19 research outputs found

    Quantifying superspreading for COVID-19 using Poisson mixture distributions.

    Get PDF
    The number of secondary cases, i.e. the number of new infections generated by an infectious individual, is an important parameter for the control of infectious diseases. When individual variation in disease transmission is present, like for COVID-19, the distribution of the number of secondary cases is skewed and often modeled using a negative binomial distribution. However, this may not always be the best distribution to describe the underlying transmission process. We propose the use of three other offspring distributions to quantify heterogeneity in transmission, and we assess the possible bias in estimates of the mean and variance of this distribution when the data generating distribution is different from the one used for inference. We also analyze COVID-19 data from Hong Kong, India, and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, [Formula: see text], while acknowledging the variation arising from the assumed offspring distribution. In a simulation study, we find that variance estimates may be biased when there is a substantial amount of heterogeneity, and that selection of the most accurate distribution from a set of distributions is important. In addition we find that the number of secondary cases for two of the three COVID-19 datasets is better described by a Poisson-lognormal distribution

    Выпускная квалификационная работа

    Get PDF
    Introduction: Interferon Gamma Release Assay (IGRA) has proven to be a useful test to evaluate the immune response to Mycobacterium tuberculosis antigens in children over the age of 5 years as an alternative to tuberculin skin testing (TST). Much less is known about its performance in younger children, who are at higher risk for developing tuberculosis (TB) disease after exposure. We aimed to evaluate the accuracy of using IGRA in TB screening in this population. Methods: Children below the age of 5 years at high risk for TB infection were prospectively enrolled, to compare the performance of TST and the QuantiFERON-TB Gold-In-Tube test (QFT). Children were treated in accordance with the diagnosis made at baseline and followed-up for 12 months. Results: We included a total of 60 children of which 97 blood samples were available for analysis. There was 90.72% agreement between TST and QFT (Kappa test 0.59, moderate agreement). With TST as a reference, the QFT positive predictive value was 0.72 and the negative predictive value 0.93. Discordant results were observed with 6% TST+/QFT- paired tests. When we restricted the comparison of TST and QFT to non-BCG-vaccinated children, the degree of agreement was more substantial (95%, Kappa test 0.75) and the negative predictive value was 0.99. We observed 3% discordant TST-/QFT+ results. All children with active TB disease had concordant positive QFT results, with QFT values above 4.00 IU/ml. Conclusion: In a low TB prevalence country, serial testing of QFT was found to produce a moderate agreement with TST results. False positive QFT results would have been eliminated by using a higher cutoff without misdiagnosing the children with TB disease. Some of the false negative QFT results could be explained by false positive TST results on consecutive testing. For now the most prudent approach would be to consider discordant QFT-/TST+ results as false negative QFT results, taking into account the young age of our population and the potential risk for evolution to active TB disease

    COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study

    Get PDF
    Background To date, few data on paediatric COVID-19 have been published, and most reports originate from China. This study aimed to capture key data on children and adolescents with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection across Europe to inform physicians and health-care service planning during the ongoing pandemic. Methods This multicentre cohort study involved 82 participating health-care institutions across 25 European countries, using a well established research network—the Paediatric Tuberculosis Network European Trials Group (ptbnet)—that mainly comprises paediatric infectious diseases specialists and paediatric pulmonologists. We included all individuals aged 18 years or younger with confirmed SARS-CoV-2 infection, detected at any anatomical site by RT-PCR, between April 1 and April 24, 2020, during the initial peak of the European COVID-19 pandemic. We explored factors associated with need for intensive care unit (ICU) admission and initiation of drug treatment for COVID-19 using univariable analysis, and applied multivariable logistic regression with backwards stepwise analysis to further explore those factors significantly associated with ICU admission. Findings 582 individuals with PCR-confirmed SARS-CoV-2 infection were included, with a median age of 5·0 years (IQR 0·5–12·0) and a sex ratio of 1·15 males per female. 145 (25%) had pre-existing medical conditions. 363 (62%) individuals were admitted to hospital. 48 (8%) individuals required ICU admission, 25 (4%) mechanical ventilation (median duration 7 days, IQR 2–11, range 1–34), 19 (3%) inotropic support, and one (<1%) extracorporeal membrane oxygenation. Significant risk factors for requiring ICU admission in multivariable analyses were being younger than 1 month (odds ratio 5·06, 95% CI 1·72–14·87; p=0·0035), male sex (2·12, 1·06–4·21; p=0·033), pre-existing medical conditions (3·27, 1·67–6·42; p=0·0015), and presence of lower respiratory tract infection signs or symptoms at presentation (10·46, 5·16–21·23; p<0·0001). The most frequently used drug with antiviral activity was hydroxychloroquine (40 [7%] patients), followed by remdesivir (17 [3%] patients), lopinavir–ritonavir (six [1%] patients), and oseltamivir (three [1%] patients). Immunomodulatory medication used included corticosteroids (22 [4%] patients), intravenous immunoglobulin (seven [1%] patients), tocilizumab (four [1%] patients), anakinra (three [1%] patients), and siltuximab (one [<1%] patient). Four children died (case-fatality rate 0·69%, 95% CI 0·20–1·82); at study end, the remaining 578 were alive and only 25 (4%) were still symptomatic or requiring respiratory support. Interpretation COVID-19 is generally a mild disease in children, including infants. However, a small proportion develop severe disease requiring ICU admission and prolonged ventilation, although fatal outcome is overall rare. The data also reflect the current uncertainties regarding specific treatment options, highlighting that additional data on antiviral and immunomodulatory drugs are urgently needed. Funding ptbnet is supported by Deutsche Gesellschaft für Internationale Zusammenarbeit

