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The	terrestrial	carbon	cycle	is	currently	the	least	constrained	component	of	the	global	18	

carbon	budget.	Large	uncertainties	stem	from	a	poor	understanding	of	plant	carbon	19	

allocation,	stocks,	residence	times	and	carbon	use	efficiency.	Imposing	observational	20	

constraints	on	the	terrestrial	carbon	cycle	and	its	processes	is	therefore	necessary	to	21	

better	understand	its	current	state	and	to	predict	its	future	state.	We	combine	a	22	
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diagnostic	ecosystem	carbon	model	with	satellite	observations	of	leaf	area	and	biomass	23	

(where	and	when	available)	and	soil	carbon	data	to	retrieve	the	first	global	estimates	of	24	

carbon	cycle	state	and	process	variables	at	a	1°×1°	resolution;	retrieved	variables	are	25	

independent	from	the	plant	functional	type	and	steady-state	paradigms.	Our	results	26	

reveal	global	emergent	relationships	in	the	spatial	distribution	of	key	carbon	cycle	states	27	

and	processes.	Live	biomass	and	dead	organic	carbon	residence	times	exhibit	28	

contrasting	spatial	features	(r=0.3).	Allocation	to	structural	carbon	is	highest	in	the	wet	29	

tropics	(85–88%)	in	contrast	to	higher	latitudes	(73–82%),	where	allocation	shifts	30	

towards	photosynthetic	carbon.	Carbon	use	efficiency	is	lowest	(0.42–0.44)	in	the	wet	31	

tropics.	We	find	an	emergent	global	correlation	between	retrievals	of	leaf	mass	per	leaf	32	

area	and	leaf	lifespan	(r=0.64–0.80)	that	matches	independent	trait	studies.	We	show	33	

that	conventional	land-cover	types	cannot	adequately	describe	the	spatial	variability	of	34	

key	carbon	states	and	processes	(multiple	correlation	median:	0.41).	This	mismatch	has	35	

strong	implications	for	the	prediction	of	terrestrial	carbon	dynamics,	which	is	currently	36	

based	on	globally	applied	parameters	linked	to	land-cover	or	plant	functional	types.	37	

	38	

Significance		39	

	40	

Quantitative	knowledge	of	terrestrial	carbon	pathways	and	processes	is	fundamental	for	41	

understanding	the	biosphere’s	response	to	a	changing	climate.	Carbon	allocation,	stocks	42	

and	residence	times	together	define	the	dynamic	state	of	the	terrestrial	carbon	cycle.	43	

These	quantities	are	difficult	to	measure	and	remain	poorly	quantified	on	a	global	scale.	44	
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Here	we	retrieve	global	1°×1°	carbon	state	and	process	variables	by	combining	a	carbon	45	

balance	model	with	satellite	observations	of	biomass	and	leaf	area	(where	and	when	46	

available)	and	global	soil	carbon	data.	Our	results	reveal	emergent	continental-scale	47	

patterns	and	relationships	between	carbon	states	and	processes.	We	find	conventional	48	

land-cover	types	cannot	capture	continental-scale	variations	of	retrieved	carbon	49	

variables:	this	mismatch	has	strong	implications	for	terrestrial	carbon	cycle	predictions.	50	

	51	

©	2015.	All	rights	reserved.	52	

	53	

Keywords:	carbon	cycle,	LAI,	biomass,	soil	carbon,	model-data	fusion,	allocation,	54	

residence	time.	55	

\body	56	

Introduction	57	

	58	

The	terrestrial	carbon	(C)	cycle	remains	the	least	constrained	component	of	the	global	C	59	

budget	(1).	In	contrast	to	a	relatively	stable	increase	of	the	ocean	CO2	sink	from	0.9	Pg	C	60	

yr-1	to	2.7	Pg	C	yr-1	over	the	past	40	years,	terrestrial	CO2	uptake	has	been	found	to	vary	61	

between	a	net	4.1	Pg	C	yr-1	sink	to	a	0.4	Pg	C	yr-1	source,	and	accounts	for	a	majority	of	62	

the	inter-annual	variability	in	atmospheric	CO2	growth.	The	complex	response	of	63	

terrestrial	ecosystem	CO2	exchanges	to	short-	and	long-term	changes	in	temperature,	64	

water	availability,	nutrient	availability	and	rising	atmospheric	CO2
	(2–	6)	remain	highly	65	

uncertain	in	C	cycle	model	projections	(7).	As	a	result,	there	are	large	gaps	in	our	66	
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understanding	of	terrestrial	C	dynamics,	including	the	magnitude	and	residence	times	of	67	

the	major	ecosystem	C	pools	(8,	9)	and	rates	of	autotrophic	respiration	(10).	Moreover,	68	

the	impact	of	climatic	extremes	on	C	cycling,	such	as	recent	Amazon	droughts	(11),	69	

highlights	the	importance	of	understanding	the	terrestrial	C	cycle	sensitivity	to	climate	70	

