0, π0η) and the highest nine (e.g. ηω, with
η → 3π0 and ω → π0γ). To control systematic errors in the detection efficiency, some of
these branching ratios have been determined from different final state multiplicities. For
example, η decays to 2γ and 3π0 and hence ηη is accessible from 4γ and 8γ events.

Figure 5 shows a scatterplot of 2γ-invariant masses for events with 4γ. Events have
been selected by requiring four clusters in the barrel and applying momentum and energy
conservation (4C fit). Signals from π0π0, π0η, ηη and even π0η′ are clearly visible. The
dark diagonal band at the edge is due to wrong combinations. The detection and recon-
struction efficiency was typically 40% for 4γ events, obtained by Monte Carlo simulation
with GEANT. As discussed above, two neutral pseudoscalars couple only to atomic P-
states and are therefore suppressed in liquid hydrogen. On the other hand, the channels
π0ω and ηω couple to 3S1 and hence have a larger branching ratio. In spite of the good
detection efficiency of the detector one therefore observes the background signals from
π0ω and ηω, where ω decays to π0γ with a missing (undetected) photon.

Figure 6 shows the π0γ momentum distribution for pp→ 4π0γ events (8C fit requiring
4π0). The peak at 657 MeV/c is due to the channel pp → ηω. For these 9γ events the
detection efficiency was 10%.

The branching ratios are given in Table 2. They are always corrected for the unob-
served (but known) decay modes of the final state mesons (Barnett, 1996). For Crystal
Barrel data the absolute normalization was provided by comparison with π0π0 which has
been measured with minimum bias data (Eq. (3)).
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Signals for ωπ0 and ωη have also been observed for ω decaying to π+π−π0, leading
to π+π−4γ (Schmid, 1991). Figure 7 shows the π+π−π0 invariant mass spectrum for
π+π−π0η events. The branching ratio for ωπ0 and ωη are in excellent agreement with the
ones from 0-prong (Table 2).

The angular distribution in the ω rest frame contains information on the initial atomic
state. The distribution of the angle between the normal to the plane spanned by the three
pions and the direction of the recoiling η is plotted in the inset of Fig. 7. Using the method
described in section 7.2 one predicts the distribution sin2θ for annihilation from 3S1 while
the distribution should be isotropic for annihilation from 1P1. The fit (curve) allows (12
± 4)% P-wave. Figure 8 shows the angular distribution of the γ in the ω rest frame for
ωη(ω → π0γ). The predicted distribution is (1 + cos2 θ) from 3S1 and is again isotropic
for 1P1. The fit (curve) allows (9 ± 3)% P-wave. However, these results assume that the
relative angular momentum between η and ω is L = 0 from 1P1, thus neglecting L = 2.
Without this assumption, the fraction of P-wave cannot be determined from the angular
distributions due to the unknown interference between the L = 0 and L = 2 amplitudes.

Some of the branching ratios for two-neutral mesons have been measured earlier
(Adiels, 1989; Chiba, 1988) by detecting and reconstructing π0’s or η’s with small solid
angle detectors and observing peaks in the π0 or η inclusive momentum spectra. Since
the branching ratios are small, these early data are often statistically weak or subject
to uncertainties in the baseline subtraction from the inclusive spectra. In fact most of
the Crystal Barrel results disagree with these measurements which should not be used
anymore. Table 2 therefore updates Table 1 in Amsler and Myhrer (1991).

4.2 The annihilation mechanism

There is currently no model which completely and satisfactorily describes the measured
two-body branching ratios listed in Table 2 (for a review of annihilation models and refer-
ences, see Amsler and Myhrer (1991). Since the proton and the antiproton wavefunctions
overlap one expects quarks to play an important role in the annihilation dynamics. For
instance, pp annihilation into two mesons can be described by the annihilation of two qq
pairs and the creation of a new pair (annihilation graph A) or by the annihilation of one
qq pair and the rearrangement of the other two pairs (rearrangement graph R), see Fig. 9.
At low energies there is, however, no consensus as to which operator should be used to
describe the emission and absorption of gluons. In a first approach one assumes that only
the flavor flow between initial and final states is important (Genz, 1983; Hartmann, 1988).
The Quark Line Rule (QLR) states that annihilation into uu and dd is excluded if the A
graph dominates, while annihilation into two dd mesons is forbidden if R dominates (see
Fig. 9). The OZI-rule (Okubo, 1963) is a special case of the QLR: Annihilation into one
or more ss mesons is forbidden. We shall confront these simple rules below with Crystal
Barrel data.

Another approach, which we shall use, is the nearest threshold dominance model which
describes reasonably well the observed final state multiplicity as a function of p momentum
(Vandermeulen, 1988). The branching ratio for annihilation into two mesons with masses
ma und mb is given by

W = pC0Cab exp(−A
√
s− (ma +mb)2), (20)

where p is the meson momentum in the pp center of mass system with total energy
√
s,

C0 a normalization constant and Cab a multiplicity factor depending on spin and isospin.
The constant A= 1.2 GeV−1 has been fitted to the cross section for pp annihilation into
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π+π− as a function of p momentum. For annihilation into kaons the fit to kaonic channels
requires the additional normalization factor C1/C0 = 0.15. Thus annihilation into the
heaviest possible meson pair is enhanced with respect to phase space p by the exponential
form factor in Eq. (20). This is natural in the framework of baryon exchange models
which prefer small momentum transfers at the baryon-meson vertices.

In more refined models the branching ratios for annihilation at rest depend on the
atomic wave function distorted by strong interaction at short distances (Carbonell, 1989).
Predictions for the branching ratios therefore depend on models for the meson exchange
potential which are uncertain below 1 fm. Also, the quark description has to be comple-
mented by baryon and meson exchanges to take the finite size of the emitted mesons into
account.

In the absence of strong interaction the pp atomic state is an equal superposition of
isospin I = 0 and 1 states. Naively one would therefore expect half the protonium states
to annihilate into a final state of given isospin. However, pp to nn transitions occuring
at short distances may modify the population of I = 0 and I = 1 states and therefore
enhance or reduce the annihilation rate to a final state of given isospin (Klempt, 1990;
Jaenicke, 1991). Nonetheless, one expects that predictions for ratios of branching ratios
for channels with the same isospin and proceeding from the same atomic states are less
sensitive to model dependence. We shall therefore compare predictions from the QLR
with ratios of branching ratios from Table 2.

The flavor content of the η and η′ mesons is given by

|η〉 =
1
√

2
(|uu〉+ |dd〉) sin(θi − θp)− |ss〉 cos(θi − θp),

|η′〉 =
1
√

2
(|uu〉+ |dd〉) cos(θi − θp) + |ss〉 sin(θi − θp), (21)

where θi = 35.3◦ is the ideal mixing angle. The flavor wave functions of the π0 and ρ0 are

|π0〉, |ρ0〉 =
1
√

2
(|dd〉 − |uu〉), (22)

and those of ω and φ, assuming ideal mixing in the vector nonet,

|ω〉 =
1
√

2
(|uu〉+ |dd〉), |φ〉 = −|ss〉. (23)

The branching ratio for annihilation into two neutral mesons is then given by B = B̃ ·W
with

B̃ = |〈pp|T |M1M2〉|
2 = |

∑
i,j

T ([qiqi]1, [qjqj]2)〈qiqi|M1〉〈qjqj|M2〉|
2, (24)

and 3 qi = u or d (Genz, 1985). In the absence of ss pairs in the nucleon, the QLR
forbids the production of ss mesons and therefore the ss components in M1 and M2 can
be ignored in Eq. (24). The predicted ratios of branching ratios are given by the first
four rows in Table 3 for various channels from the same atomic states. They depend only
on the pseudoscalar mixing angle θp. To extract θp the measured branching ratios from
Table 2 must be first divided by W (Eq. (20)), ignoring C0 and Cab which cancel in the
ratio.

The pseudoscalar mixing angle has been measured in various meson decays (e.g. η and
η′ radiative decays, J/ψ radiative decays to η and η′) and is known to be close to -20◦

3The theoretical prediction B̃ has to be multiplied by two for a pair of non-identical mesons.
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(Gilman and Kauffmann, 1987). The agreement with our simple model of annihilation is
amazing (third column of Table 3). We emphasize that the predictions in the upper four
rows of Table 3 are valid independently of the relative contributions from the A and R
graphs.

Conversely, one can assume the validity of the model and extract from the first four
rows in Table 3 the average

θp = (−19.4 ± 0.9)◦. (25)

Leaving the constant A in Eq. (20) as a free fit parameter one obtains θp = (−17.3±1.8)◦

from early Crystal Barrel data (Amsler, 1992b). Assuming now dominance of the planar
graph A, the amplitudes T ([uu]1, [dd]2) and T ([dd]1, [uu]2) vanish and one obtains the
predictions in the lower part of Table 3. The measurements lead in general to incorrect
values for θp, presumably due to the contribution of the R graph. Also, for ρ0ρ0 and ωω

one expects from A dominance

B̃(ρ0ρ0) = B̃(ωω), (26)

in violent disagreement with data (Table 2). On the other hand, if R dominates the
amplitude T ([dd]1, [dd]2) vanishes and one predicts from Eq. (24) with a2 ≡ sin2(θi − θp)
the inequality (Genz, 1990)

|a2
√

2B̃(π0π0)−
√

2B̃(ηη)|2 ≤ 4a2B̃(π0η) ≤ |a2
√

2B̃(π0π0) +
√

2B̃(ηη)|2, (27)

which is fulfilled by data.
There is, however, a caveat: the predictions (24) have been compared to the measured

branching ratios corrected by W . As pointed out earlier, Eq. (20) provides a good fit to
the mutiplicity distribution in low energy pp annihilation as a function of p momentum.
Other correcting factors can, however, be found in the literature. In section 7 we shall
use the phase space factor

W = pF 2
L(p) (28)

where FL(p) is the Blatt-Weisskopf damping factor which suppresses high angular mo-
menta L for small p. This factor is determined by the range of the interaction, usually
chosen as 1 fm (pR =197 MeV/c). Convenient expressions for FL(p) are given in Table 4.
For p much larger than pR, FL(p) ' 1 and for p much smaller than pR

FL(p) ' pL. (29)

This last prescription provides a reasonable agreement when comparing the measured
decay branching ratios of mesons, especially tensors, with predictions from SU(3), as we
shall discuss in section 10.1. These alternative phase space factors may also be used to
determine the pseudoscalar mixing angle. However, they do not lead to consistent values
for θp (Amsler, 1992b). Agreement is achieved with prescription (20), which we shall also
employ in the next section.

In conclusion, the naive quark model assuming only the QLR and two-body threshold
dominance reproduces the correct pseudoscalar mixing angle from the measured two-
meson final states. This is a clear indication for quark dynamics in the annihilation
process. The relative contribution from R and A cannot be extracted but the non-planar
graph R must contribute substantially to the annihilation process.
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5 Electromagnetic Processes

5.1 Radiative annihilation

For annihilations leading to direct photons the isospin I = 0 and 1 amplitudes from the
same pp atomic state interfere since isospin is not conserved in electromagnetic processes.
Radiative annihilation pp → γX, where X stands for any neutral meson, involves the
annihilation of a qq pair into a photon. The branching ratios can be calculated from the
Vector Dominance Model (VDM) which relates γ emission to the emission of ρ, ω and φ

mesons (Delcourt, 1984). Assuming ideal mixing in the vector nonet one may actually
neglect φ production which is forbidden by the QLR. The amplitude for pp→ γX is then
given by the coherent sum of the two I = 0 and I = 1 amplitudes with unknown relative
phase β (fig. 10). According to VDM, the γρ coupling gργ is a factor of three stronger
than the γω coupling. The branching ratio is then4

B̃(γX) = A2[B̃(ρX) +
1

9
B̃(ωX) +

2

3

√
B̃(ρX)B̃(ωX) cos β], (30)

with
A =

egργ
m2
ρ

= 0.055. (31)

Equation (30) provides lower and upper limits (cosβ = ± 1) for branching ratios.
Radiative annihilation has not been observed so far with the exception of π0γ (Adiels,

1987). Crystal Barrel has measured the rates for π0γ, ηγ, ωγ and has obtained upper
limits for η′γ and γγ (Amsler, 1993c). Annihilation into φγ (Amsler, 1995c) is treated in
section 6.1.

The starting data sample consisted of 4.5 × 106 0-prong events. Figure 11 shows a
typical π0γ event leading to three detected photons. The main background to π0γ stems
from annihilations into π0π0 for which one of the photons from π0 decay has not been
detected, mainly because its energy lies below detection threshold (10 MeV). The π0

momentum for π0γ is slightly higher (5 MeV/c) than for π0π0. The small downward shift
of the π0 momentum peak due to the π0π0 contamination could be observed thanks to
the good energy resolution of the detector and could be used to estimate the feedthrough
from π0π0: (29 ± 8) %, in agreement with Monte Carlo simulations. The result for the
π0γ branching ratio is given in Table 5. It disagrees with the one obtained earlier from
the π0 inclusive momentum spectrum: (1.74 ±0.22) × 10−5 (Adiels, 1987).

Results for ηγ, ωγ and η′γ are also given in Table 5. The ω was detected in its π0γ

and the η′ searched for in its 2γ decay mode. The main contaminants were ηπ0, ωπ0 and
η′π0, respectively, with one photon escaping detection. For pp→ γγ, 98 ± 10 events were
observed of which 70 ± 8 were expected feedthrough from π0γ and π0π0. This corresponds
to a branching ratio of (3.3 ±1.5) × 10−7 which the collaboration prefers to quote as an
upper limit (Table 5).

The branching ratios, divided by W (Eq. (20)), are compared in Table 5 with the
range allowed by Eq. (30). Apart from φγ to which we shall return later, the results
agree with predictions from VDM. For π0γ and ηγ (from 3S1) the isospin amplitudes
interfere destructively (cosβ ∼ -0.3) while for ωγ (from 1S0) they interfere constructively
(cosβ ∼ 0.13). We emphasize that these conclusions depend on the prescription for the
phase space correction. With a phase space factor of the form p3 one finds strongly
destructive amplitudes (Amsler, 1993c), see also Locher (1994) and Markushin (1997).

4For two identical particles, e.g. ρ0ρ0 or ωω, the measured branching ratios divided by phase space, B̃, have
to be multiplied by two.
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No prediction can be made from VDM for γγ due to the contribution of three ampli-
tudes with unknown relative phases: ρ0ω from I = 1, ρ0ρ0 and ωω from I = 0. Also, the
branching ratio for ρ0ρ0 is poorly known (Table 2).

5.2 Search for light gauge bosons in pseudoscalar meson
decays

Extensions of the standard model allow additional gauge bosons, some of which could
be light enough to be produced in the decay of pseudoscalar mesons (Dobroliubov and
Ignatiev, 1988). Radiative decays π0, η, η′ → γX are particularly suitable since they are
only sensitive to gauge bosons X with quantum numbers JP = 1−. Branching ratios are
predicted to lie in the range 10−7 to 10−3 (Dobroliubov, 1990). Experimental upper limits
for π0 → γX are of the order 5× 10−4 for long lived gauge bosons with lifetime τ > 10−7

s (Atiya, 1992). Short lived gauge bosons decaying subsequently to e+e− are not observed
with an upper limit of 4× 10−6 (Meijer Drees, 1992).

Crystal Barrel has searched for radiative decays where X is a long lived weakly inter-
acting gauge boson escaping from the detector without interaction, or decaying to νν. The
search was performed using the reactions pp → 3π0, π0π0η and π0π0η′ at rest (Amsler,
1994a, 1996a) which occur with a sufficiently high probability (see Table 9 below) and
are kinematically well constrained. Events with five photons were selected from a sample
of 15 million annihilations into neutral final states (18 million for η′ decays). Since the
branching ratio for 0-prong annihilation is about 4%, the data sample corresponds to some
400 million pp annihilations in liquid hydrogen.

Events consistent with π0π0 decays and a single (unpaired) γ were then selected by
requiring energy and momentum conservation for pp annihilation into π0π0π0, π0π0η or
π0π0η′ with a missing π0, η or η′. Thus 3C kinematic fits were applied, ignoring the
remaining fifth photon. The measured energy of the latter was then transformed into the
rest frame of the missing pseudoscalar. In this frame a missing state X with mass mX

would produce a peak in the γ-energy distribution at

E∗γ =
m

2

(
1−

m2
X

m2

)
, (32)

with width determined by the experimental resolution, where m is the mass of the missing
pseudoscalar. Thus, if X is simply a missing (undetected) γ from π0, η or η′ decay, one
finds with mX = 0 that E∗γ = m/2, as expected.

The main source of background is annihilation into three pseudoscalars for which one of
the photons escaped detection. This occurs for (i) photons with energies below detection
threshold (E < 20 MeV) or (ii) for photons emitted into insensitive areas of the detector.
The latter background can be reduced by rejecting events for which the missing γ could
have been emitted e.g. in the holes along the beam pipe. The high efficiency and large
angular coverage of the Crystal Barrel are therefore crucial in this analysis. For the 3π0

channel an important background also arose from pp → π0ω with ω → π0γ, leading to
5γ. This background could be reduced by rejecting events which satisfy the π0ω(→ π0γ)
kinematics. For π0π0η, the background channel KS(→ 2π0)KL with an interacting KL

faking a missing η could be eliminated with appropriate kinematic cuts.
The E∗γ-energy distribution for π0 decay is shown in Fig. 12. The broad peak

around 70 MeV is due to π0 decays into 2γ where one γ has escaped detection, or from
residual π0ω events. The fit to the distribution (full line) agrees with the simulated rate
of background from 3π0 and π0ω. The dotted line shows the expected signal for a state
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with mass mX = 120 MeV, produced in π0 decay with a branching ratio of 5× 10−4. The
corresponding distributions for η and η′ decays can be found in Amsler (1996a).

Upper limits for radiative decays are given in Fig. 13 as a function of mX . The upper
limit for π0 decay is an order of magnitude lower than from previous experiments (Atiya,
1992). For η and η′ decays no limits were available previously. Light gauge bosons are
therefore not observed in radiative pseudoscalar decays at a level of 10−4 to 10−5.

5.3 η → 3π

The 3π decay of the η plays an important role in testing low energy QCD predictions.
This isospin breaking decay is mainly due to the mass difference between u and d quarks.
Crystal Barrel has measured the relative branching ratios for η → π+π−π0, η → 3π0 and
η → 2γ from samples of annihilations into 2π+2π−π0, π+π−3π0 and π+π−2γ, respectively
(Amsler, 1995d). The ratios of partial widths are

r1 ≡
Γ(η → 3π0)

Γ(η → π+π−π0)
= 1.44± 0.13,

r2 ≡
Γ(η → 2γ)

Γ(η → π+π−π0)
= 1.78± 0.16. (33)

The result for r1 is in good agreement with chiral perturbation theory: 1.43 ± 0.03
(Gasser and Leutwyler, 1985) and 1.40 ± 0.03 when taking unitarity corrections into
account (Kambor, 1996). With the known 2γ partial width (Barnett, 1996) one can
calculate from r2 the partial width Γ(π+π−π0) = 258 ± 32 eV, in accord with chiral
perturbation theory (Γ = 230 eV), taking into account corrections to the u − d mass
difference (Donoghue, 1992). In good approximation, the η → π+π−π0 Dalitz plot may
be described by the matrix element squared

|M(x, y)|2 ∝ 1 + ay + by2 (34)

with

y ≡
3T0

m(η)−m(π0)− 2m(π±)
− 1, (35)

where T0 is the kinetic energy of the neutral pion. The parameters a and b were determined
in Amsler (1995d), but more accurate values are now available from the annihilation
channel pp→ π0π0η. Abele (1997b) finds

a = −1.19 ± 0.07, b = 0.19 ± 0.11, (36)

in reasonable agreement with chiral perturbation calculations which predict a = -1.3 and
b = 0.38 (Gasser and Leutwyler, 1985).

