29 research outputs found

    The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools and residence times

    Get PDF
    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types

    Global 3-D Simulations of the Triple Oxygen Isotope Signature Δ17O in Atmospheric CO2

    Get PDF
    The triple oxygen isotope signature Δ¹⁷O in atmospheric CO₂, also known as its “¹⁷O excess,” has been proposed as a tracer for gross primary production (the gross uptake of CO₂ by vegetation through photosynthesis). We present the first global 3-D model simulations for Δ¹⁷O in atmospheric CO₂ together with a detailed model description and sensitivity analyses. In our 3-D model framework we include the stratospheric source of Δ¹⁷O in CO₂ and the surface sinks from vegetation, soils, ocean, biomass burning, and fossil fuel combustion. The effect of oxidation of atmospheric CO on Δ¹⁷O in CO2 is also included in our model. We estimate that the global mean Δ¹⁷O (defined as Δ¹⁷O = ln( ¹⁷O + 1) − RL · ln( ¹⁸O + 1) with RL = 0.5229) of CO₂ in the lowest 500 m of the atmosphere is 39.6 per meg, which is ∼20 per meg lower than estimates from existing box models. We compare our model results with a measured stratospheric Δ¹⁷O in CO₂ profile from Sodankylä (Finland), which shows good agreement. In addition, we compare our model results with tropospheric measurements of Δ¹⁷O in CO₂ from Göttingen (Germany) and Taipei (Taiwan), which shows some agreement but we also find substantial discrepancies that are subsequently discussed. Finally, we show model results for Zotino (Russia), Mauna Loa (United States), Manaus (Brazil), and South Pole, which we propose as possible locations for future measurements of Δ¹⁷O in tropospheric CO₂ that can help to further increase our understanding of the global budget of Δ¹⁷O in atmospheric CO₂

    CTDAS-Lagrange v1.0:a high-resolution data assimilation system for regional carbon dioxide observations

    Get PDF
    We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named CTDAS-Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft programmable flask packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system.To estimate the uncertainties in the optimized fluxes from the system, we performed sensitivity tests with various a priori biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and an empirical dataset derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and model-data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment method is more flexible in optimizing net ecosystem exchange (NEE) than the multiplicative flux adjustment method, and our sensitivity tests with real observations show that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral BCs and to resolve large biases in the prior biosphere fluxes.Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity tests, which places the North American carbon sink for the year 2010 in a range from -0.92 to -1.26 PgC yr( -1). This is comparable to the TM5-based estimates of CarbonTracker (version CT2016, -0.91 +/- 1.10 PgC yr (-1)) and CarbonTracker Europe (version CTE,2016, -0.91 +/- 0.31 PgC yr(-1)). We conclude that CTDAS-Lagrange can offer a versatile and computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain

    CTDAS-Lagrange v1.0 : A high-resolution data assimilation system for regional carbon dioxide observations

    Get PDF
    We have implemented a regional carbon dioxide data assimilation system based on the CarbonTracker Data Assimilation Shell (CTDAS) and a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). With this system, named CTDAS-Lagrange, we simultaneously optimize terrestrial biosphere fluxes and four parameters that adjust the lateral boundary conditions (BCs) against CO2 observations from the NOAA ESRL North America tall tower and aircraft programmable flask packages (PFPs) sampling program. Least-squares optimization is performed with a time-stepping ensemble Kalman smoother, over a time window of 10 days and assimilating sequentially a time series of observations. Because the WRF-STILT footprints are pre-computed, it is computationally efficient to run the CTDAS-Lagrange system. To estimate the uncertainties in the optimized fluxes from the system, we performed sensitivity tests with various a priori biosphere fluxes (SiBCASA, SiB3, CT2013B) and BCs (optimized mole fraction fields from CT2013B and CTE2014, and an empirical dataset derived from aircraft observations), as well as with a variety of choices on the ways that fluxes are adjusted (additive or multiplicative), covariance length scales, biosphere flux covariances, BC parameter uncertainties, and model-data mismatches. In pseudo-data experiments, we show that in our implementation the additive flux adjustment method is more flexible in optimizing net ecosystem exchange (NEE) than the multiplicative flux adjustment method, and our sensitivity tests with real observations show that the CTDAS-Lagrange system has the ability to correct for the potential biases in the lateral BCs and to resolve large biases in the prior biosphere fluxes. Using real observations, we have derived a range of estimates for the optimized carbon fluxes from a series of sensitivity tests, which places the North American carbon sink for the year 2010 in a range from -0.92 to -1.26PgCyr-1. This is comparable to the TM5-based estimates of CarbonTracker (version CT2016, -0.91±1.10PgCyr-1) and CarbonTracker Europe (version CTE2016, -0.91±0.31PgCyr-1). We conclude that CTDAS-Lagrange can offer a versatile and computationally attractive alternative to these global systems for regional estimates of carbon fluxes, which can take advantage of high-resolution Lagrangian footprints that are increasingly easy to obtain.</p

    Simulating the budget and distribution of Δ17O in CO2 with a global atmosphere-biosphere model

    No full text
    The isotope ratios of 16O, 17O and 18O in CO2 are referred to as the triple-oxygen isotope composition of CO2, and have long held promise to better understand terrestrial carbon cycling. However, measurement precision as well as an incomplete understanding of fractionation during equilibrium exchange and diffusion of CO2 have been a challenge, especially for the estimation of gross primary production (GPP) and respiration from measured δ17O and δ18O isotope ratios in CO2. The excess-17O in CO2 (Δ17O), defined as the deviation of the δ17O and δ18O ratios from an expected mass-dependent fractionation line, is in principle easier to interpret as many processes that simultaneously affect δ17O and δ18O are not reflected in Δ17O. Two global box model simulations suggest that atmospheric Δ17O is therefore mostly determined by transport of relatively δ17O enriched CO2 from the stratosphere, and its equilibration in leaf-water back to an excess of close to zero, following diffusion as part of photosynthetic CO2 uptake by vegetation. This makes Δ17O an interesting tracer for photosynthesis at the global scale, and the first decadal time series have recently been published that indeed suggest strong GPP-driven variations in atmospheric Δ17O. In this study, we expand the modeling of Δ17O beyond the current two global box model results published by explicitly simulating the global atmospheric Δ17O distribution over a five year period. We specifically are interested whether regional gradients in Δ17O in areas with large GPP such as Amazonia leave an imprint on Δ17O that can be measured with the rapidly improving measurement precision (10-40 permeg currently). Therefore, we used the SIBCASA biosphere model at 1x1 degrees globally to simulate hourly fluxes of Δ17O into and out of C3 and C4 vegetation as well as soils. These fluxes were then fed into the TM5 atmospheric transport model at 6x4 degrees horizontal resolution to simulate the hourly spatial gradients in Δ17O all over the globe. Our results suggest that there are indeed strong regional signatures of biospheric uptake in atmospheric Δ17O that could be measured at the current precision. These signals are formed by the seasonal GPP of the biosphere as well as by the seasonal transport of stratospheric Δ17O, in addition to spatial gradients in areas with high GPP. We will explain our modeling capacity, demonstrate these signatures, and make a first attempt to compare our model to observed Δ17O in this presentation
    corecore