7 research outputs found

    Tests of Lorentz invariance at the Sudbury Neutrino Observatory

    Get PDF
    Experimental tests of Lorentz symmetry in systems of all types are critical for ensuring that the basic assumptions of physics are well-founded. Data from all phases of the Sudbury Neutrino Observatory, a kiloton-scale heavy water Cherenkov detector, are analyzed for possible violations of Lorentz symmetry in the neutrino sector. Such violations would appear as one of eight possible signal types in the detector: six seasonal variations in the solar electron neutrino survival probability differing in energy and time dependence, and two shape changes to the oscillated solar neutrino energy spectrum. No evidence for such signals is observed, and limits on the size of such effects are established in the framework of the Standard Model Extension, including 40 limits on perviously unconstrained operators and improved limits on 15 additional operators. This makes limits on all minimal, Dirac-type Lorentz violating operators in the neutrino sector available for the first time

    Search for hep solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory

    Get PDF
    A search has been performed for neutrinos from two sources, the hep reaction in the solar pp fusion chain and the νe component of the diffuse supernova neutrino background (DSNB), using the full dataset of the Sudbury Neutrino Observatory with a total exposure of 2.47 kton-years after fiducialization. The hep search is performed using both a single-bin counting analysis and a likelihood fit. We find a best-fit flux that is compatible with solar model predictions while remaining consistent with zero flux, and set a one-sided upper limit of φhep<30×103 cm-2 s-1 [90% credible interval (CI)]. No events are observed in the DSNB search region, and we set an improved upper bound on the νe component of the DSNB flux of φνeDSNB<19 cm-2 s-1 (90% CI) in the energy range 22.9<Eν<36.9 MeV

    Impact of ionizing radiation on superconducting qubit coherence

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Technologies that rely on quantum bits (qubits) require long coherence times and high-fidelity operations1. Superconducting qubits are one of the leading platforms for achieving these objectives2,3. However, the coherence of superconducting qubits is affected by the breaking of Cooper pairs of electrons4–6. The experimentally observed density of the broken Cooper pairs, referred to as quasiparticles, is orders of magnitude higher than the value predicted at equilibrium by the Bardeen–Cooper–Schrieffer theory of superconductivity7–9. Previous work10–12 has shown that infrared photons considerably increase the quasiparticle density, yet even in the best-isolated systems, it remains much higher10 than expected, suggesting that another generation mechanism exists13. Here we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference. The effect of ionizing radiation leads to an elevated quasiparticle density, which we predict would ultimately limit the coherence times of superconducting qubits of the type measured here to milliseconds. We further demonstrate that radiation shielding reduces the flux of ionizing radiation and thereby increases the energy-relaxation time. Albeit a small effect for today’s qubits, reducing or mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers

    Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal

    No full text
    Four methods for determining the composition of low-level uranium- and thorium-chain surface contamination are presented. One method is the observation of Cherenkov light production in water. In two additional methods a position-sensitive proportional counter surrounding the surface is used to make both a measurement of the energy spectrum of alpha particle emissions and also coincidence measurements to derive the thorium-chain content based on the presence of short-lived isotopes in that decay chain. The fourth method is a radiochemical technique in which the surface is eluted with a weak acid, the eluate is concentrated, added to liquid scintillator and assayed by recording beta-alpha coincidences. These methods were used to characterize two `hotspots' on the outer surface of one of the He-3 proportional counters in the Neutral Current Detection array of the Sudbury Neutrino Observatory experiment. The methods have similar sensitivities, of order tens of ng, to both thorium- and uranium-chain contamination

    Low Energy Threshold Analysis of the Phase I and Phase II Data Sets of the Sudbury Neutrino Observatory

    Get PDF
    Results are reported from a joint analysis of Phase I and Phase II data from the Sudbury Neutrino Observatory. The effective electron kinetic energy threshold used is T-eff = 3.5MeV, the lowest analysis threshold yet achieved with water Cherenkov detector data. In units of 106 cm(-2) s(-1), the total flux of active-flavor neutrinos from B-8 decay in the Sun measured using the neutral current (NC) reaction of neutrinos on deuterons, with no constraint on the B-8 neutrino energy spectrum, is found to be Phi(NC) = 5.140(-0.158)(+0.160)(stat)(-0.117)(+0.132)(syst). These uncertainties are more than a factor of 2 smaller than previously published results. Also presented are the spectra of recoil electrons from the charged current reaction of neutrinos on deuterons and the elastic scattering of electrons. A fit to the Sudbury Neutrino Observatory data in which the free parameters directly describe the total B-8 neutrino flux and the energy-dependent nu(e) survival probability provides a measure of the total B-8 neutrino flux Phi(8B) = 5.046(-0.152)(+0.159)(stat)(-0.123)(+0.107)(syst). Combining these new results with results of all other solar experiments and the KamLAND reactor experiment yields best- fit values of the mixing parameters of theta(12) = 34.06(-0.84)(+1.16) degrees and Delta m(21)(2) = 7.59(-0.21)(+0.20) x 10(-5) eV(2). The global value of Phi(8B) is extracted to a precision of (+2.38)(-2.95)%. In a three-flavor analysis the best fit value of sin(2) theta(13) is 2.00(-1.63)(+2.09) x 10(-2). This implies an upper bound of sin(2) theta(13) < 0.057 (95% C.L.)

    Constraints on neutrino lifetime from the Sudbury Neutrino Observatory

    Get PDF
    The long baseline between Earth and the Sun makes solar neutrinos an excellent test beam for exploring possible neutrino decay. The signature of such decay would be an energy-dependent distortion of the traditional survival probability which can be fit for using well-developed and high-precision analysis methods. Here a model including neutrino decay is fit to all three phases of B8 solar neutrino data taken by the Sudbury Neutrino Observatory (SNO). This fit constrains the lifetime of neutrino mass state ν2 to be &gt;8.08×10-5 s/eV at 90% confidence. An analysis combining this SNO result with those from other solar neutrino experiments results in a combined limit for the lifetime of mass state ν2 of &gt;1.92×10-3 s/eV at 90% confidence
    corecore