The matrix element for η decay to 3π0 is directly connected to the matrix element for
the charged mode because 3π0 is an I = 1 state. The matrix element squared for η decay
to 3π0 is given by

|M(z)|2 = 1 + 2αz, (37)

where z is the distance from the center of the η → 3π0 Dalitz plot,

z =
2

3

3∑
i=1

[
3Ei −m(η)

m(η)− 3m(π0)

]2

, (38)

and where Ei are the total energies of the pions. Chiral perturbation theory up to next-
to-leading order predict α to be zero (Gasser and Leutwyler, 1985) leading to a homoge-
neously populated Dalitz plot. Taking unitarity corrections into account, Kambor (1996)
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predicts α ∼ −0.01. Experiments have so far reported values for α compatible with zero,
e.g. Alde (1984) finds −0.022 ± 0.023.

Crystal Barrel has analyzed the 3π0 Dalitz plot with 98,000 η decays from the anni-
hilation channel π0π0η, leading to 10 detected photons (Abele, 1997c). The background
and acceptance corrected matrix element is shown in Fig. 14 as a function of z. The slope
is clearly negative:

α = −0.052 ± 0.020. (39)

5.4 η′ → π+π−γ

The π+π−γ decay mode of the η′ is generally believed to proceed through the ρ(770)γ
intermediate state (Barnett, 1996). However, the ρ mass extracted from a fit to the
π+π− mass spectrum appears to lie some 20 MeV higher than for ρ production in e+e−

annihilations. This effect is due to the contribution of the direct decay into π+π−γ

(Bityukov, 1991) through the so- called box anomaly (Benayoun, 1993). Crystal Barrel
has studied the η′ → π+π−γ channel where the η′ is produced from the annihilation
channels π0π0η′, π+π−η′ and ωη′ (Abele, 1997i). Evidence for the direct decay was
confirmed at the 4σ level by fitting the π+π− mass spectrum from a sample of 7,392
η′ decays. Including contributions from the box anomaly, the ρ mass turns out to be
consistent with the standard value from e+e− annihilation. Using the known two-photon
decay widths of η and η′ and the η → π+π−γ decay spectrum from Layter (1973) the
collaboration derived the pseudoscalar nonet parameters fπ/f1=0.91 ± 0.02, f8/fπ=0.90
± 0.05 and the pseudoscalar mixing angle θp = (−16.44 ± 1.20)◦.

5.5 Radiative ω decays

The rates for radiative meson decays can be calculated from the naive quark model using
SU(3) and the OZI rule (O′Donnell, 1981). Assuming ideal mixing in the vector nonet
one finds, neglecting the small difference between u and d quark masses:

B(ω → ηγ)

B(ω → π0γ)
=

1

9

p3
η

p3
π0

cos2(54.7◦ + θp) = 0.010, (40)

where pπ = 379 MeV/c and pη = 199 MeV/c are the decay momenta in the ω rest frame
and θp is the pseudoscalar mixing angle (Amsler, 1992b). However, the production and
decay of the ω and ρ mesons are coupled by the isospin breaking ω to ρ transition since
these mesons overlap (for references on ρ − ω mixing, see O′Connell (1995)). Since the
width of ρ is much larger than the width of ω, the effect of ρ − ω mixing is essential in
processes where ρ production is larger than ω production, for example in e+e− annihilation
where ω and ρ are produced with a relative rate of 1/9. The determination of the branching
ratio for ω → ηγ varies by a factor of five depending on whether the interference between
ω → ηγ and ρ0 → ηγ is constructive or destructive (Dolinsky, 1989). A similar effect is
observed in photoproduction (Andrews, 1977). The GAMS collaboration has determined
the ω → ηγ decay branching ratio, (8.3 ± 2.1) × 10−4, using the reaction π−p → ωn at
large momentum transfers, thus suppressing ρ production (Alde, 1994).

In pp annihilation at rest the branching ratio for ωπ0 is much smaller than the branch-
ing ratio for ρ0π0 while the converse is true for ηω and ηρ0 (Table 2). We therefore
expect that a determination of the ω → ηγ branching ratio from π0ω, neglecting ρ − ω
mixing, will lead to a larger value than from ηω. However, a simultaneous analysis of
both branching ratios, including ρ−ω mixing, should lead to consistent results and allow
a determination of the relative phase between the two amplitudes.
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In Abele (1997d) the channels π0ω and ηω (ω → ηγ) were reconstructed from 15.5
million 0-prong events with five detected γ’s. The events were submitted to a 6C kinematic
fit assuming total energy and total momentum conservation, at least one π0 → 2γ (or one
η → 2γ) and ω → 3γ. The ω → 3γ Dalitz plots for π0ω and ηω are shown in Fig. 15,
using the variables

x =
T2 − T1√

3Q
, y =

T3

Q
−

1

3
, (41)

where T1, T2 and T3 are the kinetic energies of the γ’s in the ω rest frame and Q =
T1 + T2 + T3. The prominent bands along the boundaries are due to ω → π0γ and the
weaker bands around the center to ω → ηγ.

The main background contributions arose from 6γ events (pp→ 3π0, 2π0η, 2ηπ0) with
a missing photon. This background (10% in the π0ω and 5% in the ηω Dalitz plots)
was simulated using the 3-pseudoscalar distributions discussed in section 8 and could be
reduced with appropriate cuts (Pietra, 1996). After removal of the π0 bands 147 ± 25
ω → ηγ events were found in the η bands of Fig. 15(a) and 123 ± 19 events in the η
bands of Fig. 15(b).

The branching ratio for ω → ηγ was derived by normalizing on the known branching
ratio for ω → π0γ, (8.5 ± 0.5) % (Barnett, 1996). Correcting for the reconstruction
efficiency Abele (1997d) finds a branching ratio of (13.1 ± 2.4) × 10−4 from π0ω and
(6.5± 1.1) × 10−4 from ηω, hence a much larger signal from π0ω.

Consider now the isospin breaking electromagnetic ρ−ω transition. The amplitude S
for the reaction pp → X(ρ − ω) → Xηγ is, up to an arbitrary phase factor (Goldhaber,
1969):

S =
|Aρ||Tρ|

Pρ

(
1−
|Aω|

|Aρ|

eiαδ

Pω

)

+ ei(α+φ) |Aω||Tω|

Pω

(
1−
|Aρ|

|Aω|

e−iαδ

Pρ

)
, (42)

where A is the production and T the decay amplitude of the two mesons and Pρ ≡
m−mρ+iΓρ/2, Pω ≡ m−mω+iΓω/2. The parameter δ was determined from ω, ρ→ π+π−:
δ = (2.48 ± 0.17) MeV (Weidenauer, 1993). The relative phase between the production
amplitudes Aρ and Aω is α while the relative phase between the decay amplitudes Tρ and
Tω is φ. In the absence of ρ − ω interference (δ = 0) Eq. (42) reduces to a sum of two
Breit-Wigner functions with relative phase α + φ. The magnitudes of the amplitudes A
and T are proportional to the production branching ratios and the partial decay widths,
respectively.

The production phase α can be determined from ρ, ω → π+π− since the isospin vio-
lating decay amplitude T (ω → π+π−) may be neglected, leaving only the first term in Eq.
(42). A value for α consistent with zero, (−5.4±4.3)◦ , was measured by Crystal Barrel, us-
ing the channel pp→ ηπ+π− where ρ−ω interference is observed directly (Abele, 1997a).
This phase is indeed predicted to be zero in e+e− annihilation, in photoproduction and
also in pp annihilation (Achasov and Shestakov, 1978).

With the branching ratios for ωπ0, ωη, π0ρ0 and ηρ0 given in Table 2 the intensity
|S|2 was fitted to the number of observed ω → ηγ events in ωπ0 and ωη, using Monte
Carlo simulation. Both channels lead to consistent results for

B(ω → ηγ) = (6.6± 1.7) × 10−4, (43)

in agreement with the branching ratio from ηω, obtained by neglecting ρ−ω interference.
The phase φ = (−20+70

−50)◦ leads to constructive interference. The result Eq. (43) is in
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excellent agreement with Alde (1994) and with the constructive interference solution in
e+e−, (7.3± 2.9)× 10−4 (Dolinsky, 1989). This then solves the longstanding ambiguity in
e+e− annihilation between the constructive (φ = 0) and destructive (φ = π) interference
solutions. The branching ratio for ρ0 → ηγ, (12.2 ± 10.6) × 10−4, is not competitive but
agrees with results from e+e−, (3.8 ± 0.7) × 10−4 for constructive interference (Dolinsky,
1989; Andrews, 1977). Using Eq. (40) one then finds

B(ω → ηγ)

B(ω → π0γ)
= (7.8± 2.1) × 10−3, (44)

in agreement with SU(3).
The ω → 3γ Dalitz plot is also useful to search for the direct process ω → 3γ which

is similar to the decay of (3S1) orthopositronium into 3γ and has not been observed so
far. By analogy, the population in the ω → 3γ Dalitz plot is expected to be almost
homogeneous except for a slight increase close to its boundaries (Ore and Powell, 1949).
Using the central region in Fig. 15(a) which contains only one event (6 entries) one obtains
the upper limit B(ω → π0γ) = 1.9×10−4 at 95% confidence level. This is somewhat more
precise that the previous upper limit, 2× 10−4 at 90% confidence level (Prokoshkin and
Samoilenko, 1995).

6 Production of φ Mesons

It has been known for some time that φ production is enhanced beyond expectation from
the OZI rule in various hadronic reactions (Cooper, 1978). Let us return to Eq. (21)
and replace η by φ and η′ by ω. The mixing angle becomes the mixing angle θv in the
vector nonet. According to the OZI rule, φ and ω can only be produced through their
uu+dd components. Hence φ production should vanish for an ideally mixed vector nonet
(θv = θi) in which φ is purely ss. Since φ also decays to 3π this is not quite the case and
we find for the ratio of branching ratios with a recoiling meson X and apart from phase
space corrections,

R̃X =
B̃(Xφ)

B̃(Xω)
= tan2(θi − θv) = 4.2× 10−3 or 1.5× 10−4, (45)

for the quadratic (θv = 39◦) or linear (θv = 36◦) Gell-Mann-Okubo mass formula (Barnett,
1996).

The branching ratios for pn annihilation into π−φ and π−ω have been measured in
deuterium bubble chambers. The ratio R̃π− lies in the range 0.07 to 0.22 indicating a
strong violation of the OZI rule (for a review, see Dover and Fishbane (1989)). The As-
terix experiment at LEAR has measured φ production in pp annihilation into π0φ, ηφ, ρ0φ

and ωφ in gaseous hydrogen at NTP (50% P-wave annihilation) and in coincidence with
atomic L X-rays (P-wave annihilation). The branching ratios for pure S-wave were then
obtained indirectly by linear extrapolation (Reifenröther, 1991). With the corresponding
ω branching ratios, then available from literature, the authors reported a strong violation
of the OZI rule, especially for π0φ. Some of the branching ratios from Crystal Barrel are,
however, in disagreement with previous results. We shall therefore review the direct mea-
surement of φ production in liquid from Crystal Barrel and then reexamine the evidence
for OZI violation with the two-body branching ratios listed in Table 2.
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6.1 Annihilation into π0φ, ηφ and γφ

Crystal Barrel has studied the channels

pp→ KSKLπ
0 and KSKLη, (46)

where KS decays to π0π0 and η to γγ, leading to six photons and a missing (undetected)
KL (Amsler, 1993d). The starting data sample consisted of 4.5×106 0-prong annihilations.
By imposing energy and momentum conservation, the masses of the three reconstructed
pseudoscalars and the KS mass, a (5C) kinematic fit was applied leading to 2,834 KSKLπ

0

and 72 KSKLη events with an estimated background of 4%, respectively 36%.
The KSKLπ

0 Dalitz plot is shown in Fig. 16. One observes the production of K∗(892)
(→ Kπ) and φ(→ KSKL). A Dalitz plot analysis was performed with the method de-
scribed in section 7.2. Since the C-parity of KSKL is negative5 the contributing initial
atomic S-state is 3S1. One obtains a good fit to the Dalitz plot with only two amplitudes,
one for K∗K (and its charge conjugated KK

∗
which interferes constructively) and one

for π0φ with a relative contribution to the KSKLπ
0 channel of

K∗K +KK
∗

π0φ
= 2.04 ± 0.21. (47)

The final state KSKLη is much simpler since only ηφ contributes (Amsler, 1993d).
One obtains by comparing the intensities for π0φ and ηφ

B(π0φ)

B(ηφ)
= 8.3 ± 2.1, (48)

taking into account the unobserved decay modes of the η meson.
Events with a KL interacting in the CsI crystals have been removed by the selection

procedure which required exactly six clusters in the barrel. The last two results therefore
assume that the interaction probability for KL in CsI does not vary significantly with
KL momentum. Therefore, this interaction probability needs to be determined to derive
absolute branching ratios for π0φ and ηφ. This number cannot be obtained directly
by Monte Carlo simulation due to the lack of data for low energy KL interacting with
nuclear matter. With monoenergetic (795 MeV/c) KL from the channel pp → KSKL,
Amsler (1995c) finds an interaction probability of (57 ± 3) % in the CsI barrel. This
leads to a branching ratio of (9.0 ± 0.6) ×10−4 for KSKL, in agreement with bubble
chamber data (Table 2).

An average interaction probability of (54 ± 4)% was measured with the kinematically
well constrained annihilation channel KS(→ π+π−)KLπ

0 (Abele, 1997e). However, in
Amsler (1995c) a somewhat lower probability was used. Updating their π0φ branching
ratio one finds together with their compatible result from π0(φ→ K+K−):

B(pp→ π0φ) = (6.5 ± 0.6) × 10−4. (49)

From Eq. (48) one then obtains

B(pp→ ηφ) = (7.8 ± 2.1) × 10−5. (50)

Both numbers are slightly higher than from indirect data in gaseous hydrogen which were
extrapolated to pure S-wave annihilation (Reifenröther, 1991), see Table 6.

5Note that K0K0 recoiling against π0 appears as KSKS +KLKL (JPC = even ++) from 1S0 and as KSKL

(JPC = odd−−) from 3S1.
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Radiative annihilation into φ mesons should be suppressed by both the OZI rule and
the electromagnetic coupling. Crystal Barrel has studied the channel γφ with the reactions

pp→ KSKLγ and K+K−γ, (51)

(Amsler, 1995c). In the first reaction KS decays to π0π0, KL is not detected and thus the
final state consists of five photons. The KSKLγ final state was selected from 8.7× 106 0-
prong annihilations by performing a 4C fit, imposing energy and momentum conservation,
the masses of the two pions and the KS mass. The background reaction pp → KSKL

with an interacting KL faking the fifth photon could easily be suppressed since KL and
KS are emitted back-to-back. The experimental KSKLγ Dalitz plot is dominated by
background from KSKLπ

0 with a missing (undetected) low energy γ from π0 decay and
is therefore similar to the one shown in Fig. 16. The background contribution to γφ,
mainly from π0φ with a missing photon, was estimated by Monte Carlo simulation and
by varying the photon detection threshold. This led to 211 ± 41 γφ events corresponding
to a branching ratio B(γφ) = (2.0 ± 0.5) × 10−5, after correcting for the (updated) KL

interaction probability.
A sample of 1.6 × 106 2-prong annihilations was used to select the second reaction in

(51). After a cut on energy and momentum conservation (assuming kaons) the measured
ionization loss in the JDC was used to separate kaons from pions. Again, the dominating
background to γφ arose from π0φ with a missing γ. This background was subtracted by
varying the γ detection threshold and by keeping only γ’s with energies around 661 MeV,
as required by two-body kinematics. The signal of 29 events led to a branching ratio
B(γφ) = (1.9 ± 0.7) × 10−5 which is less precise but in good agreement with data from
the neutral mode. The average is then

B(pp→ φγ) = (2.0 ± 0.4) × 10−5, (52)

which updates the result from Amsler (1995c).

6.2 φ/ω ratio

Table 7 and Fig. 17 show the phase space corrected ratios R̃X (Eq. (45)). The nearest
threshold dominance factors (Eq. (20)) have been used but the measured ratios do not
differ significantly from R̃X . Phase space factors of the type (28) lead to even larger
ratios. For X = γ, π0, η we used Crystal Barrel data. For X = ω we used for ωω the
branching ratio from Crystal Barrel (multiplied by two for identical particles) and for
ωφ the branching ratio from Bizzarri (1971) (Table 2). For completeness we also list the
result for X = ρ from Reifenröther (1991) and Bizzarri (1969) and the recent Obelix data
for Rπ− (Ableev, 1995) and Rπ+ (Ableev, 1994) in pn and np annihilation.

Annihilation into ωπ0π0 and φ(→ KLKS)π0π0 can be used to extract the ratio R̃σ
(Spanier, 1997), where σ stands for the low energy (ππ) S-wave up to 900 MeV (section
8.4). Finally, the ratio Rπ+π− was also measured in pp at rest (Bertin, 1996). Table 7 and
Fig. 17 show their result for π+π− masses between 300 and 500 MeV.

The production of φ mesons is enhanced in all channels except ηφ and is especially
dramatic in γφ (from 1S0) and π0φ (from 3S1). Several explanations for this effect have
been proposed:

(i) High energy reactions reveal the presence of sea ss pairs in the nucleon at high
momentum transfers but valence ss pairs could enhance the production of φ mesons
already at small momentum transfers. Figure 18 shows the OZI allowed production of ss
mesons through the shake-out mechanism (a) and through the OZI allowed rearrangement
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process (b) (Ellis, 1995). The fraction of ss pairs in the nucleon required to explain the
measured π0φ rate lies between 1 and 19%. Deep inelastic muon scattering data indicate
an ss polarization opposite to the spin of the nucleon (Ellis, 1995). For annihilation
from the 3S1 state the wave function of the (3S1) ss would match the wave function of
the φ in the rearrangement process of Fig. 18(b), leading to an enhanced production of
φ mesons. The absence of enhancement in ηφ could be due to destructive interference
between additional graphs arising from the ss content of η. However, this model does not
explain the large branching ratios for the two-vector channels ρ0φ, ωφ and especially γφ
which proceed from the 1S0 atomic state.

