253 research outputs found

    The Basis of Angolan Nationalism

    Get PDF
    Portugal has the largest empire remaining in Africa. Portugal\u27s history there dates to the Columbian period, and its government boasts that a colonial philosophy different from the other colonial powers in Africa is at work. The Portuguese speak of a civilizing mission, cultural assimilation, and the Lusitanization of its colonies. The determination of Portugal to see its policies through and the determination of Angolan nationalists to exact independence and freedom from the Portuguese warrant an investigation of the current revolution and the basis of Angolan nationalism

    Genetic analysis of photosynthesis-related traits in faba bean (Vicia faba) for crop improvement

    Get PDF
    Increasing productivity through improvement of photosynthesis in faba bean breeding programmes requires understanding of the genetic control of photosynthesis-related traits. Hence, we investigated the gene action of leaf area, gas exchange traits, canopy temperature, chlorophyll content, chlorophyll fluorescence parameters and biomass. We chose inbred lines derived from cultivars 'Aurora' (Sweden) and 'Melodie' (France) along with an Andean accession, ILB 938, crossed them (Aurora/2 x Melodie/2, ILB 938/2 x Aurora/2 and Melodie/2 x ILB 938/2), and prepared the six standard generations for quantitative analysis (P-1, P-2, F-1, F-2, B-1, and B-2). Gene action was complex for each trait, involving additive and dominance gene actions and interactions. Additive gene action was important for SPAD, photosynthetic rate, stomatal conductance and F-v/F-m. Dominance effect was important for biomass production. It is suggested that breeders selecting for productivity can maximize genetic gain by selecting early generations for canopy temperature, SPAD and F-v/F-m, then later generations for biomass. The information on genetics of various contributing traits of photosynthesis will assist plant breeders in choosing an appropriate breeding strategy for enhancing productivity in faba bean.Peer reviewe

    Physiological and Biochemical Basis of Faba Bean Breeding for Drought Adaptation —A Review

    Get PDF
    Grain legumes are commonly used for food and feed all over the world and are the main source of protein for over a billion people worldwide, but their production is at risk from climate change. Water deficit and heat stress both significantly reduce the yield of grain legumes, and the faba bean is considered particularly susceptible. The genetic improvement of faba bean for drought adaptation (water deficit tolerance) by conventional methods and molecular breeding is time-consuming and laborious, since it depends mainly on selection and adaptation in multiple sites. The lack of high-throughput screening methodology and low heritability of advantageous traits under environmental stress challenge breeding progress. Alternatively, selection based on secondary characters in a controlled environment followed by field trials is successful in some crops, including faba beans. In general, measured features related to drought adaptation are shoot and root morphology, stomatal characteristics, osmotic adjustment and the efficiency of water use. Here, we focus on the current knowledge of biochemical and physiological markers for legume improvement that can be incorporated into faba bean breeding programs for drought adaptation.Peer reviewe

    Genomic regions associated with chocolate spot (Botrytis fabae Sard.) resistance in faba bean (Vicia faba L.)

    Get PDF
    Chocolate spot (CS), caused by Botrytis fabae Sard., is an important threat to global faba bean production. Growing resistant faba bean cultivars is, therefore, paramount to preventing yield loss. To date, there have been no reported quantitative trait loci (QTL) associated with CS resistance in faba bean. The objective of this study was to identify genomic regions associated with CS resistance using a recombinant inbred line (RIL) population derived from resistant accession ILB 938. A total of 165 RILs from the cross Melodie/2 x ILB 938/2 were genotyped and evaluated for CS reactions under replicated controlled climate conditions. The RIL population showed significant variation in response to CS resistance. QTL analysis identified five loci contributing to CS resistance on faba bean chromosomes 1 and 6, accounting for 28.4% and 12.5%, respectively, of the total phenotypic variance. The results of this study not only provide insight into disease-resistance QTL, but also can be used as potential targets for marker-assisted breeding in faba bean genetic improvement for CS resistance.Peer reviewe

    Polyphenolic Composition of Lentil Roots in Response to Infection by Aphanomyces euteiches

    Get PDF
    Polyphenols comprise the largest group of plant secondary metabolites and have critical roles in plant physiology and response to the biotic and abiotic environment. Changes in the content of polyphenols in the root extracts and root tissues of wild (Lens ervoides) and cultivated (Lens culinaris) lentil genotypes were examined in response to infection by Aphanomyces euteiches using liquid chromatography mass spectrometry (LC-MS). Genotype, infection and their interaction determined the composition of polyphenols in lentil roots. The levels of several polyphenols were lower in the root extract of the low-tannin genotype L. culinaris ZT-4 compared to L. ervoides L01-827A. Kaempferol derivatives including kaempferol dirutinoside and kaempferol 3-robinoside 7-rhamnoside were more concentrated in the healthy root tissues of L. ervoides L01-827A than in L. culinaris genotypes. Infection increased the concentration of kaempferol, apigenin, and naringenin in the root tissues of all genotypes, but had no effect on some polyphenols in the low-tannin genotype L. culinaris ZT-4. The concentrations of apigenin, naringenin, apigenin 4-glucoside, naringenin7-rutinoside, diosmetin, and hesperetin 7-rutinoside were higher in the infected root tissues of L. ervoides L01-827A compared with the L. culinaris genotypes. Organic acids including coumaric acid, vanillic acid, 4-aminosalicylic acid, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid effectively suppressed the in-vitro hyphal growth of A. euteiches. Some of these bioactive polyphenols were more concentrated in roots of L. ervoides L01-827A but were low to undetectable in ZT-4. This study shows that genotypic differences exist in the composition of root polyphenols in lentil, and is related to the response to infection caused by A. euteiches. Polyphenols, particularly the organic acid content could be useful for selection and breeding of lentil genotypes that are resistant to Aphanomyces root rot (ARR) disease