    Exposure to cough aerosols and development of pulmonary COVID-19

    No full text
    Contains fulltext : 226221.pdf (Publisher’s version ) (Closed access) Contains fulltext : 226221pre.pdf (Author’s version preprint ) (Open Access

    Immune Vulnerability of Infants to Tuberculosis

    Get PDF
    One of the challenges faced by the infant immune system is learning to distinguish the myriad of foreign but nonthreatening antigens encountered from those expressed by true pathogens. This balance is reflected in the diminished production of proinflammatory cytokines by both innate and adaptive immune cells in the infant. A downside of this bias is that several factors critical for controlling Mycobacterium tuberculosis infection are significantly restricted in infants, including TNF, IL-1, and IL-12. Furthermore, infant T cells are inherently less capable of differentiating into IFN-γ-producing T cells. As a result, infected infants are 5–10 times more likely than adults to develop active tuberculosis (TB) and have higher rates of severe disseminated disease, including miliary TB and meningitis. Infant TB is a fundamentally different disease than TB in immune competent adults. Immunotherapeutics, therefore, should be specifically evaluated in infants before they are routinely employed to treat TB in this age group. Modalities aimed at reducing inflammation, which may be beneficial for adjunctive therapy of some forms of TB in older children and adults, may be of no benefit or even harmful in infants who manifest much less inflammatory disease

    The burden and surveillance of RSV disease in young children in Belgium-expert opinion

    No full text
    Infections with respiratory syncytial virus (RSV) can cause severe disease. In young children, RSV is the most common cause of lower respiratory tract illness and life-threatening infections most commonly occur in the first years of life. In adults, elderly and immunocompromised people are most vulnerable. Recently there has been an acceleration in the development of candidate RSV vaccines, monoclonal antibodies and therapeutics which are expected to become available in Europe within the next 2–10 years. Understanding the true burden of childhood RSV disease will become very important to support public health authorities and policy makers in the assessment of new therapeutic opportunities against RSV disease. A systematic literature search was performed to map local data on the burden of RSV disease and to evaluate available RSV surveillance systems. A group of 9 paediatric infectious diseases specialists participated in an expert panel. The purpose of this meeting was to evaluate and map the burden associated with RSV infection in children, including patient pathways and the epidemiological patterns of virus circulation in Belgium. Sources of information on the burden of RSV disease in Belgium are very limited. For the outpatient setting, it is estimated that 5–10% of young patients seen in primary care are referred to the hospital. Around 3500 children between 0 and 12 months of age are hospitalized for RSV-bronchiolitis every year and represent the majority of all hospitalizations. The current Belgian RSV surveillance system was evaluated and found to be insufficient. Knowledge gaps are highlighted and future perspectives and priorities offered. Conclusion: The Belgian population-based RSV surveillance should be improved, and a hospital-led reporting system should be put in place to enable the evaluation of the true burden of RSV disease in Belgium and to improve disease management in the future
    corecore