In the tensor nonet, the mainly ss meson is f ′2(1525) and f2(1270) is the mainly uu+dd.
Using annihilation into KLKLπ

0 and 3π0 (section 8) Crystal Barrel has measured the ratio
of f ′2(1525)π0 to f2(1270)π0 from 1S0. After dividing by W (Eq. (20)) one finds with the
most recent branching ratio for f ′2(1525) decay to KK from Barnett (1996), see Table 13
below:

B̃(pp→ f ′2(1525)π0)

B̃(pp→ f2(1270)π0)
= tan2(θi − θt) = (2.6 ± 1.0)× 10−2. (53)

The mixing angle θt in the 2++ nonet is found to be (26.1+2.0
−1.6)◦, in good agreement with

the linear (26◦) or quadratic (28◦) mass formulae (Barnett, 1996). There is therefore no
OZI violating ss enhancement from f ′2(1525)π0 in liquid hydrogen.

(ii) Dover and Fishbane (1989) suggest that the π0φ enhancement is due to mixing
with a four-quark state (ssqq) with mass below 2mp (Fig. 18(c)). This exotic meson
would then have the quantum numbers of the pp initial state (3S1 = 1−− with I = 1).
This would also explain why ηφ (I = 0) is not enhanced and why π0φ is weak from
1P1 (Reifenröther, 1991). A 1−− state, C(1480) → πφ, has in fact been reported in
π−p → π0φn (Bityukov, 1987). This isovector cannot be qq since it would decay mostly
to πω, which is not observed. Indeed, Crystal Barrel does not observe any π0ω signal
in this mass region in pp → π0π0ω at rest (Amsler, 1993a). Also, C(1480) has not been
observed in pp annihilation at rest into π+π−φ (Reifenröther, 1991) nor into π0π0φ (Abele,
1997f). In any case the large γφ signal with the “wrong” quantum numbers 1S0 remains
unexplained by this model.

(iii) We have seen (Eq. (47)) that theKKπ final state is dominated byK∗K production
which proceeds dominantly from the I = 1 3S1 state (see section 8.8). The φ enhancement
could then be due to K∗K and ρρ rescattering (Fig.18(d)). In Gortchakov (1996) K∗K
and ρρ interfere constructively to produce a π0φ branching ratio as high as 4.6 × 10−4,
nearly in agreement with experimental data. In Locher (1994) and Markushin (1997) the
large γφ branching ratio simply arises from VDM: The channels ρ0ω and ωω interfere
destructively in Eq. (30) (thereby lowering the branching ratio for γω) while ρ0φ and
ωφ interfere constructively (thus increasing the branching ratio for γφ). This conclusion,
however, depends strongly on the phase space correction: Prescription (20) leads to a γφ
branching ratio which exceeds the OZI prediction by a factor of ten (Table 5). Also, as
pointed out by Markushin (1997), the large ρ0φ and ωφ rates remain unexplained but
could perhaps be accommodated within a two-step mechanism similar to the one shown
in Fig. 18(d).

The origin of the φ enhancement is therefore not clear. If I = 1 also dominates pp an-
nihilation into K∗K from P-states in gaseous hydrogen, then the rescattering model would
presumably conflict with the weak πφ production observed from 1P1 states (Reifenröther,
1991). With strange quarks in the nucleon, the 3S1 contribution and hence the contri-
bution from ss pairs in the nucleon will be diluted by the large number of partial waves
at higher p momenta. Hence φ production should decrease with increasing momentum.
Also, the small ηφ rate, possibly due to destructive interference, implies that η′φ should
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be abnormally large (Ellis, 1995). Finally, since f ′2(1525) is a spin triplet meson one would
expect a strong production of f ′2(1525)π0 from triplet pp states at rest, hence 3P1 (Ellis,
1995). The analysis of Crystal Barrel data in gaseous hydrogen and in flight will hopefully
contribute to a better understanding of the φ enhancement in hadronic reactions.

7 Meson Spectroscopy

7.1 Introduction

Mesons made of light quarks u, d, s are classified within the qq nonets of SU(3)-flavor.
The ground states (angular momentum L = 0) pseudoscalars (0−+) and vectors (1−−)
are well established. Among the first orbital excitations (L = 1), consisting of the four
nonets 0++, 1++, 2++, 1+−, only the tensor (2++) nonet is complete and unambiguous
with the well established a2(1320), f2(1270), f ′2(1525) and K∗2(1430) but another tensor,
f2(1565) was discovered at LEAR in the 1500 MeV mass range (May, 1989).

Before Crystal Barrel three scalar (0++) states were already well established: a0(980),
f0(980) and K∗0(1430). Further candidates have been reported and we shall discuss the
scalars in more details below. In the 1++ nonet two states compete for the ss assignment,
f1(1420) and f1(1510). In the 1+− nonet the ss meson is not established although a
candidate, h1(1380), has been reported (Aston, 1988a; Abele 1997f). Many of the radial
and higher orbital excitations are still missing. Recent experimental reviews on light quark
mesons have been written by Blüm (1996) and Landua (1996) and theoretical predictions
for the mass spectrum can be found in Godfrey and Isgur (1985).

Only overall color-neutral qq configurations are allowed by QCD but additional col-
orless states are possible, among them multiquark mesons (q2q2, q3q3) and mesons made
of qq pairs bound by an excited gluon g, the hybrid states (Isgur and Paton, 1985; Close
and Page, 1995). The 2−+ state η2(1870) has been reported by Crystal Barrel (Adomeit,
1996) with decay rates to a0

2(1320)π0 and f2(1270)η compatible with predictions for a
hybrid state (Close and Page, 1995). Hybrids may have exotic quantum numbers, e.g.
1−+, which do not couple to qq. An isovector state, ρ̂(1405), with quantum numbers 1−+

has been reported (Alde, 1988a; Thompson, 1997). However, lattice QCD predicts the
lightest hybrid, a 1+−, around 2000 MeV (Lacock, 1997).

A striking prediction of QCD is the existence of isoscalar mesons which contain only
gluons, the glueballs (for a recent experimental review, see Spanier (1996)). They are a
consequence of the non-abelian structure of QCD which requires that gluons couple and
hence may bind. The models predict low-mass glueballs with quantum numbers 0++, 2++

and 0−+ (Szczepaniak, 1996). The ground state glueball, a 0++ meson, is expected by
lattice gauge theories to lie in the mass range 1500 to 1700 MeV. The mass of the pure
gluonium state is calculated at 1550 ± 50 MeV by Bali (1993) while Sexton (1995) predicts
a slightly higher mass of 1707 ± 64 MeV. The first excited state, a 2++, is expected around
2300 MeV (Bali, 1993).

Since the mass spectra of qq and glueballs overlap, the latter are easily confused with
ordinary qq states. This is presumably the reason why they have not yet been identified
unambiguously. For pure gluonium one expects couplings of similar strengths to ss and
uu + dd mesons since gluons are flavor-blind. In contrast, ss mesons decay mainly to
kaons and uu + dd mesons mainly to pions. Hence decay rates to ππ, KK, ηη and ηη′

can be used to distinguish glueballs from ordinary mesons. However, mixing with nearby
qq states may modify the decay branching ratios (Amsler and Close, 1996) and obscure
the nature of the observed state. Nevertheless, the existence of a scalar gluonium state,
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whether pure or mixed with qq, is signalled by a third isoscalar meson in the 0++ nonet.
It is therefore essential to complete the SU(3) nonets in the 1500 - 2000 MeV region and
to identify supernumerary states. The most pressing questions to be addressed are:

1. What are the ground state scalar mesons, in particular is f0(980) the ss state and is
a0(980) the isovector or are these states KK molecules (Weinstein and Isgur, 1990;
Close, 1993) in which case the nonet members still need to be identified? Where are
the first radial excitations and is there a supernumerary I = 0 scalar in the 1500
MeV region? Is fJ(1710) scalar or tensor?

2. In the 0−+ sector, are η(1295) and η(1440) the two isoscalar radial excitations of η
and η′ or is η(1440) a structure containing several states (Bai, 1990; Bertin, 1995),
in particular a non-qq state around 1400 MeV?

3. Where are the hybrid states? Is η2(1870) a hybrid and does ρ̂(1405) really exist?

Before reviewing the new mesons discovered by Crystal Barrel and providing clues to some
of these issues, we shall recall the mathematical tools used to extract the mass, width,
spin and parity of intermediate resonances in pp annihilation at rest.

7.2 Spin-parity analysis

The Crystal Barrel data have been analyzed using the isobar model in which the pp

system annihilates into N “stable” particles (π±,K±,K0, π0, η, η′) through intermediate
resonances. The decay chain is assumed to be a succession of two-body decays a → bc

followed by b → b1b2 and c → c1c2, etc. Final state rescattering is ignored. We shall
calculate from the N momentum vectors the probability wD that the final state proceeds
through a given cascade of resonances. The final state may be from real data or from
phase space distributed Monte Carlo events to be weighted by wD.

The spins and parities of intermediate resonances are determined using the helicity
formalism developed by Jacob and Wick (1959) or the equivalent method of Zemach
tensors (Zemach, 1964, 1965). Here we describe briefly the helicity formalism. Suppose
that a mother resonance with mass m0 and spin J decays into two daughters (spins S1

and S2) with total spin S and relative angular momentum L. As quantization axis we
choose the flight direction of the mother. The decay amplitude is given by the matrix
(Amsler and Bizot, 1983)

Aλ1,λ2;M = DJ
λM (θ, φ)〈Jλ|LS0λ〉〈Sλ|S1S2λ1,−λ2〉 ×BWL(m), (54)

where the row index λ = λ1 − λ2 runs over the (2S1 + 1)(2S2 + 1) helicity states and the
column index M over the 2J + 1 magnetic substates; θ and φ refer to the decay angles in
the mother rest frame. BWL(m) is the Breit-Wigner amplitude6

BWL(m) =
m0Γ0

m2
0 −m

2 − im0Γ(m)
FL(p)

√
ρ, (55)

where

Γ(m) = Γ0
m0

m

p

p0

F 2
L(p)

F 2
L(p0)

. (56)

The mass and width of the resonance are m0 and Γ0, p is the two-body decay momentum
and p0 the decay momentum for m = m0. The damping factors FL(p) are given in Table

6The phase space factor
√
ρ =

√
2p/m should be dropped in Eq. (55) when events are drawn by Monte

Carlo simulation, already assuming phase space distribution.
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4. The matrix D is given by

DJ
λM (θ, φ) = eiMφdJλM (θ) (57)

where the matrix dJλM (θ) is the usual representation of a rotation around the y-axis, see
for example Barnett (1996).

We shall describe the annihilation to the observed final state by a product of matrices
A for successive decays in the cascade. Hence we first calculate from the N final state
momentum vectors the angles θ and φ for all resonances through a series of Lorentz
boosts, apply Eq. (54) to each decay and obtain the total amplitude through matrix
multiplications, for example

A = [A(c→ c1c2)⊗A(b→ b1b2)]A(pp→ bc), (58)

where ⊗ denotes a tensor product. The matrix A has as many rows as the total final state
spin multiplicity and has 2J + 1 columns, where J is the total spin of the pp system. We
define the quantization axis as the direction of one of the daughters in the first decay (the
annihilating pp atom) for which we choose θ = 0 , φ = 0 and BWL(2mp) = FL(p)

√
p.

Several decay chains of intermediate resonances may lead to the same observed final
state of N stable particles. The transition probability wD for chains starting from the
same atomic state is given by the coherent sum

wD = w × ε× Tr [(
∑
j

αjAj)ρ̃(
∑
k

α∗kA
†
k)] = w × ε× Tr |

∑
j

αjAj |
2, (59)

where the sums extend over all decay chains labelled by the matrices Aj . We have as-
sumed that the initial spin-density matrix ρ̃ is unity since the pp system is unpolarized.
The phase space w and the detection probability ε will be ignored for Monte Carlo events
drawn according to phase space and submitted to the detector simulation, since w = 1 and
ε = 1 or 0 for every Monte Carlo event. The parameters αj = aj exp(−iφj) are unknown
constants to be fitted and one phase, say φ0, is arbitrary and set to zero. For chains de-
caying into the same resonances but with different electric charges (e.g. ρ+π−, ρ−π+, ρ0π0

→ π+π−π0) these constants are given by isospin relations. The contributions from differ-
ent atomic states are given by incoherent sums, i.e. by summing weights wD of the form
(59).

As an example, let us derive the weight wD for the annihilation channel pp→ ρ0ρ0 →
2π+2π− from the atomic state 1S0 (JPC = 0−+). Parity, C-parity and total angular
momentum conservation require for ρ0ρ0 that L = 1 and S = 1 (see section 4.1). The
first Clebsch-Gordan coefficient in (54) is, apart from a constant,

〈0λ|110λ〉〈1λ|11λ1 ,−λ2〉 = λ1δλ1λ2 , (60)

and hence the amplitude vanishes unless the ρ’s are emitted with the same helicity λ1 =
λ2 6= 0. With J = 0, the matrices (57) are unity and therefore A(pp) is a column-vector
with 9 rows

A(pp) =



1
0
.

.

.

0
−1


F1(p)

√
p. (61)
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For ρ → π+π− one finds with S = 0 and J = 1 that L = 1 and the Clebsch-Gordan
coefficients are unity. Hence we get with λ = 0 the 3-dimensional row-vector

A(ρ) = [D1
01(θ, φ),D1

00(θ, φ),D1
0−1(θ, φ)]BW1(m). (62)

With Eq. (58) one then obtains

A = [A(ρ1)⊗A(ρ2)]A(pp)

= [D1
01(θ1, φ1)D1

01(θ2, φ2)−D1
0−1(θ1, φ1)D1

0−1(θ2, φ2)]

×BW1(m1)BW1(m2)F1(p)
√
p,

= i sin θ1 sin θ2 sin(φ1 + φ2)BW1(m1)BW1(m2)F1(p)
√
p, (63)

and therefore

wD = sin2 θ1 sin2 θ2 sin2(φ1 + φ2)|BW1(m1)BW1(m2)|2F 2
1 (p)p. (64)

The angles refer to the directions of the pions in the ρ rest frames, with respect to the
flight direction of the ρ′s. Therefore the most probable angle between the planes spanned
by the two dipions is 90◦. This angular dependence is familiar in parapositronium (0−+)
annihilation or π0 decay where the γ polarizations are preferably orthogonal (φ1 + φ2 =
90◦). However, there are two ways to combine four pions into ρ0ρ0 and therefore the final
weight is actually given by the coherent sum (59) of two decay chains with α1 = α2.

As another example of symmetrization let us consider pp annihilation into πKK which
will be discussed in detail below. The amplitudes for annihilation through the intermediate
K∗ are related through isospin Clebsch-Gordan coefficients (see for example Conforto
(1967) or Barash (1965)). In general, annihilation may occur from 1S0 or 3S1 with isospin
I = 0 or 1. For example, π0K+K− proceeds through K∗+ → π0K+ or K∗− → π0K−

with coefficients α1 and α2 equal in absolute magnitude and the two chains interfere.
Table 8 gives the relative sign between α1 and α2. Note that for 3S1 the matrix (57)
flips the sign so that the observed interference pattern is the same for 1S0 or 3S1, namely
constructive in π0K+K−, π0K0K0 and (I = 0) π±K∓K0, and destructive in (I = 1)
π±K∓K0. The signs given in Table 8 also apply to KK intermediate states with isospin
i = 1 from I(pp) = 0 and I(pp) = 1 (the latter only contributing to π±K∓K0) and for
states with isospin i = 0 from I(pp) = 1 (to which π±K∓K0 does not contribute).

The procedure to analyze data is as follows: Phase space distributed Monte Carlo
events are generated, tracked through the detector simulation and submitted to the re-
construction program. As already mentioned, this procedure automatically takes care of
the factors ρ, w and ε. For pp annihilation into three stable particles, there are only two
independent kinematic variables. One usually chooses the invariant masses squared m2

12

and m2
13. The two-dimensional distribution (Dalitz plot) is then uniformly populated for

phase space distributed events. The procedure consists in calculating wD for each Monte
Carlo event and to vary the constants αi, the widths, masses and spin-parity assignments
of the resonances until a good fit to the observed Dalitz plot density is achieved. Reso-
nances with spins larger than 2 are too heavy to be produced in pp annihilation at rest
and are therefore ignored.

For the Dalitz plot fits it is convenient to factorize wD in terms of the real constants
aj and φj :

wD =
∑
i

a2
iQii + 2

∑
i<j

aiajRe[Qij] cos(φi − φj) + 2
∑
i<j

aiajIm[Qij ] sin(φi − φj), (65)

where
Qij = Tr [AiA

†
j]. (66)
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Dalitz plots weighted by Qii, Re[Qij ] and Im[Qij]are then produced for each pair of chains
i, j (i ≤ j). The Qij, and correspondingly the weights wD, are normalized to the total
number of real events NT :

Qij → Qij/
√
fifj, (67)

with
fi =

∑
Qii/NT , (68)

where the sum runs over all Monte Carlo events. One then divides the Dalitz plots into
cells, adds them according to Eq. (65) and builds the χ2

χ2 =
∑ (n− wD)2

n+ w2
D/nMC

(69)

where the sum extends over all cells. The number of real events in each cell is denoted by
n and the number of Monte Carlo events by nMC .

With limited statistics or for more than two degrees of freedom (final states with
more than three stable particles) the χ2 minimization may be replaced by a likelihood
maximization. One minimizes the quantity S = - 2 lnL or

S = 2NT ln

MT∑
i=1

wi[MC]

− 2
NT∑
i=1

lnwi[DAT ], (70)

where wi[MC] and wi[DAT ] are weights wD calculated for Monte Carlo and data events,
respectively. The sums run over NT data events and MT Monte Carlo events.

From the best fit the fractional contributions of the resonances in chain i are given by

ri ≡
a2
i∑
i a

2
i

, (71)

where, obviously,
∑
ri = 1. This is a somewhat arbitrary definition which may not agree

with the directly visible Dalitz plot densities, because interferences beween the chains are
neglected in Eq. (71). One may define alternatively

ri ≡ a
2
i , (72)

but then
∑
ri may differ significantly from unity in the presence of strong interferences.

Hence decay branching fractions for broad interfering resonances are not measurable un-
ambiguously. This is an unavoidable caveat to keep in mind when extracting the internal
structure of broad states from their decay branching ratios.

7.3 K-matrix analysis

The Breit-Wigner factors (55) violate unitarity when two resonances with the same quan-
tum numbers overlap and decay into the same final state. Also, they do not describe
distortions in the mass spectrum that occur around kinematical thresholds. For example,
the f0(980)→ ππ appears as a dip rather than a peak in the ππ mass spectrum of elastic
ππ scattering, due to the opening of the decay channel f0(980)→ KK (Au, 1987).