    A multi-parent faba bean (Vicia faba L.) population for future genomic studies

    Get PDF
    Faba bean (Viciafaba L.) is a valuable grain legume and a staple protein crop in many countries. Its large and complex genome requires novel approaches for its genetic dissection. Here we introduce a multi-parent population developed from four founders (ILB 938/2, Disco/2, IG 114476 and IG 132238). The selection of parental lines was based on geographic (Colombia, France, Bangladesh and China), genetic and phenotypic diversity. The parental lines were inbred and then genotyped using 875 single nucleotide polymorphism (SNP) markers. Based on molecular data, the parents had high homozygosity and high genetic distance among them. The population segregates for several important traits such as seed morphology, seed chemistry, phenology, plant architecture, drought response, yield and its components, and resistance to Botrytis fabae. The population was checked for unbiased segregation in each generation by observing simply inherited Mendelian traits such as stipule spot pigmentation (SSP) and flower colour at different generations. All 1200 four-way cross Fl plants had pigmented flowers and stipule spots. The segregation ratios for white flower colour (single gene, zt2) fit 7:1, 13:3 and 25:7 at F2, F3 and F4 generations, respectively, and the segregation ratio of SSP (two recessive unlinked genes, ssp1 and ssp2) fit 49:15 and 169:87 at the F2 and F3 generations, respectively, demonstrating unbiased generation advance. We will subject the F5 generation of this population to a high-throughput SNP array and make it available for further phenotyping and genotyping.Peer reviewe

    VC1 catalyzes a key step in the biosynthesis of vicine from GTP in faba bean

    Get PDF
    Faba bean is a widely adapted and high-yielding legume cultivated for its protein-rich seeds. However, the seeds accumulate the anti-nutritional pyrimidine glucosides vicine and convicine, which can cause haemolytic anaemia (favism) in the 400 million individuals genetically predisposed by a deficiency in glucose-6-phosphate dehydrogenase. Here, we identify the first enzyme associated with vicine and convicine biosynthesis, which we name VC1. We show that VC1 co-locates with the major QTL for vicine and convicine content and that the expression of VC1 correlates highly with vicine content across tissues. We also show that low-vicine varieties express a version of VC1 carrying a small, frame-shift insertion, and that overexpression of wild-type VC1 leads to an increase in vicine levels. VC1 encodes a functional GTP cyclohydrolase II, an enzyme normally involved in riboflavin biosynthesis from the purine GTP. Through feeding studies, we demonstrate that GTP is a precursor of vicine both in faba bean and in the distantly related plant bitter gourd. Our results reveal an unexpected biosynthetic origin for vicine and convicine and pave the way for the development of faba bean cultivars that are free from these anti-nutrients, providing a safe and sustainable source of dietary protein.Non peer reviewe

    Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil (Lens culinaris Medik.)

    Get PDF
    Lentil is a staple in many diets around the world and growing in popularity as a quick-cooking, nutritious, plant-based source of protein in the human diet. Lentil varieties are usually grown close to where they were bred. Future climate change scenarios will result in increased temperatures and shifts in lentil crop production areas, necessitating expanded breeding efforts. We show how we can use a daylength and temperature model to identify varieties most likely to succeed in these new environments, expand genetic diversity, and give plant breeders additional knowledge and tools to help mitigate these changes for lentil producers.This research was conducted as part of the ‘Application of Genomics to Innovation in the Lentil Economy (AGILE)' project funded by Genome Canada and managed by Genome Prairie. We are grateful for the matching financial support from the Saskatchewan Pulse Growers, Western Grains Research Foundation, the Government of Saskatchewan, and the University of Saskatchewan. We acknowledge the support from our international partners: University of Basilicata (UNIBAS) in Italy; Institute for Sustainable Agriculture (IAS) in Spain; Center for Agriculture Research in the Dry Areas (ICARDA) in Morocco, India and Bangladesh; Local Initiatives for Biodiversity, Research and Development (LI-BIRD) in Nepal; and United States Department of Agriculture (USDA CRIS Project 5348-21000-017-00D) in the USA, for conducting field experiments in their respective countries

    81 Audit of MRSA positive cultures at a UK adult CF centre

    Get PDF
    Crystal structures provide visual models of biological macromolecules, which are widely used to interpret data from functional studies and generate new mechanistic hypotheses. Because the quality of the collected x-ray diffraction data directly affects the reliability of the structural model, it is essential that the limitations of the models are carefully taken into account when making interpretations. Here we use the available crystal structures of members of the glutamate transporter family to illustrate the importance of inspecting the data that underlie the structural models. Crystal structures of glutamate transporters in multiple different conformations have been solved, but most structures were determined at relatively low resolution, with deposited models based on crystallographic data of moderate quality. We use these examples to demonstrate the extent to which mechanistic interpretations can be made safely
    corecore