This behaviour can be described with the K-matrix formalism. A detailed description
can be found in Chung (1995) and I shall only recall the formulae used in the analysis of
Crystal Barrel data. Consider for instance the four scattering reactions(

ππ → ππ ππ → KK

KK → ππ KK → KK

)
. (73)
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The transition amplitude T for a given partial wave is described by the 2× 2 K-matrix

T = (1− iKρ)−1K (74)

with the real and symmetric matrix

Kij(m) =
∑
α

γαiγαjmαΓ′α
m2
α −m

2
Bαi(m)Bαj (m) + cij . (75)

The sum runs over all resonances with K-matrix poles mα decaying to ππ and KK with
(real) coupling constants γα1 and γα2 , respectively, where

γ2
α1

+ γ2
α2

= 1. (76)

The factors Bαi are ratios of Blatt-Weisskopf damping factors (Table 4)

Bαi(m) =
FL(pi)

FL(pαi)
, (77)

where L is the decay angular momentum, p the π or K momenta and pαi their momenta at
the pole mass mα. The optional real constants cij allow for a background (non-resonating)
amplitude7. In Eq. (74) the matrix ρ(m) describes the two-body phase space and is
diagonal with ρ11 ≡ ρ1 = 2pπ/m and ρ22 ≡ ρ2 = 2pK/m. For masses far above kinematical
threshold ρi ∼ 1 and below KK threshold ρ2 becomes imaginary.

The (K-matrix) partial width of resonance α to decay into channel i is defined as

Γαi(mα) = γ2
αi

Γ′αρi(mα), (78)

and the (K-matrix) total width as

Γα =
∑
i

Γαi . (79)

For a resonance with mass far above kinematic thresholds one obtains the partial and
total widths

Γαi = γ2
αi

Γ′α, Γα = Γ′α, (80)

respectively. For one resonance and one channel (elastic scattering) the K-matrix reduces
to

K =
m0Γ′0B

2(m)

m2
0 −m

2
, (81)

and T (Eq. (74)) reduces to the relativistic Breit-Wigner

T =
m0Γ0B

2(m)/ρ(m0)

m2
0 −m

2 − im0Γ(m)
, (82)

with

Γ(m) = Γ0
ρ(m)

ρ(m0)
B2(m). (83)

For a resonance far above threshold and with Γ0 << m0 we get the familiar expression

T =
Γ0/2

m0 −m− iΓ0/2
. (84)

7For the ππ S-wave a factor (m2 − 2m2
π)/m2 is multiplied to the K-matrix to ensure a smooth behaviour

near threshold.
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Normally, the mass mR and width ΓR of a resonance are obtained from the poles of the
T -matrix. Extending the mass m to complex values we find from (84) the poles at

mP = mR − i
ΓR
2
, (85)

with mR = m0 and ΓR = Γ0. In general, however, mR does not coincide with the pole
of the K-matrix and ΓR is different from the K-matrix width. For example, for two non-
overlapping resonances far above threshold, the K-matrix, T -matrix and Breit-Wigner
poles coincide. As the resonance tails begin to overlap the two T -matrix poles move
towards one another (for an example, see Chung, (1995)).

The ππ S-wave scattering amplitude is related to the ππ phase shift δ and inelasticity
η through the relation

ρ1(m)T11(m) =
η(m) exp[2iδ(m)] − 1

2i
. (86)

According to Eq. (74) the corresponding K-matrix then reads for pure elastic ππ-
scattering (η ≡ 1)

K11(m) =
tan δ(m)

ρ1(m)
(87)

and becomes infinite at m = m0, when δ passes through 90◦. However, the amplitude
T does not, in general, reach a resonance when δ = π/2. As an example, consider the
ππ S-wave scattering amplitude described by the amplitude (86) in the complex plane
(Argand diagram): The intensity |T |2 reaches its maximum value around 850 MeV (δ =
90◦), loops back and passes rapidly through the KK threshold (see Fig. 23 below and
Au (1987)). At ∼1000 MeV |T |2 reaches its minimum value (δ = 180◦) and then starts a
new (inelastic) loop. The f0(980) then appears as a hole in the ππ intensity distribution.
We shall return to the S-wave Argand diagram when discussing the fits to Crystal Barrel
data.

Consider now the production of a resonance α in pp annihilation. In the isobar model,
the resonance is assumed not to interact with the recoiling system. The coupling strength
to pp is denoted by the (complex) constant βα while γαi describes its decay strength into
channel i (say ππ for i = 1 and KK for i = 2). Following Aitchison (1972) the amplitudes
are given by the components of the vector

T = (1− iKρ)−1P. (88)

The K-matrix now describes the propagation of the channel i through the resonances α
while the vector P describes their production. P and K share the common poles mα so
that T remains finite at the poles. The vector P is given by

Pj(m) =
∑
α

βαγαjmαΓ′αBαj (m)

m2
α −m

2
, (89)

where the sum runs over all resonances. For a single resonance feeding only one decay
channel we again obtain from Eq. (88) a Breit-Wigner distribution of the form (82) with
coupling strength β:

T =
βm0Γ0B(m)/ρ(m0)

m2
0 −m

2 − im0Γ(m)
. (90)

Let us now assume a series of resonances with the same quantum numbers decaying
into two final states. The amplitude for the first final state is given by Eq. (88):

T1 =
(1− iK22ρ2)P1 + iK12ρ2P2

1− ρ1ρ2D − i(ρ1K11 + ρ2K22)
, (91)
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with
D ≡ K11K22 −K

2
12. (92)

As an example, consider a single resonance, say a0(980) decaying to ηπ and KK. In this
case D ≡ 0 and B(m) ≡ 1 (S-wave). We then obtain from Eq. (91) the formula (Flatté,
1976)

T (ηπ) =
bg1

m2
0 −m

2 − i(ρ1g
2
1 + ρ2g

2
2)
, (93)

with

gi ≡ γi
√
m0Γ′0 ⇒

2∑
i=1

g2
i = m0Γ′0, (94)

and
b ≡ β

√
m0Γ′0. (95)

The phase space factors are

ρ1(m) =
2

m
pη and ρ2(m) =

2

m
pK =

√
1−

4m2
K

m2
. (96)

The T (KK) amplitude is obtained by interchanging the labels 1 and 2 in Eq. (93). Below
KK threshold ρ2 becomes imaginary. Compared to pure ηπ decay this leads to a shift of
the resonance peak and to a narrower and asymmetric distribution of the observed signal
in the ηπ channel. This is shown in Fig. 19 for g1 = 0.324 GeV, g2 = 0.279 GeV (hence
Γ′0 = 0.43 GeV). These parameters have been extracted from the a0(980) contribution
to pp → ηπ0π0 and KKπ (section 8.8). A width of 54.12 ± 0.36 MeV was determined
directly from the a0(980) → ηπ signal in the annihilation channel ωηπ0 (Amsler, 1994c),
in good agreement with the observed width in Fig. 19. Also shown in Fig. 19 is the
expected distribution for Γ′0 = 0.43 GeV, assuming no KK decay. The observed width
Γ0 = Γ′0ρ1(m0) increases to 0.28 GeV.

The standard procedure in the analysis of Crystal Barrel data is to replace the Breit-
Wigner function (55) by T (Eq. (88)) and to fit the parameters gαi , βα and mα. The
resonance parameters mR and ΓR are then extracted by searching for the complex poles
(Eq. (85)) of the matrix T . A one-channel resonance appears as a pole in the second
Riemann-sheet and a two-channel resonance manifests itself as a pole in the second or
third Riemann-sheet (Badalyan, 1982).

Some of the Crystal Barrel Dalitz plots have also been analyzed using the N/D for-
malism (Chew and Mandelstam, 1960) which takes into account the direct production
of three mesons and also the final state interaction. In this formalism the amplitude T
has the same denominator as, e.g., in Eq. (91), but the numerator allows for additional
degrees of freedom (Bugg, 1994).

8 Annihilation at Rest into Three Pseudoscalars

Proton-antiproton annihilation at rest into three pseudoscalars is the simplest process to
search for scalar resonances 0+ → 0−0−, the recoiling third pseudoscalar removing the
excess energy. The annihilation rates for these processes in liquid hydrogen (1S0 atomic
state) are reasonably large since no angular momentum barrier is involved. Channels with
three pseudoscalars have been studied earlier, but essentially in the 2-prong configuration
and with limited statistics, e.g π+π−π0 with 3,838 events (Foster, 1968b), π+π−η with
459 events (Espigat, 1972) and π+π−η′ with 104 events (Foster, 1968a). The samples
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collected by the Asterix collaboration at LEAR (May, 1989; Weidenauer, 1990) are larger
but were collected from atomic P-states. The π+π−π0 final state revealed the existence of
a tensor meson, f2(1565), produced from P-states (May, 1989, 1990). In the kaonic sector,
data were collected in bubble chambers for the final states π±K∓KS (2,851 events) and
π0KSKS (546 events) in the experiments of Conforto (1967) and Barash (1965). Branching
ratios for annihilation into three mesons are listed in Table 9.

Annihilation with charged pions is dominated by ρ(770) production which complicates
the spin-parity analysis of underlying scalar resonances in the ππ S-wave. Also, both 1S0

and 3S1 atomic states contribute. All-neutral (0-prong) channels are therefore simpler to
analyze but more complex to select due to the large γ-multiplicity. The channel π0π0π0

with 2,100 events has been reconstructed earlier with optical spark chambers (Devons,
1973). The existence of a scalar resonance decaying to ππ with mass 1527 and width 101
MeV was suggested in the 3π0 channel and in its π−π−π+ counterpart in pn annihilation
in deuterium (Gray, 1983). This was actually the first sighting of f0(1500) which will be
discussed below.

The sizes of the data samples have been vastly increased by Crystal Barrel. We shall
first review annihilation into three neutral non-strange mesons. We start from 6γ final
states and select the channels pp→ π0ηη, 3π0, π0π0η, π0ηη′ and π0π0η′ by assuming total
energy and total momentum conservation and constraining the 2γ masses to π0, η and
η′ decays (7C fits), excluding any other possible configuration: Events are accepted if
the kinematic fit satisfies the assumed three-pseudoscalar hypothesis with a confidence
level typically larger than 10%. Background from the other 6γ channels is suppressed
by rejecting those events that also satisfy any other 6γ final state hypothesis (including
the strong ωω, ω → π0γ) with a confidence level of at least 1%. The absolute branching
ratios for the 6γ channels are determined by normalyzing on the branching ratio for
pp → ωω. These three-pseudoscalar channels have all been analyzed and we now review
the salient features in their Dalitz plots. Results on kaonic channels are appended to the
next sections.

8.1 pp→ π0ηη

The first evidence for two I = 0 scalars in the 1400 MeV mass region, now called f0(1370)
and f0(1500), was obtained from a reduced sample of 2.3 × 104 π0ηη events (Amsler,
1992c). The invariant mass distributions are shown in Fig. 20. The two scalars decaying
to ηη are also observed when one η decays to 3π0 (10γ final state), a channel with entirely
different systematics (Fig. 20(b)). The distributions in Fig. 20(a) and (b) are nearly
identical.

An amplitude analysis of the Dalitz plot distribution for the 6γ final state was per-
formed with the method outlined in the previous section. However, Breit-Wigner functions
of the form (55) were used to describe the resonances. The fit required JPC = 0++ for
both ηη resonances. The (Breit-Wigner) masses and widths were m =1430, Γ = 250 and
m = 1560, Γ = 245 MeV, respectively. Note that the width of the upper state appears
smaller in Fig. 20(a,b), due to interference effects. This state may be identical to the
scalar meson observed earlier by the GAMS collaboration at 1590 MeV in the ηη and ηη′

mass spectrum of high energy πN -interactions (Alde, 1988b; Binon, 1983, 1984).
The final analysis of this channel was performed with a tenfold increase in statistics,

namely 3.1×104 π0ηη events from 0-prong data and 1.67×105 π0ηη events from a triggered
data sample requiring online one π0 and two η mesons (Amsler, 1995e). The Dalitz plot
is shown in Fig. 21(a). The horizontal and vertical bands are due to a0(980) decaying to
ηπ0. One also observes diagonal bands which correspond to the two states decaying to ηη.
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A residual incoherent flat background of 5%, mainly due to π0π0ω → 7γ with a missing
photon, has been subtracted from the Dalitz plot before applying the amplitude analysis,
this time with the full K-matrix formalism.

Since S-wave dominates in liquid, the channel π0ηη proceeds mainly through the 1S0

atomic state. The ηπ S-wave was parametrized by a 2×2 K-matrix with poles from
a0(980) and a0(1450). The parameters were taken from the π0π0η analysis (section 8.2),
leaving the production constants β free. A contribution from a2(1320) (ηπ D-wave) with
fixed mass and width was also offered to the fit. The ηη S- and D-waves were described
by one-channel K-matrices. Annihilation from atomic P-states was not included in the
fit except for tensor mesons (e.g. the expected f2(1565)) decaying to ηη. In fact the fit
demands a contribution from a tensor meson with mass ∼1494 and width ∼155 MeV,
produced mainly from P-states.

The best fit was obtained with two poles for the ηη S-wave. The resonance parameters
(T -matrix poles) are:

f0(1370) : m = 1360 ± 35, Γ = 300− 600 MeV,

f0(1500) : m = 1505 ± 15, Γ = 120± 30 MeV. (97)

The K-matrix mass and width of f0(1500) are 1569 and 191 MeV, respectively, in accord
with the Breit-Wigner parameters of the GAMS resonance (Binon, 1983). This state, pre-
viously called f0(1590), and f0(1500) are therefore assumed to be identical. The branching
ratio for π0ηη is given in Table 9 and the products of resonance production and decay
branching ratios are listed in Table 10.

8.2 pp→ π0π0η

This channel is relevant to search for isovector 0++ states decaying to ηπ. The π0π0η

Dalitz plot (2.8 × 105 events) is shown in Fig. 21(b). Qualitatively, one observes a0(980)
and a2(1320) decaying to ηπ and f0(980) decaying to ππ. The strong interference patterns
point to coherent contributions from a single pp atomic state (1S0).

An amplitude analysis based on the K-matrix formalism (and, alternatively, the N/D
formalism) has been performed, assuming pure S-wave annihilation (Amsler, 1994b). The
ππ S-wave was described by two poles, one for f0(980), coupling to ππ and KK, and one
for f0(1370). Elastic ππ-scattering data (Grayer, 1974; Rosselet, 1977) were included in
the fit. The ππ D-wave (f2(1270)) was also introduced but turned out to be negligible.
The ηπ D-wave was described by one pole for a2(1320). The ηπ S-wave was described
by a one-pole 2 × 2 K-matrix for a0(980) with couplings g1 to ηπ and g2 to KK. Since
decay to KK was not measured, g2 was obtained indirectly from the ηπ line shape. The
fit yielded g1 = 0.353 GeV and

g2

g1
∼ 0.88. (98)

These amplitudes were, however, not sufficient to describe the data. A satisfactory fit
was obtained by adding (i) a second pole to the ηπ S-wave, (ii) a second pole to the ηπ
D-wave and (iii) an ηπ P-wave. Branching ratios are given in Table 10. The branching
ratio for π0π0η (Table 9) is in excellent agreement with the one derived from the channel
π0π0η → π+π−3π0 (Amsler, 1994d).

The main result was the observation of a new isovector scalar resonance in the ηπ
S-wave:

a0(1450) : m = 1450 ± 40, Γ = 270± 40 MeV. (99)

This resonance manifests itself as a depletion in the bottom right (or top left) corner of
the Dalitz plot (Fig. 21 (b)). Evidence for the a0(1450) decaying to ηπ is also reported
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in an analysis of the channel π+π−η which requires, in addition, an amplitude for ρη
production from 3S1 (Abele, 1997a).

The ηπ D-wave contribution corresponds to a 2++ resonance around 1650 MeV, called
a′2(1650) in Table 10, with a width of about 200 MeV. This state could be the radial
excitation of a2(1320). The mass and width of the structure in the ηπ P-wave (exotic
1−+) are not well defined. They vary from 1200 to 1600 MeV and from 400 to 1000 MeV,
respectively, without significant changes in the χ2. The 1−+ ρ̂(1405) reported by Alde
(1988a) is therefore not confirmed by the present data.

8.3 pp→ π0π0π0

The first analysis of this channel used a sample of only 5.5 × 104 events and reported an
isoscalar 2++ meson at 1515 ± 10 MeV with width 120 ± 10 MeV, decaying to π0π0 (Aker,
1991). This state was identified with f2(1565) that had been observed before in the final
state π+π−π0 in hydrogen gas (May, 1989, 1990). P-wave annihilation from 3P1 and 3P2

was therefore allowed when fitting the 3π0 channel. Resonances in the ππ S-wave were
described by the ππ elastic scattering amplitude, replacing the Breit- Wigner amplitude
by

BW0(m) =
m

p

(
η(m) exp[2iδ(m)] − 1

2i

)
, (100)

according to Eq. (86), where δ and η were taken from the Argand diagram of Au (1987).
This is an approximation assuming equal production strengths for all resonances in the
ππ S-wave, which is reasonable for the 3π0 channel, as I will show below.

A statistical sample an order of magnitude larger then revealed a new feature (Amsler,
1994e) which was consolidated by a reanalysis of the early Crystal Barrel data (Anisovich,
1994): the presence in the Dalitz plot of a narrow homogeneously populated band from
a scalar resonance, f0(1500), decaying to 2π0. The 3π0 Dalitz plot is shown in Fig. 21(c)
and the 2π0 mass projection in Fig. 22.

Qualitatively, one observes the following features: the population along the ππ mass
band marked f2(1270) increases at the edges of the Dalitz plot indicating that one decay
π0 is preferably emitted along the flight direction of the resonance. This is typical of
a spin 2 resonance decaying with the angular distribution (3 cos2 θ − 1)2 from 1S0 or
(1 + 3 cos2 θ) from 3P1. The blobs labelled f2(1565) at the corners correspond to an
angular distribution sin2θ from another spin 2 resonance produced from 3P2, together
with constructive interference from the two ππ S-waves. The f0(980) appears as a narrow
dip in the ππ S-wave. The new feature is the homogeneous narrow band marked f0(1500)
which must be due to a spin 0 state.

The analysis of the full data sample was performed with the K-matrix formalism
(Amsler, 1995f). A 2 × 2 K-matrix with three poles was sufficient to describe the ππ
S-wave. Elastic ππ scattering data up to 1200 MeV from Grayer (1974) and Rosselet
(1977) were also included in the fit. The contributing scalar resonances are f0(980) and

f0(1370) : m ' 1330, Γ ∼ 760 MeV,

f0(1500) : m = 1500 ± 15, Γ = 120 ± 25 MeV. (101)

A 4-pole K-matrix helps to constrain the f0(1370) parameters, giving

f0(1370) : m = 1330 ± 50, Γ = 300 ± 80 MeV, (102)

and the 4th pole corresponds to a 600 MeV broad structure around 1100 MeV (called
f0(400−1200) by the Particle Data Group (Barnett, 1996)) and also reported by a recent
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reanalysis of ππ S-wave data (Morgan and Pennington, 1993). The data are therefore
compatible with 3 or 4 poles and it is not obvious that f0(1370) and f0(400 − 1200) are
not part of the one and the same object.

A one-dimensional K-matrix describes the ππ D-wave. In addition to f2(1270) one
finds

f2(1565) : m ∼ 1530, Γ ∼ 135 MeV. (103)

The fractional contribution of P-waves is 46%. Without P-waves the fit deteriorates
markedly but the f0(1370) and f0(1500) parameters remain stable. We shall return to
the f2(1565) in the discussion below. Branching ratios are given in Table 10.

8.4 Coupled channel analysis

A simultaneous fit was performed to the channels π0ηη, π0π0η and 3π0 (Amsler, 1995g)
using the full data samples presented in the previous sections with, in addition, the ππ-
scattering data up to 1200 MeV. However, pure S-wave annihilation was assumed. A 3
× 3 K-matrix with 4 poles was used to describe the ππ S-wave coupling to ππ, ηη and
the at that time unmeasured KK through the resonances f0(980), f0(1370), f0(1500),
taking also into account the broad structure around 1100 MeV. Common βα parameters
(Eq. (89)) were introduced to describe the production of resonances associated with the
same recoiling particle. For example, f0(1500) recoiling against π0 is produced with the
same strength in π0ηη and 3π0. The ηπ S-wave was described by a 2 × 2 K-matrix for
a0(980) and a0(1450). The ππ, ηη and ηπ D-waves were treated with one dimensional
K-matrices, the latter including a2(1320) and a′2(1650) with pole parameters taken from
the π0π0η analysis of section 8.2.

The branching ratios are given in Table 10. Note that the ππ S-wave includes contri-
butions from f0(400−1200), f0(980) and f0(1370) (but excluding f0(1500)) which cannot
be disentangled due to interferences. The fit is in good agreement with the single channel
analyses and constrains the resonance parameters. Hence a consistent description of all
three annihilation channels was achieved with the following main features:

1. The data demand three scalar resonances in the 1300 - 1600 MeV region:

a0(1450) : m = 1470 ± 25, Γ = 265± 30 MeV,

f0(1370) : m = 1390 ± 30, Γ = 380± 80 MeV,

f0(1500) : m = 1500 ± 10, Γ = 154± 30 MeV. (104)

2. The broad scalar structure around 1100 MeV (f0(400 − 1200)) has very different
pole positions in sheets II and III, making a resonance interpretation of this state
difficult.

3. The production data demand a larger width (' 100 MeV) for f0(980) than the ππ
scattering data alone (' 50 MeV, according to Morgan and Pennington (1993)).

4. A tensor meson is observed in the ππ D-wave with mass 1552 and width 142 MeV,
in accord with May (1889, 1990) notwithstanding the absence of atomic P-waves
in the present analysis. A structure is also required in this mass range in the ηη
D-wave. This state is not compatible with f ′2(1525) which is produced with a much
lower rate, as we shall see in section 8.7.

The ππ scattering amplitude T (Eq. (86)) obtained from the fit to the elastic scattering
data and the Crystal Barrel data is shown in Fig. 23. Note that Crystal Barrel KK data
are not yet included and therefore the third K-matrix channel also contains by default all
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other unmeasured inelasticities. Figure 24 shows the I = 0 S-wave production intensity
|T |2 (Eq. (88)) for the three annihilation channels. The maxima around 1300 and 1550
MeV correspond to the K-matrix poles for f0(1370) and f0(1500). It is instructive to
compare the dip around 1000 MeV in the ππ S-wave for the 3π0 channel to the peak in
the π0π0η channel, both due to f0(980). This is produced by interferences between the
ππ S-waves in 3π0 which have the opposite sign to the interference between the ππ and
the ηπ S-waves in ηπ0π0. The ππ S-wave in ππ scattering exhibits qualitatively the same
behaviour as in pp annihilation into 3π0, namely sharp minima around 1000 and 1450
MeV. The ansatz (100) used in several Crystal Barrel analyses (e.g. in Aker (1991)) for
the ππ S-wave is therefore a rough but reasonable approximation.

8.5 pp→ π0ηη′

Another piece of evidence for f0(1500) stems from π0ηη′ (Amsler, 1994f). This channel
was also reconstructed from the 6γ final state. Since η′ decays to γγ with a branching ratio
of only 2.1% the data sample is small (977 events). Most of these events were collected
with the online trigger requiring one π0, one η and one η′. The π0ηη′ Dalitz plot shows an
accumulation of events at small ηη′ masses. Figure 25 shows the ηη′ mass projection. The
ηη′ mass spectrum from the same annihilation channel, but with η′ → ηπ+π−, has entirely
different systematics but is identical (inset in Fig. 25). The enhancement at low masses is
due to a scalar resonance since the angular distribution in the ηη′ system is isotropic. A
maximum likelihood fit was performed to the 6γ channel using a (damped) Breit-Wigner
according to Eqs. (55), (56) and a flat incoherent background. The resonance parameters
are

f0(1500) : m = 1545 ± 25, Γ = 100 ± 40 MeV. (105)

The branching ratio is given in Table 10. The f0(1500) mass is somewhat larger than
for 3π0 and π0ηη. However, Abele (1996a) points out that a constant width in the
denominator of the Breit-Wigner function yields a mass around 1500 MeV. This is a more
realistic procedure since the total width at the ηη′ threshold remains finite due to the
channels ππ and ηη. However, this does not modify the branching ratio for f0(1500) → ηη′.
We shall therefore ignore Eq. (105), when averaging below the f0(1500) mass and width.

8.6 pp→ π0π0η′

With 0-prong data this final state is accessible through η′ → 2γ or η′ → ηπ0π0, leading
to 6, respectively 10 photons (Abele, 1997g). The branching ratios from both final state
configurations agree (Table 9). A sample of 8,230 10γ events were kinematically fitted to
4π0η. The π0π0η mass distribution (Fig. 26) shows a sharp signal from η′ and a shoulder
around 1400 MeV due to the E meson that will be discussed in section 11.

The π0π0η′ Dalitz plot was obtained by selecting events in the η′ peak and subtracting
background Dalitz plots from either sides of the peak. It shows a broad accumulation
of events in its center which can be described by a dominating ππ S-wave and small
contributions from a2(1320) and a0(1450) with branching ratios given in Table 10. These
resonances are included in the fit with fixed mass and width. The ratios of rates for
a2(1320) and a0(1450) decays into ηπ and η′π can be predicted from SU(3) and compared
with measurements. This will be discussed in section 10.1. The analysis of the 6γ Dalitz
plot (3,559 events) leads to similar results. Figure 27 shows that a0(1450) is required for
a satisfactory description of this annihilation channel.
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8.7 pp→ π0KLKL

The isoscalar f0(1500) has been observed to decay into π0π0, ηη and ηη′. To clarify its
internal structure it was essential to also search for its KK decay mode. In a previous
bubble chamber experiment (Gray, 1983) no KK signal had been observed in the 1500
MeV region in pp annihilation into KKπ, leading to the conclusion that the f0(1500)
coupling toKK is suppressed (Amsler and Close, 1996). However, no partial wave analysis
was performed due to limited statistics.

Crystal Barrel has therefore searched for f0(1500) in the annihilation channel π0KLKL

(Abele, 1996b; Dombrowski, 1996) which proceeds from the 1S0 atomic state. All-
neutral events were selected with three energy clusters in the barrel and the channel
pp → π0KLKL could be reconstructed by measuring the π0(→ 2γ) momentum and the
direction of one of the KL which interacts hadronically in the CsI barrel. The main
background contribution was due to events with a reconstructed π0 and one additional
γ which happen to fulfil the π0KLKL kinematics but for which one or more γ’s have
escaped detection. This background (∼ 17%) could be removed by subtracting a Dalitz
plot constructed from 2γ pairs with invariant masses just below or above the π0 mass.

Further background contributions were due to pp → ωKLKL where ω decays to π0γ

and both KL are not detected, and pp→ KSKL where one photon from KS → π0π0 → 4γ
and the KL are undetected. These events can be removed with appropriate mass cuts.
Background from final states like ωη, ωπ0 and 3π0 were studied by Monte Carlo simulation.
The total residual background contamination was (3.4 ± 0.5)%.

The background subtracted Dalitz plot is shown in Fig. 21(d). This plot has not been
symmetrized with respect to the diagonal axis since one KL is detected (vertical axis)
whilst the other is missing (horizontal axis). The interaction probability as a function
of KL momentum was measured by comparing the intensities along the two K∗ bands,
K∗ → KLπ

0. The interaction probability was found to be flat with KL momentum, but
increasing slowly below 300 MeV/c (Dombrowski, 1996). The π0KLKL Dalitz plot shown
in Fig. 21(d) is already corrected for detection efficiency and for KL decay between the
production vertex and the crystals. Its symmetry along the diagonal axis is nearly perfect,
indicating that acceptance and backgrounds have been taken into account properly.

One observes signals from K∗(892) decaying to Kπ and a2(1320)/f2(1270) decaying
to KK. The accumulation of events at the edge for small KK masses is due to the tensor
f ′2(1525) which is observed for the first time in pp annihilation at rest. These resonances
and the broad K∗0(1430) were introduced in a first attempt to fit the Dalitz plot8. The
K-matrix for the Kπ (I = 1/2) S-wave was written as

K =
am

2 + abp2
+
m0Γ0/ρ0

m2
0 −m

2
, (106)

where the first term describes the low energy Kπ scattering (a is the scattering length
and b the effective range) and the second term describes the K∗0(1430) resonance. The
parameters m0,Γ0, a and b were determined by fitting the scattering amplitude T (Eq.
(74)) to the Kπ phase shifts (Aston, 1988b). The fit is shown in Fig. 28. Note that
resonance occurs at δ ' 120◦. The corresponding mass and width (T -matrix pole) for
K∗0(1430) are m = (1423 ± 10) MeV and (277 ± 17) MeV, in close agreement with Aston
(1988b) who used a different parametrization and found m0 = 1429±6 and Γ0 = 287±23
MeV.

8The absence of threshold enhancement from a0(980) or f0(980) at the upper right border of the Dalitz plot
could be due to destructive interference between these states and/or to the loss of acceptance close to the KK
threshold.
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A one-pole K-matrix for a scalar resonance was added for the peak around 1450 MeV
in the KK mass distribution (Fig. 29). The fit clearly fails to describe the KK mass
spectrum (dashed line in Fig. 29). The second attempt assumed a K-matrix with two
scalar resonances, f0(1370) and f0(1500), in the KK amplitude. The fit now provided a
satisfactory description of the Dalitz plot and the KK mass spectrum (full line in Fig.
29). However, the isovector a0(1450) is also expected to decay to KLKL and one cannot
distinguish between isovectors and isoscalars from the π0KLKL data alone. Therefore a
Breit-Wigner was added for the isovector a0(1450) with fixed mass and width taken from
the coupled channel analysis (section 8.4). The f0(1370) and f0(1500) poles are stable,
nearly independent of a0(1450) contribution. One finds

f0(1370) : m = 1380 ± 40, Γ = 360 ± 50 MeV,

f0(1500) : m = 1515 ± 20, Γ = 105 ± 15 MeV, (107)

in agreement with the resonance parameters measured in the other decay channels.
Due to uncertainties in the KL interaction probability the branching ratio for π0KLKL

could not be determined accurately. The branching ratios given in Table 11 (Abele, 1996b;
Dombrowski, 1996) are therefore normalized to the known branching ratio for π0KSKS

(Armenteros, 1965; Barash, 1965)9.
The branching ratios for pp→ f0(1370) and f0(1500) → KLKL also vary with a0(1450)

contribution (Fig. 30). In Table 11 the branching ratios for f0(1370) and f0(1500) are
therefore derived from Fig. 30 assuming an a0(1450) contribution r0 to the π0KLKL

final state, derived from its measured contribution r = (10.8 ± 2.0)% to π±K∓KL (next
section):

r0 =
r

4

B(pp→ π±K∓KS)

B(pp→ π0KSKS)
= (9.8 ± 1.9)%, (108)

where we have used the branching ratios from Armenteros (1965) and Barash (1965).

8.8 pp→ π±K∓KL

This channel selects only isospin 1 resonances decaying to KK and therefore permits
a direct measurement of the contribution from isovectors to KKπ, in particular from
a0(1450). Crystal Barrel has studied the reaction pp→ π±K∓KL with a non-interacting
KL (Heinzelmann, 1996; Abele 1997e). This channel is selected from 7.7×106 triggered
2-prong data by requiring exactly two clusters in the barrel from π± and K∓. Particle
identification is achieved by measuring the ionisation in the drift chamber (Fig. 31)
and a (1C) kinematic fit ensures momentum and energy conservation. The background
contribution, mainly from π+π−π0, is about 2%. The Dalitz plot (Fig. 32) has been
corrected for background and acceptance, and for the KL interaction probability. The
latter was determined by reconstructing the channel π0KS(→ π+π−)KL with and without
missing KL. The branching ratio

B(pp→ π±K∓KL) = (2.91 ± 0.34) × 10−3 (109)

is in excellent agreement with the one given in Table 11 for π±K∓KS from bubble chamber
experiments (Armenteros, 1965; Barash, 1965).

The Dalitz plot shows clear signals from K∗(892), a2(1320) and a0(980). The K∗(892)
and a2(1320) were parametrized by Breit-Wigner functions. The a0(980) was described

9The isospin contributions from 1S0 to the K∗K system cannot be determined in this channel since the K∗

bands interfere constructively for both I = 0 and I = 1.
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by a 2 × 2 K-matrix (Flatté formula (93)). The Kπ S-wave (K∗0 (1430)) was treated
using the data from Aston (1988b), as described in the previous section. In contrast to
π0KLKL, both atomic states 1S0 and 3S1 contribute. The I = 0 and I = 1 contributions
to K∗(892)K can be determined from the (destructive) interference pattern around the
crossing point of the K∗ bands in Fig. 32.

The fit, however, did not provide a satisfactory description of the Dalitz plot and the
fitted a2(1320) mass, 1290 MeV, was significantly lower than the table value, a problem
that had been noticed earlier in bubble chamber data (Conforto, 1967). A substantial
improvement in the χ2 (Fig. 33) was obtained when introducing the a0(1450) as a second
pole in the K-matrix, together with a0(980), leading to the resonance parameters (T -
matrix pole)

a0(1450) : m = 1480 ± 30, Γ = 265 ± 15 MeV, (110)

in agreement with the ηπ decay mode. The a2(1320) mass now became compatible with
the table value (Barnett, 1996). We shall show below that the contribution to π±K∓KL

of (10.8 ± 2.0) % (Fig. 33) is consistent with predictions from the π0π0η channel, using
SU(3).

An even better fit was achieved by adding a broad structure in the KK P-wave,
presumably from the radial excitations ρ(1450) and ρ(1700), which could not, however,
be disentangled by the fit.

For a0(980) one finds for the T -matrix pole in the second Riemann sheet the mass 987
± 3 MeV and the width 86 ± 7 MeV. Using the ηπ decay branching ratio from the π0π0η

analysis (Table 10) one also obtains the ratio

B(a0(980)→ KK)

B(a0(980)→ ηπ)
= 0.24 ± 0.06. (111)

With the coupling g1 = 0.324 GeV to ηπ (Amsler, 1994b) the coupling g2 to KK can
be tuned to satisfy Eq. (111) by integrating the mass distributions over the a0(980)
distribution (Fig. 19). One obtains g2 = 0.279 MeV and the ratio g2/g1 = 0.86, is in
excellent agreement with the estimate from the line shape in the π0π0η channel (Eq. (98)).

The branching ratios are given in Table 11. The intermediate K∗K is largest in the
(I=1) 3S1 channel, a feature that was noticed before (Barash, 1965; Conforto, 1967) and
that we have used in section 6.1 as a possible explanation for the πφ enhancement. The
branching ratios are in fair agreement with those from Conforto (1967) and those for
π0KLKL, except for the much larger Kπ S-wave in π±K∓KL.

9 Annihilation at Rest into 5π

Resonances in ρ+ρ− have been reported in pn annihilation in deuterium: A 2++ state was
observed in bubble chamber exposures in liquid deuterium (Bridges, 1987). An enhance-
ment was also seen around 1500 MeV by the Asterix collaboration at LEAR in gaseous
deuterium but no spin-parity analysis was performed (Weidenauer, 1993). This state
was interpreted as f2(1565) in its ρρ decay mode, the slightly lower mass being due to
π-rescattering with the recoil proton exciting the ∆ resonance (Kolybashov, 1989). The
2++ assignment was, however, disputed in favour of 0++ by a reanalysis of the bubble
chamber data (Gaspero, 1993).

The Crystal Barrel has also searched for scalar mesons decaying to 4π. The 4π0 decay
mode was investigated using pp annihilation into 5π0, leading to 10 detected photons
(Abele, 1996c). The branching ratio for annihilation into 5π0 was found to be (7.1±1.4)×
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10−3. After removing the η → 3π0 contribution they performed a maximum likelihood
analysis of a sample of 25,000 5π0 events. The data demand contributions from π(1330) →
3π0 and from two scalar resonances decaying to 4π0. The mass and width of the lower
state, presumably f0(1370), could not be determined precisely.

The upper state has mass ∼ 1505 MeV and width ∼ 169 MeV and decays into two
ππ S-wave pairs and π0(1300)π0 with approximately equal rates. The branching ratio
for pp → f0(1500)π0→ 5π0 is (9.0 ± 1.4) ×10−4. Using the 2π branching ratio from the
coupled channel analysis one finds

B(f0(1500) → 4π)

B(f0(1500) → 2π)
= 2.1± 0.6, (112)

B(f0(1500)→ 4π0)

B(f0(1500) → ηη)
= 1.5± 0.5. (113)

The 4π0 (2π0) contribution in (112) has been multiplied by 9 (3) to take into account the
unobserved charged pions. The ratio (112) is, in principle, a lower limit which does not
include ρρ. However, a reanalysis of the Mark III data on J/ψ → γ2π+2π− finds evidence
for f0(1500) decaying to 4π through two S-wave dipions with negligible ρρ contribution
(Bugg, 1995). The ratio (113) is in agreement with the result for the former f0(1590)
from Alde (1987) in π−p→ 4π0n: 0.8 ± 0.3.

A scalar resonance with mass 1374 ± 38 and width 375 ± 61 MeV decaying to π+π−2π0

was also reported by Crystal Barrel in the annihilation channel π+π−3π0 (Amsler, 1994d).
The branching ratio for π+π−3π0 was measured to be (9.7 ± 0.6) %. The 4π decay mode
of the resonance is five times larger than the 2π, indicating a large inelasticity in the 2π
channel. The relative decay ratio to ρρ and two ππ S-waves is 1.6 ± 0.2. However, the
data do not exclude the admixture of a f0(1500) contribution.

10 The New Mesons

It is instructive to first check the consistency within Crystal Barrel data and also com-
pare with previous measurements. The squares of the isospin Clebsch-Gordan coefficients
determine the total branching ratios, including all charge modes. Note that two neutral
isovectors (e.g. a0

2(1320)π0) do not contribute to I = 1. Table 12 gives the corresponding
weights to KK. For K∗(892),K∗0 (1430), a2(1320) and a0(1450) contributions to KKπ the
π0KLKL ratios in Table 11 must be multiplied by 12 while those for f2(1270), f0(1370),
f0(1500) and f ′2(1525) must be multiplied by 4 (since KS is not observed). For π±K∓KL

the resonance contributions in Table 11 have to be multiplied by 3 for K∗(892), K∗0(1430),
by 3 for a0(980), a2(1320), ρ(1450/1700) from I = 0 and by 2 for a2(1320), ρ(1450/1700)
from I = 1.

Furthermore, the branching ratios must be corrected for all decay modes of the in-
termediate resonances to obtain the two-body branching ratios in Table 13. We have
used the following decay branching ratios (Barnett, 1996): (28.2±0.6)% for f2(1270) →
π0π0, (4.6±0.5)% for f2(1270) → KK, (14.5±1.2)% for a2(1320) → ηπ, (4.9±0.8)% for
a2(1320) → KK, (0.57±0.11)% for a2(1320) → η′π and (88.8±3.1)% for f ′2(1525) → KK.
There are indications that the a2(1320) contribution to ππη is somewhat too large. Oth-
erwise the consistency is in general quite good and Crystal Barrel results also agree with
previous data. This gives confidence in the following discussion on the new mesons.

38



10.1 a0(1450)

We begin with the isovector a0(1450) which has been observed in its ηπ, η′π and KK

decay modes. Averaging mass and width from the coupled channel and the KK analyses
one finds:

a0(1450) : m = 1474 ± 19, Γ = 265 ± 13 MeV. (114)

The a0(1450) decay rates are related by SU(3)-flavor which can be tested with Crystal
Barrel data. Following Amsler and Close (1996) we shall write for a quarkonium state

|qq〉 = cosα|nn̄〉 − sinα|ss̄〉, (115)

where
|nn̄〉 ≡ (uū+ dd̄)/

√
2. (116)

The mixing angle α is related to the usual nonet mixing angle θ (Barnett, 1996) by the
relation

α = 54.7◦ + θ. (117)

Ideal mixing occurs for θ = 35.3◦ (-54.7◦) for which the quarkonium state becomes pure
ss (nn).

The flavor content of η and η′ are then given by the superposition (see also Eq. (21))

|η〉 = cosφ|nn̄〉 − sinφ|ss̄〉,

|η′〉 = sinφ|nn̄〉+ cosφ|ss̄〉, (118)

with φ = 54.7◦ + θp, where θp is the pseudoscalar mixing angle which we take as θp =
(−17.3 ± 1.8)◦ (Amsler, 1992b).

The partial decay width of a scalar (or tensor) quarkonium into a pair of pseudoscalars
M1 and M2 is given by

Γ(M1,M2) = γ2(M1,M2)fL(p)p. (119)

The couplings γ can be derived from SU(3)-flavor. The two-body decay momentum is
denoted by p and the relative angular momentum by L. The form factor

fL(p) = p2L exp(−
p2

8β2
) (120)

provides a good fit to the decay branching ratios of the well known ground state 2++

mesons if β is chosen ≥ 0.5 GeV/c (Amsler and Close, 1996). We choose β = 0.5 GeV/c
although the exponential factor can be ignored (β →∞) without altering the forthcoming
conclusions. Replacing fL(p)p by prescription (28) also leads to a good description of decay
branching ratios provided that pR > 500 MeV/c, corresponding to an interaction radius
of less than 0.4 fm (Abele, 1997g).

The decay of quarkonium into a pair of mesons involves the creation of qq pair from
the vacuum. We shall assume for the ratio of the matrix elements for the creation of ss̄
versus uū (or dd̄) that

ρ ≡
〈0|V |ss̄〉

〈0|V |uū〉
' 1. (121)

This assumption is reasonable since from the measured decay branching ratios of tensor
mesons one finds ρ = 0.96 ± 0.04 (Amsler and Close, 1996). Similar conclusions are
reached by Peters and Klempt (1995).
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Let us now compare the Crystal Barrel branching ratios for a2(1320) decays to KK,
ηπ and η′π with predictions from SU(3). One predicts for an isovector with the coupling
constants γ given in the appendix of Amsler and Close (1996):

Γ(a±2 (1320) → K±K0)

Γ(a0
2(1320) → ηπ0)

=
1

2 cos2 φ

f2(pK)pK
f2(pη)pη

= 0.295 ± 0.013, (122)

Γ(a0
2(1320) → η′π0)

Γ(a0
2(1320) → ηπ0)

= tan2 φ
f2(pK)pK
f2(pη)pη

= 0.029 ± 0.004. (123)

Both ratios are in excellent agreement with world data (Barnett, 1996). The Crystal
Barrel numbers to be compared with are taken from Tables 10 and 11 for I = 0. One
finds the ratios of branching ratios

B(a±2 (1320)→ K±K0)

B(a0
2(1320) → ηπ0)

= 0.21+0.04
−0.06, (124)

B(a0
2(1320) → η′π0)

B(a0
2(1320) → ηπ0)

= 0.034 ± 0.009, (125)

in fair agreement with SU(3) predictions. We now compare predictions and data for
a0(1450). From SU(3) one expects, using Eq. (122) and (123) with L = 0:

Γ(a±0 (1450) → K±K0)

Γ(a0
0(1450) → ηπ0)

= 0.72 ± 0.03, (126)

Γ(a0
0(1450) → η′π0)

Γ(a0
0(1450) → ηπ0)

= 0.43 ± 0.06, (127)

in agreement with the experimental results from Tables 10 and 11:

B(a±0 (1450) → K±K0)

B(a0
0(1450) → ηπ0)

= 0.87 ± 0.23, (128)

B(a0
0(1450) → η′π0)

B(a0
0(1450) → ηπ0)

= 0.34 ± 0.15. (129)

This then establishes a0(1450) as a qq isovector in the scalar nonet.
The existence of a0(1450) adds further evidence for a0(980) being a non-qq state. The

f0(980) and a0(980) have been assumed to be KK molecules (Weinstein, 1990; Close,
1993). This is motivated by their strong couplings to KK - in spite of their masses close
to the KK threshold - and their small γγ partial widths. For f0(980) the 2γ partial width
is Γγγ = (0.56 ± 0.11) keV (Barnett, 1996). The relative ratio for a0(980) decay to KK
and ηπ has been determined by Crystal Barrel (Eq. (111)). Using

ΓγγB(a0(980) → ηπ) = 0.24 ± 0.08 keV (130)

(Barnett, 1996), one then derives the partial width Γγγ = (0.30 ± 0.10) keV. Thus the 2γ
partial widths for f0(980) and a0(980) appear to be similar, close to predictions for KK
molecules (0.6 keV) and much smaller than for qq states (Barnes, 1985). However, not
everybody agrees: In Törnqvist (1995) the f0(980)/f0(1370) and the a0(980)/a0(1450)
are different manifestations of the same uniterized ss and ud states, while the broad
structure around 1100 MeV is the uu + dd state (Törnqvist and Roos, 1996). This then
leaves f0(1500) as an extra state.
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10.2 f0(1370) and f0(1500)

From the single channel analyses and the KK decay mode we find for f0(1370) and
f0(1500) the average masses and widths:

f0(1370) : m = 1360 ± 23 MeV, Γ = 351 ± 41 MeV,

f0(1500) : m = 1505 ± 9 MeV, Γ = 111± 12 MeV. (131)

The closeness of a0(1450) and f0(1500) or even f0(1370) masses is conspicuous and points
to a close to ideally mixed scalar nonet, one of the latter mesons being one of the qq
isoscalars. However, f0(1500) with a width of about 100 MeV is much narrower than
a0(1450), f0(1370) and K∗0(1430) with widths of typically 300 MeV. Theoretical predic-
tions for the widths of scalar qq mesons, based on the 3P0 model, agree that scalar qq
mesons have widths of at least 250 MeV (for a discussion and references see Amsler and
Close (1996)). We therefore tentatively assign f0(1370) to the ground state scalar nonet.

If f0(980) is indeed a molecule then the (mainly) ss member of the scalar nonet still
needs to be identified. We now show from their decay branching ratios that neither
f0(1370) nor f0(1500) are likely candidates. To investigate the quark content of f0(1500)
we calculate its relative couplings to ηη, ηη′ and KK and search for a common value of
the scalar mixing angle α. The ratios of couplings for a pseudoscalar mixing angle φ are
(Amsler and Close, 1996):

R1 ≡
γ2(ηη)

γ2(ππ)
=

(cos2 φ−
√

2 tanα sin2 φ)2

3
,

R2 ≡
γ2(ηη′)

γ2(ππ)
=

2(cos φ sinφ[1 +
√

2 tanα])2

3
,

R3 ≡
γ2(KK)

γ2(ππ)
=

(1−
√

2 tanα)2

3
. (132)

For ηη and ππ we use the branching ratios from the coupled channel analysis (Table 10)
and multiply ππ by 3 to take into account the π+π− decay mode. The branching ratio for
KK is taken from Table 11 and is multiplied by 4. The branching fractions are, including
the 4π mode from Eq. (112) and ignoring a possible small ρρ contribution to 4π:

ππ : (29.0 ± 7.5) %
ηη : (4.6 ± 1.3) %
ηη′ : (1.2 ± 0.3) %
KK : (3.5 ± 0.3) %
4π : (61.7 ± 9.6) %.

(133)

After correcting for phase space and form factor (Eq. (120)) we obtain:

R1 = 0.195 ± 0.075, R2 = 0.320 ± 0.114, R3 = 0.138 ± 0.038. (134)

Since f0(1500) lies at the ηη′ threshold we have divided the branching ratios by the phase
space factor ρ integrated over the resonance and have neglected the form factor when
calculating R2.

Previously, the upper limit for R3 was < 0.1 (95% confidence level) from Gray (1983),
in which case no value for the mixing angle α could simultaneously fit R1, R2 and R3

(Amsler and Close, 1996), therefore excluding f0(1500) as a qq state. The (1σ) allowed
regions of tanα are shown in Fig. 34 for the ratios (134). The agreement between R1 and
R3 is not particularly good. Remember, however, that branching ratios are sensitive to
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interference effects and therefore caution should be exercized in not overinterpreting the
apparent discrepancy in Fig. 34. On the basis of the ratios (134), one may conclude that
f0(1500) is not incompatible with a mainly uu + dd meson (α = 0). For a pure ss state
(α = 90◦) the ratios (134) would, however, become infinite. Therefore f0(1500) is not the
missing ss scalar meson.

Similar conclusions can reached for f0(1370) which has small decay branching ratios to
ηη and KK. Precise ratios Ri are difficult to obtain in this case since the branching ratio
to ππ in Table 10 also includes the low energy ππ S-wave, in particular f0(400 − 1200).

This analysis shows that both f0(1370) and f0(1500) are compatible with isoscalar
uu+ dd states, although the latter is much too narrow for the ground state scalar nonet.
This then raises the question on whether f0(1500) could not be the first radial excitation
of f0(1370). This is unlikely because (i) the splitting between ground state and first radial
is expected to be around 700 MeV (Godfrey and Isgur, 1985), (ii) the next K∗0 lies at 1950
MeV (Barnett, 1996) and, last but not least, first radials are expected to be quite broad
(Barnes, 1997).

The most natural explanation is that f0(1500) is the ground state glueball predicted
in this mass range by lattice gauge theories. However, a pure glueball should decay to
ππ, ηη, ηη′ and KK with relative ratios 3 : 1 : 0 : 4, in contradiction with our ratios
Ri. In the model of Amsler and Close (1996) the finite ηη′ and the small KK rates can
be accommodated by mixing the pure glueball G0 with the nearby two nn and ss states.
Conversely, the two isoscalars in the qq nonet acquire a gluonic admixture. In first order
perturbation one finds10

|f0(1500)〉 =
|G0〉+ ξ(

√
2|nn〉+ ω|ss〉)√

1 + ξ2(2 + ω2)
, (135)

where ω is the ratio of mass splittings

ω =
m(G0)−m(nn)

m(G0)−m(ss)
. (136)

In the flux tube simulation of lattice QCD the pure gluonium G0 does not decay to ππ nor
to KK in first order and hence f0(1500) decays to ππ and KK through its qq admixture
in the wave function. If G0 lies between the two qq states, ω is negative and the decay to
KK is hindered by negative interference between the decay amplitudes of the nn and ss

components in Eq. (135). The ratio of couplings to KK and ππ is

γ2(KK)

γ2(ππ)
=

(1 + ω)2

3
. (137)

The cancellation is perfect whenever G0 lies exactly between nn and ss (ω = −1). We
find with the measured R3 two solutions, ω = - 0.36 or -1.64. Assuming that f0(1370)
is essentially nn (with a small gluonic admixture) this leads to an ss state around 1900
MeV or 1600 MeV, respectively. Furthermore, the ratio of ππ partial widths for f0(1500)
and f0(1370), divided by phase-space and form factor, is given by

Γ̃2π[f0(1500)]

Γ̃2π[f0(1370)]
=

2ξ2(1 + 2ξ2)

1 + ξ2(2 + ω2)
∼ 0.5, (138)

using for f0(1500) the branching ratios from Tables 10 and 11 and the 4π/2π ratio (112).
There is, however, a large uncertainty in the ratio (138) due to the branching ratios of

10We assume here that the quark-gluon coupling is flavor blind, see Amsler and Close (1996) for a
generalization.
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f0(1370) which cannot easily be disentangled from f0(400 − 1200). This then leads to
|ξ| ∼ 0.6 and according to Eq. (135) to about 30% or about 60% glue in f0(1500) for an
ss state at 1600 MeV or 1900 MeV, respectively.

The f0(1500) has also been observed in pp annihilation at higher energies (Armstrong,
1993) and in other reactions, in particular in central production, decaying to 2π+2π−

(Antinori, 1995). The VES experiment, studying π−p interactions on nuclei at 36 GeV/c,
has reported a resonance, π(1800), decaying to π−ηη′ (Beladidze, 1992) and π−ηη (Amelin,
1996). The π(1800) appears to decay into a resonance with mass 1460 ± 20 MeV and
width 100 ± 30 MeV - in agreement with f0(1500) - with a recoiling π. They report an
ηη′/ηη ratio of 0.29 ± 0.07 which is in excellent agreement with the Crystal Barrel ratio
for f0(1500) decays, 0.27 ± 0.10 (Table 10). Note that if π(1800) is indeed a qqg (hybrid),
as advocated by Close and Page (1995), then decay into gluonium is favoured,.

A reanalysis of J/ψ radiative decay to 2π+2π− finds evidence for f0(1500) decaying
to two S-wave dipions with a branching ratio in J/ψ → γ4π of (5.7 ± 0.8) × 10−4 (Bugg,
1995). This leads to an expected branching ratio of (2.7±0.9)×10−4 in J/ψ → γ2π, using
the Crystal Barrel result (112). It is interesting to compare this prediction with data on
J/ψ → γπ+π− from Mark III (Baltrusaitis, 1987) where f2(1270) is observed together
with a small accumulation of events in the 1500 MeV region. Assuming that these are
due to f0(1500), one finds by scaling to f2(1270) a branching ratio in J/ψ → γ2π of
' 2.9× 10−4, in agreement with the above prediction.

Summarizing, f0(1500) has been observed in pp annihilation in several decay modes,
some with very high statististics (∼ 150,000 decays into π0π0) and also in other processes
that are traditionally believed to enhance gluonium production, central production and
J/ψ radiative decay. The K∗0(1430) and a0(1450) define the mass scale of the qq scalar
nonet. The f0(1500) is not the missing ss and is anyway too narrow for a scalar qq state.
The most natural explanation for f0(1500) is the ground state glueball mixed with nearby
scalars. The missing element in this jigsaw puzzle is the ss scalar expected between 1600
and 2000 MeV. The analysis of in flight annihilation data will hopefully provide more
information in this mass range. The spin of fJ(1710) has not been determined unambigu-
ously. If J = 0 is confirmed then fJ(1710) could be this state or, alternatively, become
a challenger for the ground state glueball (Sexton, 1995). A more detailed discussion on
f0(1500) and fJ(1710) can be found in Close (1997).

10.3 f2(1565)

The f2(1565) with mass 1565 ± 20 and width 170 ± 40 MeV has been observed first by
the Asterix collaboration at LEAR in the final state π+π−π0 in hydrogen gas (May, 1989,
1990) and then by Aker (1991) in the 3π0 final state in liquid. The 3π0 analysis gave 60%
P-state contribution to 3π0 in liquid with roughly equal intensities from f2(1565) of 9%,
each from 1S0, 3P1 and 3P2. The full 3π0 data sample demands 46% P-state annihilation
(Amsler, 1995f) and also requires a tensor around 1530 MeV (section 8.3). The ss tensor,
f ′2(1525), has been observed in its KK decay mode (section 8.7). From the observed rate
(Table 13) and the known f ′2(1525) decay branching ratios (Barnett, 1996) one finds that
f ′2(1525) cannot account for much of the 2++ signal in ππ or ηη. Hence f2(1565) is not
f ′2(1525).

The large P-state fraction in the 3π0 channel in liquid is not too surprising: the
corresponding channel pp→ π+π−π0 in liquid proceeds mainly from the (I=0) 3S1 atomic
state while the (I=1) 1S0 is suppressed by an order of magnitude (Foster, 1968b), as are
normally P-waves in liquid. On the other hand, the channel pp → 3π0 proceeds only
through the (I=1) 1S0 atomic state while 3S1 is forbidden. Indeed the branching ratios
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for 3π0 is an order of magnitude smaller than for π+π−π0 (Table 9). Hence for 3π0 S-
and P-wave annihilations compete in liquid.

A fraction of 50% P-wave was also required in the Dalitz plot analysis of the I = 1
final state π−π0π0 at rest in liquid deuterium (Abele, 1997h) which shows evidence for
f0(1500) and f2(1565) production and requires in addition the ρ-meson and two of its
excitations, ρ−(1450) and ρ−(1700), decaying to π−π0.

However, the coupled channel analysis described in section 8.4, ignoring P-waves, still
requires a tensor at 1552 MeV. Neglecting P-waves increases slightly the contribution
from f0(1500) while decreasing the contribution from f2(1565), although the rates remain
within errors (compare the two π0π0 branching ratios in Table 10 for the single and
coupled channel analyses).

The alternative N/D analysis also reproduces the features of the 3π0 Dalitz plot with-
out P-wave contributions, in particular the scalar state around 1500 MeV (Anisovich,
1994). A tensor contribution with mass ∼ 1565 and width ∼ 165 MeV is, however, still
required, but most of the blob structure in Fig. 21(c) is taken into account by interferences
in the low energy ππ S-wave.

An N/D analysis of Crystal Barrel data, together with former data from other reac-
tions, also reports a tensor with mass 1534 ± 20 and width 180 ± 60 MeV (Abele, 1996a).
They report strong ρρ and ωω contributions and therefore assign this signal to f2(1640)
discovered by GAMS in π−p → ωωn (Alde 1990), also reported to decay into 4π by the
Obelix collaboration in np→ 5π (Adamo, 1992). It should be emphasized, however, that
in Abele (1996a) the inelasticity in the K-matrix is attributed to ρρ and ωω, although no
4π data are actually included in the fit. Given that mass and width of the tensor agree
with f2(1565), but disagree with f2(1640), it seems more natural to assign the 2++ signal
to the former. It is interesting to note that a 2++ ρρ molecule (Törnqvist, 1991) or a 2++

baryonium state (Dover, 1986) decaying strongly to ρρ (Dover, 1991) are predicted in this
mass range. The f2(1565) could be one of these states.

In conclusion, there is a certain amount of model dependence when extracting the
precise production and decay rates of f2(1565). However, annihilation data require both
a scalar and a tensor around 1500 MeV and the parameters and rates for f0(1500) are
reasonably stable, independent of f2(1565) contribution. The Crystal Barrel data in gas
will hopefully settle the issue of the fraction of P-wave in three-body annihilation.

11 E/ι Decay to ηππ

The E meson, a 0−+ state, was discovered in the sixties in the KKπ mass spectrum of
pp annihilation at rest into (KSK

±π∓)π+π−. Its mass and width were determined to
be 1425 ± 7 and 80 ± 10 MeV (Baillon, 1967). Its quantum numbers have remained
controversial since other groups have claimed a 0−+ state (now called η(1440)) and a 1++

state (now called f1(1420)) in this mass region from various hadronic reactions. A broad
structure (previously called ι), has also been observed in radiative J/ψ decay to KKπ

(Scharre, 1980). Initially determined to be 0−+, the E/ι structure was then found to
split into three states, the first (0−+) at 1416 ± 10 MeV decaying to a0(980)π, the second
(presumably the 1++ f1(1420)) at 1443 ± 8 MeV and the third (0−+) at 1490 ± 16 MeV,
both decaying to K∗K (Bai, 1990). The widths were not determined accurately. The
Obelix collaboration has analyzed the KKπ mass spectrum in pp annihilation at rest in
liquid and has also reported a splitting of the E meson into two pseudoscalar states at
1416 ± 2 MeV (Γ = 50 ± 4 MeV) and 1460 ± 10 MeV (Γ = 105 ± 15 MeV) (Bertin,
1995). We shall refer to these pseudoscalars as η(1410) and η(1460). When using gaseous
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hydrogen, one expects the production of 1++ mesons from 3P1 recoiling against an S-
wave dipion: Bertin (1997) indeed observes three states in the KKπ mass spectrum in
gas: η(1410), f1(1420) and η(1460).

In J/ψ radiative decay, ι decays to KKπ through the intermediate a0(980) and hence
a signal was also expected in the a0(980)π → ηππ mass spectrum. This has indeed been
observed by Mark III and DM2: Bolton (1992) reports a signal in a±0 π

∓ at 1400 ± 6 MeV
(Γ = 47 ± 13 MeV) and Augustin (1990) in ηπ+π− at 1398 ± 6 MeV (Γ = 53 ± 11 MeV).
We shall tentatively assign these signals to η(1410).

To clarify whether the structures observed in J/ψ radiative decay and in pp annihi-
lation are compatible and in particular to confirm the quantum numbers of E (0−+ and
not 1++) Crystal Barrel has searched for the ηππ decay mode of the E meson in the
reaction pp → (ηπ+π−)π0π0 and (ηπ0π0)π+π−, leading to two charged particles and 6γ
(Amsler, 1995h; Urner, 1995). Since the rate for this reaction was expected to be rather
small (∼ 10−3 of all annihilations), an online trigger required 8 clusters in the barrel and
at least two π0 and one η. A 7C kinematic fit then selected the channel π+π−2π0η while
suppressing π+π−2ηπ0 and π+π−3π0. The branching ratio for π+π−2π0η was found to
be (2.09 ± 0.36) %.

The final state π+π−2π0η includes a strong contribution from ωηπ0 (ω → π+π−π0), a
channel that has been studied in its 7γ decay mode (Amsler, 1994c). Events compatible
with ωηπ0 were removed, leaving a sample of about 127,000 π+π−2π0η events. The
evidence for η(1410) decaying to ηππ is shown in the π0π0η and π+π−η mass distributions
(Fig. 35). Some 9,000 η(1410) decays into ηππ are observed in Fig. 35, an order of
magnitude more than for E to KKπ in the seminal work of Baillon (1967).

A partial wave analysis was performed using a maximum likelihood optimization. The
signal at 1400 MeV was described by the annihilation channels

pp → η(1410)(→ ησ0)σ+−,

→ η(1410)(→ a0
0(980)π0)σ+−,

→ η(1410)(→ ησ+−)σ0,

→ η(1410)(→ a±0 (980)π∓)σ0, (139)

where σ0 and σ+− are shorthands for the π0π0 and π+π− S-waves. The latter were
described by prescriptions of the form (100) which is reasonable since the ππ masses lie
below 900 MeV. Background contributions, e.g. from ηρ0σ0 and η′ρ0, were also included
in the fit. Figure 36 shows for example the a±0 (980) angular distribution in the η(1410)
rest frame together with the best fit for a 0−+ state. The data exclude 1++, hence η(1410)
is definitively pseudoscalar and is produced from the 1S0 atomic state. It has mass and
width

η(1410) : m = 1409 ± 3 MeV, Γ = 86± 10 MeV. (140)

The width is somewhat larger than for ηππ in J/ψ decay (Bolton, 1992; Augustin, 1990)
and for KKπ in pp annihilation at rest (Bertin, 1995).

The branching ratio to KKπ has been measured earlier (Baillon, 1967):

B(pp→ Eππ,E → KKπ) = (2.0± 0.2) × 10−3, (141)

while Crystal Barrel finds for the ηππ mode

B(pp→ η(1410)ππ, η(1410) → ηππ) = (3.3 ± 1.0) × 10−3. (142)

The fit yields ησ and a0(980)(→ ηπ)π decay contributions with a relative rate of 0.78
± 0.16. Assuming that 50% of the KKπ mode proceeds through η(1410) decaying to
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a0(980)π (Baillon, 1967) one can estimate from these branching ratios

B(a0(980)→ KK)

B(a0(980)→ ηπ)
∼ 0.54 ± 0.18, (143)

somewhat larger but not in violent disagreement with the result (111).
The observation of the ηπ0π0 decay mode also lifts the earlier isospin ambiguity for

the E meson and clearly establishes that this state is isoscalar (C = +1). Note that the
Crystal Barrel data do not exclude the presence of the other I = 0 pseudoscalar, η(1460),
since the latter was observed in K∗K and not in ηππ.

The first radial excitation of the η could be η(1295) decaying to ηππ (Barnett, 1996).
Hence one of two pseudoscalars in the ι structure could be the radial excitation of the
η′. The near equality of the η(1295) and π(1300) masses suggests an ideally mixed nonet
of 0−+ radials. This implies that the second isoscalar in the nonet should be mainly ss

and hence decays to K∗K, in accord with observations for η(1460). This scheme then
favours an exotic interpretation for η(1410), perhaps gluonium mixed with qq (Close, 1997)
or a bound state of gluinos (Farrar, 1996). The gluonium interpretation is, however,
not favoured by lattice gauge theories, which predict the 0−+ state above 2 GeV (see
Szczpaniak (1996)).

12 Summary and Outlook

Crystal Barrel has collected 108 pp annihilation at rest in liquid hydrogen, three orders of
magnitudes more than previous bubble chamber experiments. The results reviewed in this
report were achieved thanks to the availability of pure, cooled and intensive low energy
antiproton beams which allow a good spatial definition of the annihilation source and
thanks to the refinement of the analysis tools warranted by the huge statistical samples.
The data processed so far concentrate on annihilations at rest into 0-prong that had
not been investigated before. The data collected with the 0-prong trigger correspond to
6.3× 108 annihilations.

The measurement of the branching ratio for annihilation into π0π0 leads, together
with a cascade calculation of the antiprotonic atom, to a fraction of (13 ± 4) % P- wave
in liquid hydrogen. Therefore S-wave dominance has been, in general, assumed to analyze
the data.

The branching ratios for annihilation into two neutral light mesons (π0η, π0η′, ηη, ηη′,
ωη, ωη′, ηρ0, η′ρ0) reveal the interplay of constituent quarks in hadrons. The non-planar
quark rearrangement graph must play an important role in the annihilation process. Using
the OZI rule the pseudoscalar mixing angle was determined to be (−17.3 ± 1.8)◦.

However, the production of φ mesons is enhanced in nearly all channels compared to
predictions by the OZI rule. The most significant deviation is found in the annihilation
channel π0φ. After phase space correction, the π0φ/π0ω ratio is (10.6 ± 1.2) % while OZI
predicts 0.42 %. Whether this enhancement can be explained by final state corrections or
by ss pairs in the nucleon is not clear yet. The analysis of data in P-state annihilations,
in gas or at higher momenta, will be helpful in settling the nature of this phenomenon.

In electromagnetic processes, the radiative annihilations π0γ, ηγ and ωγ have been
observed with rates consistent with predictions from VDM, but φγ may be enhanced.
The branching ratio for ω → ηγ, (6.6± 1.7)× 10−4, was measured independently of ρ−ω
interference. This results solves the ambiguity in e+e− formation experiments, selecting
the constructive ρ−ω interference solution. The η → 3π0 Dalitz plot is not homogeneous
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but shows a negative slope of α = 0.052 ± 0.020. Crystal Barrel data also confirms the
evidence for the direct decay η′ → π+π−γ, in addition to η′ → ργ.

A decisive progress has been achieved in understanding scalar mesons by studying
annihilation into three pseudoscalars. An isovector state, a0(1450), with mass and width
(m,Γ) = (1474 ± 19, 265 ± 13) MeV has been observed to decay into ηπ, η′π and KK

with rates compatible with SU(3) flavor. The existence of a0(1450) adds evidence for
a0(980) not being qq, but perhaps a KK molecule. The ratio of a0(980) decay rates to
KK and ηπ was measured to be 0.24 ± 0.06.

An isoscalar state, f0(1370), with mass and width (m,Γ) = (1360 ± 23, 351 ± 41) MeV
has been observed to decay into ππ, ηη, KK and 4π. Obtaining accurate branching ratios
for f0(1370) is difficult due to interferences with the broad structure f0(400− 1200). The
nature of this structure (meson or slowly moving background phase) is unclear. Whether
f0(400 − 1200) is really distinct from f0(1370) is not entirely clear. Both questions will
probably remain with us for some time. The states a0(1450), f0(1370) and K∗0 (1430) are
broad, consistent with expectations for qq scalar mesons. The small coupling of f0(1370)
to KK makes it an unlikely candidate for the ss meson, which is therefore still missing.
More information on this state will hopefully emerge in the mass range above 1600 MeV
from Crystal Barrel data in flight.

An additional isoscalar state, f0(1500), with mass and width (m,Γ) = (1505 ± 9,
111 ± 12) MeV has been observed to decay into ππ, ηη, ηη′, KK and 4π. The decay
branching ratios are 29, 5, 1 , 3 and 62 %, respectively. These rates exclude this state to
be the missing ss. Hence f0(1500) is supernumerary and anyway too narrow to be easily
accommodated in the scalar nonet. The likely explanation is that f0(1500) is the ground
state glueball predicted by QCD, mixed with the two nearby qq isoscalars, f0(1370) and
the higher lying ss state.

The tensor f2(1565) is dominantly produced from P-states. It is, however, still required
to fit the data when assuming pure S-wave annihilation: Its mass and width are ' 1552
and ' 142 MeV. The systematic inclusion of P-wave annihilation at rest in all analyses
is, however, prevented by the large number of fit parameters. Data from Crystal Barrel
and Obelix in liquid and gaseous hydrogen might alleviate this problem, perhaps also
modifying slightly some of the branching ratios obtained from liquid only.

A 0−+ state, η(1410), with mass and width (m,Γ) = (1409 ± 3, 80 ± 10) MeV has
been observed to decay into ηπ0π0 and ηπ+π− with approximately equal rates through
a0(980)π and (ππ)Sη . The neutral decay mode establishes this state as an isoscalar and,
together with other experiments, strengthens the evidence for two I = 0 pseudoscalars in
the 1400 - 1500 MeV region.

Crystal Barrel data also show evidence for the two excitations of the ρ meson, ρ(1450)
and ρ(1700) and for the radial excitation a′2(1650). The analysis of in-flight data will
hopefully reveal further radial excitations, hybrid mesons and higher mass glueballs. For
glueballs, a more definitive progress will probably be achieved in radiative J/ψ decay
at a high luminosity e+e− factory or in central collisions at the forthcoming Compass
experiment at CERN.
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Sedlák, J., and V. Šimák, 1988, Sov. J. Part. Nucl. 19, 191.
Sexton, J., A. Vaccarino, and D. Weingarten, 1995, Phys. Rev. Lett. 75, 4563.
Spanier, S., 1994, Ph.D. thesis (University of Mainz).
Spanier, S., 1996, Yad. Fiz. 59, 1352.
Spanier, S., 1997, Workshop on The Strange Structure of the Nucleon, CERN.
Szczepaniak, A., E.S. Swanson, C.R. Ji, and S.R. Cotanch, 1996, Phys. Rev. Lett. 76,
2011.
Thompson, D.R., et al., 1997, Phys. Rev. Lett. (in print)
Törnqvist, N.A., 1991, Phys. Rev. Lett. 67, 556.
Törnqvist, N.A., 1995, Z. Phys. C 68, 647.
Törnqvist, N.A., and M. Roos, 1996, Phys. Rev. Lett. 76, 1575.
Urner, D., 1995, Ph.D. thesis (University of Zurich).
Vandermeulen, J., 1988, Z. Phys. C 37, 563.
Weidenauer, P., et al., 1990, Z. Phys. C 47, 353.
Weidenauer, P., et al., 1993, Z. Phys. C 59, 387.
Weinstein, J., and N. Isgur, 1990, Phys. Rev. D 41, 2236.
Zemach, Ch., 1964, Phys. Rev. B 133, 1201.
Zemach, Ch., 1965, Phys. Rev. B 140, 97, 109.

52



Table 1: Summary of data (in millions of events) with a minimum bias trigger (MB), for 0-, 2-,
4-prong and with more specialized triggers at rest (first three rows) and in liquid hydrogen at
high p momenta (in MeV/c).
LH2: liquid hydrogen; LD2: liquid deuterium; GH2: gaseous hydrogen.
a KS(→ π+π−)X, b π+π−π0π0η, c π0ηη, d 1-prong, e 3-prong, f π+π−π0η, g π+π−η

MB 0 2 4 Triggers

LH2 16.8 24.7 19.3 10.4 16.9a 8.5b 4.0c 0.4g

LD2 3.2 6.0 0.5 0.5 11.9a 8.1d 11.7e

GH2 8.6 18.0 14.3 8.2 6.4a

600 1.3 5.9 2.2 1.2a

900 20.0 19.4
1050 0.3 7.2
1200 1.6 10.4 6.0 2.0f

1350 1.0 11.5
1525 20.6 10.2 4.5
1642 0.1 11.1 12.5
1800 6.8 3.6
1900 13.6 14.5 15.7
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Table 2: Branching ratios B for pp annihilation at rest in liquid. See Amsler and Myhrer (1991)
for annihilation in gaseous hydrogen. Further branching ratios from Dalitz plot analyses are
listed in Table 13 below.
a From ω → π0γ
b From ω → π+π−π0

c average between Baltay (1966), Espigat (1972) and Foster (1968a)
‡ Crystal Barrel experiment

Channel B Reference

e+e− 3.2 ± 0.9 10−7 Bassompierre (1976)
π0π0 6.93 ± 0.43 10−4 Amsler (1992a)‡

4.8 ± 1.0 10−4 Devons (1971)
π+π− 3.33 ± 0.17 10−3 Armenteros and French (1969)
π+π− 3.07 ± 0.13 10−3 Amsler (1993b)‡
π0η 2.12 ± 0.12 10−4 Amsler (1993b)‡
π0η′ 1.23 ± 0.13 10−4 Amsler (1993b)‡
π0ρ0 1.72 ± 0.27 10−2 Armenteros and French (1969)
π±ρ∓ 3.44 ± 0.54 10−2 Armenteros and French (1969)
ηη 1.64 ± 0.10 10−4 Amsler (1993b)‡
ηη′ 2.16 ± 0.25 10−4 Amsler (1993b)‡
ωπ0 5.73 ± 0.47 10−3 Amsler (1993b)a ‡

6.16 ± 0.44 10−3 Schmid (1991)b ‡
ωη 1.51 ± 0.12 10−2 Amsler (1993b)a ‡

1.63 ± 0.12 10−2 Schmid (1991)b ‡
ωη′ 0.78 ± 0.08 10−2 Amsler (1993b)‡
ωω 3.32 ± 0.34 10−2 Amsler (1993b)‡
ηρ0 4.81 ± 0.85 10−3 c

3.87 ± 0.29 10−3 Abele (1997a)‡
η′ρ0 1.29 ± 0.81 10−3 Foster (1968a)

1.46 ± 0.42 10−3 Urner (1995)‡
ρ0ρ0 1.2 ± 1.2 10−3 Armenteros and French (1969)
ρ0ω 2.26 ± 0.23 10−2 Bizzarri (1969)
K+K− 1.01 ± 0.05 10−3 Armenteros and French (1969)
K+K− 0.99 ± 0.05 10−3 Amsler (1993b)‡
KSKL 7.6 ± 0.4 10−4 Armenteros and French (1969)
KSKL 9.0 ± 0.6 10−4 Amsler (1995c)‡
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Table 3: Pseudoscalar mixing angle θp derived from the measured ratios of two-body branching
ratios (θi = 35.3◦). The first four rows assume only the QLR in the annihilation process. The
last six rows assume in addition the dominance of the annihilation graph A.

Ratio Prediction θp [◦]
B̃(π0η)

B̃(π0η′)
tan2(θi − θp) -18.1 ± 1.6

B̃(ηη)

B̃(ηη′)
1
2 tan2(θi − θp) -17.7 ± 1.9

B̃(ωη)

B̃(ωη′)
tan2(θi − θp) -21.1 ± 1.5

B̃(ηρ0)

B̃(η′ρ0)
tan2(θi − θp) -25.4 +

−
5.0
2.9

B̃(ηρ0)

B̃(ωπ0)
sin2(θi − θp) -11.9 ± 3.2

B̃(η′ρ0)

B̃(ωπ0)
cos2(θi − θp) -30.5 ± 3.5

B̃(ηη)

B̃(π0π0)
sin4(θi − θp) -6.2 +

−
0.6
1.1

B̃(ηη′)

B̃(π0π0)
2 sin2(θi − θp) 14.6 ± 1.8

× cos2(θi − θp) or -34.0 ± 1.8
B̃(ωη)

B̃(π0ρ0)
sin2(θi − θp) -23.7 +

−
7.6
8.9

B̃(ωη′)

B̃(π0ρ0)
cos2(θi − θp) -20.1 ± 3.7

Table 4: Damping factors FL(p) where z stands for (p/pR)2 and pR is usually taken as 197
MeV/c (after Hippel and Quigg (1972)).

L FL(p)

0 1

1
√

2z
z+1

2
√

13z2

(z−3)2+9z

3
√

277z3

z(z−15)2+9(2z−5)2

4
√

12,746z4

(z2−45z+105)2+25z(2z−21)2

Table 5: Branching ratios B for radiative pp annihilation at rest in liquid from Crystal Barrel
(Amsler, 1993c, 1995c). The lower and upper limits L and U , calculated from VDM, are given
in the third and fourth column, respectively.
† 95% confidence upper limit.

Channel B L U

π0γ 4.4 ± 0.4 ×10−5 3.1× 10−5 6.8× 10−5

ηγ 9.3 ± 1.4 ×10−6 1.0× 10−6 2.5× 10−5

ωγ 6.8 ± 1.8 ×10−5 8.5× 10−6 1.1× 10−4

η′γ < 1.2 ×10−5† 2.7× 10−7 10−5

γγ < 6.3 ×10−7†
φγ 2.0 ± 0.4 ×10−5 2.1× 10−7 1.5× 10−6
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Table 6: Branching ratios for φ production at rest in liquid.
a updates Amsler (1995c)
b annihilation in gas extrapolated to pure S-wave annihilation
d using Chiba (1988) in liquid
d using Bizzarri (1971) in liquid
‡ Crystal Barrel experiment

Channel B Reference

π0φ 6.5 ± 0.6 10−4 a‡
π0φ 3.0 ± 1.5 10−4 Chiba (1988)
π0φ 4.0 ± 0.8 10−4 Reifenröther (1991)bc

ηφ 7.8 ± 2.1 10−5 Amsler (1995c)‡
ηφ 3.0 ± 3.9 10−5 Reifenröther (1991)b

ωφ 6.3 ± 2.3 10−4 Bizzarri (1971)
ωφ 5.3 ± 2.2 10−4 Reifenröther (1991)bd

ρ0φ 3.4 ± 1.0 10−4 Reifenröther (1991)b

γφ 2.0 ± 0.4 10−5 a‡

Table 7: Ratio of φ to ω production in low energy annihilation in liquid.

X R̃X [10−2]

γ 29.4 ± 9.7
π0 10.6 ± 1.2
η 0.46 ± 0.13
ω 1.02 ± 0.39
ρ0 1.57 ± 0.49
π− 13.0 ± 2.5
π+ 10.8 ± 1.5
σ 1.75 ± 0.25
π+π− 1.65 ± 0.35

Table 8: Relative sign of α1 and α2 for pp annihilation into πKK (see text).

Channel 1S0(pp) 3S1(pp)
I = 0 I = 1 I = 0 I = 1

π±K∓K0 + – – +
π0K+K− + + – –

π0K0K0 + + – –
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Table 9: Branching ratios for pp annihilation at rest into three narrow mesons. Mesons in
parentheses were not detected.
a using B(π0φ) from Table 6 and Eq. (47)
b average between Armenteros (1965) and Barash (1965)
‡ Crystal Barrel experiment

Channel Final state B Reference

π0π0π0 6γ 6.2 ± 1.0 10−3 Amsler (1995f)‡
π+π−π0 π+π−(π0) 6.9 ± 0.4 10−2 Foster (1968b)
π0ηη 6γ 2.0 ± 0.4 10−3 Amsler (1995e)‡
π0π0ω 7γ 2.00 ± 0.21 10−2 Amsler (1993a)‡

π+π−6γ 2.57 ± 0.17 10−2 Amsler (1994d)‡
π+π−ω 2π+2π−(π0) 6.6 ± 0.6 10−2 Bizzarri (1969)
ωηπ0 7γ 6.8 ± 0.5 10−3 Amsler (1994c)‡
π0π0η 6γ 6.7 ± 1.2 10−3 Amsler (1994b)‡

π+π−6γ 6.50 ± 0.72 10−3 Amsler (1994d)‡
π+π−η π+π−2γ 1.63 ± 0.12 10−2 Abele (1997a)‡

π+π−6γ 1.33 ± 0.16 10−2 Amsler (1994d)‡
2π+2π−(π0) 1.38 ± 0.17 10−2 Espigat (1972)
2π+2π−(π0) 1.51 +

−
0.17
0.21 10−2 Foster (1968a)

π0π0η′ 10γ 3.2 ± 0.5 10−3 Abele (1997g)‡
6γ 3.7 ± 0.8 10−3 Abele (1997g)‡

π+π−η′ π+π−6γ 7.5 ± 2.0 10−3 Urner (1995)‡
3π+3π−(π0) 2.8 ± 0.9 10−3 Foster (1968a)

π0ηη′ 6γ 2.3 ± 0.5 10−4 Amsler (1994f)‡
π0π0φ 8γ(KL) 9.7 ± 2.6 10−5 Abele (1997f)‡
π+π−φ 2π+2π−(KL) 4.6 ± 0.9 10−4 Bizzarri (1969)
π0KSKL 3π0(KL) 6.7 ± 0.7 10−4 Amsler (1993d)a‡
π0KSKS 2π+2π−(π0) 7.5 ± 0.3 10−4 b

π±K∓KS π+π−π±K∓ 2.73 ± 0.10 10−3 b

π±K∓KL π±K∓(KL) 2.91 ± 0.34 10−3 Abele (1997e)‡
ωKSKS 3π+3π−(π0) 1.17 ± 0.07 10−3 Bizzarri (1971)
ωK+K− K+K−π+π−(π0) 2.30 ± 0.13 10−3 Bizzarri (1971)
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Table 10: Branching ratios for pp annihilation at rest in liquid determined from Dalitz plot
analyses. The branching ratios include all decay modes of the final state stable particles (e.g.
π0, η, η′) but only the decay mode of the intermediate resonance leading to the observed final
state.

Channel Contributing resonances
Subchannel Branching ratio

π0ηη a0(980), f0(1370), f0(1500), a2(1320),X2(1494)

f0(1370)π0 ∼ 3.5× 10−4

f0(1500)π0 (5.5 ± 1.3) × 10−4

a2(1320)η ∼ 5.6× 10−5

X2(1494)π0 ∼ 4.0× 10−4 (dominantly P-wave annihilation)

π0π0η a0(980), a0(1450), a2(1320), a′2(1650), (ηπ)P
(ππ)S ≡ f0(400 − 1200) + f0(980) + f0(1370)

a0(980)π0 (8.7 ± 1.6) × 10−4

a0(1450)π0 (3.4 ± 0.6) × 10−4

(ππ)S η (3.4 ± 0.6) × 10−3

(ηπ)P π ∼ 1.0× 10−4

a2(1320)π0 (1.9 ± 0.3) × 10−3

a′2(1650)π0 ∼ 1.3× 10−4

π0π0π0 (ππ)S + f0(1500), f2(1270), f2(1565)

(ππ)S π
0 ∼ 2.6× 10−3

f0(1500)π0 (8.1 ± 2.8) × 10−4

f2(1270)π0 ∼ 1.8× 10−3

f2(1565)π0 ∼ 1.1× 10−3

π0ηη, π0π0η, 3π0 Coupled channels (S-wave annihilation only)
(ηη)S ≡ f0(400 − 1200) + f0(1370)

(ππ)S π
0 (3.48 ± 0.89) × 10−3

(ππ)S η (3.33 ± 0.65) × 10−3

(ηη)S π
0 (1.03 ± 0.29) × 10−3

f0(1500)(→ π0π0)π0 (1.27 ± 0.33) × 10−3

f0(1500)(→ ηη)π0 (0.60 ± 0.17) × 10−3

f2(1270)(→ π0π0)π0 (0.86 ± 0.30) × 10−3

f2(1565)(→ π0π0)π0 (0.60 ± 0.20) × 10−3

f2(1565)(→ ηη)π0 (8.60 ± 3.60) × 10−5 (may be more than one object)
a0(980)(→ π0η)π0 (0.81 ± 0.20) × 10−3

a0(980)(→ π0η)η (0.19 ± 0.06) × 10−3

a0(1450)(→ π0η)π0 (0.29 ± 0.11) × 10−3

a2(1320)(→ π0η)π0 (2.05 ± 0.40) × 10−3 (including a′2(1650))

π0ηη′ f0(1500)

f0(1500)π0 (1.6 ± 0.4) × 10−4

π0π0η′ (ππ)S , a2(1320), a0(1450)

(ππ)S η
′ (3.1 ± 0.4) × 10−3

a2(1320)π0 (6.4 ± 1.3) × 10−5

a0(1450)π0 (1.16 ± 0.47) × 10−4
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Table 11: Branching ratios for pp annihilation at rest in liquid into kaonic channels. The
branching ratios include only the decay mode of the intermediate resonance leading to the
observed final state.
a from the corresponding KS channels (Armenteros, 1965; Barash, 1965)
b includes low energy Kπ scattering
c fixed by π±K∓KL data

Channel pp(I) Contributing resonances
Subchannel Branching ratio

π0KLKL K∗(892),K∗0 (1430), a2(1320), f2(1270), f ′2(1525)
f0(1370), f0(1500), a0(1450)

Totala (7.5 ± 0.3) × 10−4

K∗(892)K 1S0(0, 1) (8.71 ± 0.68) × 10−5

K∗0 (1430)K (4.59 ± 0.46) × 10−5 b

a2(1320)π0 1S0(0) (6.35 ± 0.74) × 10−5

a0(1450)π0 (7.35 ± 1.42) × 10−5 c

f2(1270)π0 1S0(1) (4.25 ± 0.59) × 10−5

f ′2(1525)π0 (1.67 ± 0.26) × 10−5

f0(1370)π0 (2.20 ± 0.33) × 10−4

f0(1500)π0 (1.13 ± 0.09) × 10−4

π±K∓KL K∗(892),K∗0 (1430), a2(1320)
a0(980), a0(1450), ρ(1450/1700)

Totala (2.73 ± 0.10) × 10−3

K∗(892)K 1S0(0) (2.05 ± 0.28) × 10−4

K∗0 (1430)K (8.27 ± 1.93) × 10−4 b

a0(980)π (1.97 + 0.15
− 0.34)× 10−4

a2(1320)π (3.99 + 0.31
− 0.83)× 10−4

a0(1450)π (2.95 ± 0.56) × 10−4

K∗(892)K 1S0(1) (3.00 ± 1.10) × 10−5

K∗0 (1430)K (1.28 ± 0.55) × 10−4 b

ρ(1450/1700)π (8.73 + 1.40
− 2.75)× 10−5

K∗(892)K 3S1(0) (1.50 ± 0.41) × 10−4

ρ(1450/1700)π (8.73 ± 2.75) × 10−5

K∗(892)K 3S1(1) (5.52 ± 0.84) × 10−4

a2(1320)π (1.42 ± 0.44) × 10−4

Table 12: Weights of the channels contributing to pp→ πKK. I refers to the pp isospin and i
to the KK isospin.

Channel i = 1/2 i = 1 i = 0 i = 1
I = 0, 1 I = 1 I = 1 I = 0

π±K∓K0 4 2 0 4
π0K+K− 1 0 1 1

π0K0K0 1 0 1 1
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Table 13: Branching ratios B for two-body pp annihilation at rest in liquid hydrogen (including
all decay modes), calculated from the final states given in the last column.
a assumes 100% b1 decay to πω
b using B(π0φ) from Table 6 and Eq. (47)

Channel B Final state or ref.

f2(1270)π0 3.1 ± 1.1 10−3 π0π0π0

f2(1270)π0 3.7 ± 0.7 10−3 π0KLKL

4.3 ± 1.2 10−3 Foster (1968b)
f2(1270)ω 3.26 ± 0.33 10−2 Bizzarri (1969)
f2(1270)ω 2.01 ± 0.25 10−2 Amsler (1993a)
f0(1500)π0 1.29 ± 0.11 10−2 π0KLKL

f ′2(1525)π0 7.52 ± 1.20 10−5 π0KLKL

a2(1320)π 3.93 ± 0.70 10−2 π0π0η

(1S0) 3.36 ± 0.94 10−2 π0π0η′

1.55 ± 0.31 10−2 π0KLKL

2.44 +
−

0.44
0.64 10−2 π±K∓KL

1.32 ± 0.37 10−2 Conforto (1967)
a±2 (1320)π∓ 5.79 ± 2.02 10−3 π±K∓KL

(3S1) 4.49 ± 1.83 10−3 Conforto (1967)

b±1 (1235)π∓ 7.9 ± 1.1 10−3 Bizzarri (1969) a

b01(1235)π0 9.2 ± 1.1 10−3 Amsler (1993a) a

a0
2(1320)ω 1.70 ± 0.15 10−2 Amsler (1994c)

K∗(892)K 7.05 ± 0.90 10−4 π±K∓KL

(1S0) 1.05 ± 0.08 10−3 π0KLKL

1.5 ± 0.3 10−3 Conforto (1967)
K∗(892)K 2.11 ± 0.28 10−3 π±K∓KL

(3S1) 2.70 ± 0.37 10−3 π0KSKL
b

≥ 2.51 ± 0.22 10−3 Conforto (1967)
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Figure 1: Pion multiplicity distribution for pp annihilation at rest in liquid hydrogen. Open
squares: statistical distribution; full circles: data; open circles: estimates from Guesquière
(1974). The curve is a Gauss fit assuming 〈N〉 = 5.

Figure 2: Fraction fP of P-wave annihilation as a function of hydrogen density (curve). The
dots with error bars give the results from one particular optical model (Dover and Richard,
1980) using two-body branching ratios (adapted from Batty (1996)).

Figure 3: The Crystal Barrel detector. 1,2 - yoke, 3 - coil, 4 - CsI(Tl) barrel, 5 - JDC, 6 -
PWC’s, 7 - LH2 target.

Figure 4: The silicon vertex detector. 1 - microstrip detectors, 2 - hybrids, 3 - readout elec-
tronics, 4 - cooling ring (from Regenfus (1997)).
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Figure 5: 2γ invariant mass distribution for a sample of 4γ events (6 entries/event).

Figure 6: π0γ momentum distribution in pp → 4π0γ (4 entries/event). The peak is due to
pp→ ωη. The inset shows the ω-region and a fit (Gaussian and polynomial background).

Figure 7: π+π−π0 invariant mass distribution for π+π−π0η events. The peak is due to pp→ ωη.
The inset shows the background subtracted angular distribution in the ω-rest frame (see text).

Figure 8: γ angular distribution in the ω rest frame for ωη(ω → π0γ) (see text).

62



Figure 9: Annihilation graph A and rearrangement graph R for pp annihilation into two mesons.

Figure 10: Following VDM, radiative annihilation can be described by a superposition of two
isospin amplitudes with unknown relative phase β. X stands for any neutral meson.

Figure 11: Energy deposits in the barrel versus polar angle Θ and azimuthal angle Φ for a π0γ
event. The two γ’s from π0 decay cluster near the minimum opening angle (16.5◦).

Figure 12: Energy distribution (24,503 events) of the single γ in the missing π0 rest frame for
events satisfying the kinematics pp → 2π0 and a missing π0. The full line is a fit. The dotted
curve shows the expected signal for a branching ratio of 5× 10−4.

Figure 13: 90 % confidence level upper limits for radiative pseudoscalar decays as a function of
missing mass.
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Figure 14: Squared matrix element for η → 3π0. The straight line shows the fit according to
Eq. (37).

Figure 15: (a) ω → 3γ Dalitz plot for π0ω events (62,853 events, 6 entries/event); (b) ω → 3γ
Dalitz plot for ηω events (54,865 events, 6 entries/event).

Figure 16: Dalitz plot of the final state KSKLπ
0 (2,834 events).

Figure 17: Ratio of φ to ω production in low energy annihilation. The measured branching
ratios have been divided by the factor W (Eq. (20)). The expectation from the OZI rule using
the quadratic mass formula (4.2× 10−3) is shown by the horizontal line.

Figure 18: (a,b): OZI allowed φ production with ss pairs in the nucleon. In (c) an intermediate
four-quark state is excited below threshold. The production of φ mesons can also be enhanced
by final state rescattering, K∗K → πφ or ρρ→ πφ (d).
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Figure 19: ηπ and KK mass distributions for the a0(980) resonance in pp→ ηπX and KKX

(in arbitrary units and assuming that no other resonance is produced in these channels). The
dashed line shows the ηπ mass distribution for the same width Γ′0 in the absence of KK coupling
(g2 = 0).

Figure 20: Invariant mass distributions for π0ηη; (a) ηη mass distribution for 6γ events showing
the two new scalar mesons; (b) ηη mass distribution for one η decaying to 3π0 (10γ final state,
not corrected for acceptance); (c) π0η mass distribution for 6γ events (2 entries/event) showing
the a0(980). The solid lines in (a) and (c) represent the best fit described in Amsler (1992c).

Figure 21: Dalitz plots of 3-pseudoscalar channels. Red and blue regions correspond to high,
respectively low, event densities; (a) π0ηη (198,000 events). The Dalitz plot is symmetrized
across the main diagonal; (b) π0π0η (symmetrized, 280’000 events); (c): 3π0 (712,000 events).
Each event is entered six times for symmetry reasons; (d) π0KLKL (37,358 events).

Figure 22: π0π0 mass projection in pp→ 3π0 (3 entries/ event) with the fit (solid line) described
in the text.
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Figure 23: Argand diagram of the ππ scattering amplitude T obtained from a common fit to
production and scattering data (from Spanier, 1994).

Figure 24: Isoscalar S-wave production intensities |T |2 in 3π0 (full curve), 2π0η (dashed curve)
and 2ηπ0 (dotted curve) before multiplying by the phase space factor ρ. The vertical scale is
arbitrary (from Spanier, 1994).

Figure 25: ηη′ mass projection in π0ηη′. The full curve is the fit to the 6γ data with a scalar
resonance close to threshold and the dashed curve shows the expected phase space distribution.
The inset shows the ηη′ mass distribution from π0η(→ 2γ)η′(→ ηπ+π−).

Figure 26: 2π0η mass distribution recoiling against π0π0 for events with 10 reconstructed
photons (6 entries/event).

Figure 27: η′π0 mass projection in π0π0η′ → 6γ for data (dots) and fits (histograms); (a) (ππ)
S-wave and a2(1320); (b) including a0(1450) (best fit).
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Figure 28: The phase shift δ in elastic Kπ scattering from Aston (1988b). The curve shows
the fit using prescription (106).

Figure 29: KK mass projection in π0KLKL. The dashed line shows the fit with one scalar
resonance, the full line the fit with two scalar resonances. The peak on the left is due to
f2(1270) and a2(1320) and the peak on the right to K∗(892) reflections. The central peak is
due to interference from various amplitudes.

Figure 30: Branching ratio for f0(1370) and f0(1500) decay into KK as a function of a0(1450)
contribution to π0KLKL (from Dombrowski (1996)).

Figure 31: dE/dx distribution in the jet drift chamber for 2-prong events with a missing KL.
The curve shows the expected (Bethe-Bloch) dependence.

Figure 32: π±K∓KL Dalitz plot (11,373 events).
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Figure 33: χ2 dependence on the fractional contribution from a0(1450) to π±K∓KL.

Figure 34: Tangent of the nonet mixing angle α as a function of R1 (solid), R2 (dotted) and
R3 (dashed curve). The shaded areas show the experimentally allowed regions for f0(1500),
assuming that this state is qq.

Figure 35: π0π0η (a) and π+π−η (b) mass distributions in pp annihilation at rest into
π+π−π0π0η, showing the η′ and η(1410) signals. The dashed line shows the result of the
fit.

Figure 36: Angular distribution of a0(980)± in the η(1410) rest frame. The data are shown
with error bars. The full curve shows the fit for a 0−+ state and the dashed curve the prediction
for a 1++ state produced with the same intensity.
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