variability.	To	understand	terrestrial	CO2	exchanges	in	the	past,	present	and	future,	we	71	

need	to	better	constrain	current	dynamics	of	ecosystem	C	cycling,	from	regional	to	72	

global	scales.		73	

	74	

C	uptake,	allocation,	pool	stocks,	residence	times,	respiration	and	disturbance	together	75	

drive	net	CO2	exchanges	(12)	on	sub-daily	to	millennial	timescales;	these	C	state	and	76	

process	variables	also	determine	the	temporal	sensitivity	of	the	net	C	balance	to	climatic	77	

variability.	For	example,	global	changes	in	photosynthetic	uptake	could	lead	to	a	rapid	78	

response	from	short-lived	C	pools	(such	as	foliage,	fine	roots	and	litter),	or	to	a	79	

prolonged	response	from	the	long-lived	C	pools	(such	as	woody	biomass	and	soil	C),	80	

with	very	different	outcomes	on	ecosystem	source/sink	behavior.	Quantitative	81	

knowledge	of	terrestrial	C	pathways	is	therefore	central	to	understanding	the	temporal	82	

responses	of	the	major	terrestrial	C	fluxes	–	including	heterotrophic	respiration	(13),	83	

fires	(14,	15)	and	wetland	CH4	emissions	(16,	17)	–	to	inter-annual	variations	in	C	uptake.		84	

	85	

While	C	dynamics	have	been	extensively	measured	and	analyzed	at	site-level	(18–	21),	86	

the	respiration	and	allocation	of	fixed	C,	and	its	residence	time	within	the	major	C	pools,	87	

are	difficult	and	expensive	to	measure	at	site	level,	and	remain	poorly	quantified	on	88	
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global	scales.	As	a	result,	global	terrestrial	C	cycle	models	rely	on	land-cover	type	89	

specific	C	cycling	parameters	–	based	on	spatially	pre-assigned	plant	functional	types	–	90	

to	determine	C	fluxes	and	C	pools	(22).	Globally	spanning	C	cycle	observations	can	91	

provide	a	much-needed	constraint	on	the	spatial	variability	and	associated	dynamics	of	92	

the	terrestrial	C	cycle.	Over	the	past	decade	a	growing	number	of	datasets	have	93	

enhanced	understanding	of	the	terrestrial	C	cycle,	including	global	scale	canopy	94	

dynamics	(NASA	Moderate	Resolution	Imaging	Spectroradiometer	–	MODIS	leaf	area	95	

index	–	LAI	–		and	burned	area	products),	empirically	derived	global	soil	C	data	96	

(Harmonized	World	Soil	Database	–	HWSD,	23),	satellite-based	above	and	below	ground	97	

biomass	maps	for	the	tropics	(ABGB,	24,	25),	and	Greenhouse	Gases	Observing	Satellite	98	

(GOSAT)	CO2	and	plant	fluorescence	(26,	27).	These	spatially	and	temporally	explicit	99	

datasets	provide	an	enhanced	view	of	the	terrestrial	C	cycle,	and	can	be	used	together	100	

to	retrieve	consistent	global	C	state	and	process	variables.	Significant	efforts	in	data-101	

driven	estimates	of	the	global	C	fluxes	have	been	made	over	the	past	decade.	These	102	

include	estimates	based	on	atmospheric	CO2	concentrations	(1,	28,	29);	high-resolution	103	

global	primary	production	maps	(30)	based	on	FLUXNET	eddy	covariance	tower	datasets	104	

(18);	the	mean	residence	time	of	terrestrial	C	(31);	ecosystem	respiration	dependence	105	

on	temperature,	based	on	FLUXNET	data	(32)	and	global	C	cycle	data	assimilation	106	

systems	(33).		107	

	108	

Given	an	increasing	number	of	C	cycle	observations,	what	remains	an	outstanding	109	

challenge	is	to	produce	a	data-consistent	analysis	of	terrestrial	C	cycling	–	including	110	
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retrievals	of	C	fluxes,	C	pools,	autotrophic	respiration,	allocation	fractions	and	residence	111	

times	–	based	on	multiple	global-scale	earth	observations	and	datasets.	Current	global-112	

scale	terrestrial	biosphere	models,	due	to	their	complexity	and	structures,	are	ill-113	

equipped	to	ingest	an	ever-increasing	volume	of	earth	observations	to	estimate	(instead	114	

of	prescribing)	model	parameters,	based	on	the	currently	available	observations.	To	115	

overcome	this	challenge,	we	use	a	model-data	fusion	(MDF)	approach	to	retrieve	116	

terrestrial	C	state	and	process	variables	during	the	period	2001–10,	without	invoking	117	

plant	functional	type	or	steady-state	assumptions.	We	bring	together	global	MODIS	LAI,	118	

a	tropical	biomass	map	(24),	a	soil	C	dataset	(23),	MODIS	burned	area	(34),	and	a	119	

diagnostic	ecosystem	C	balance	model	(DALEC2,	19,	35)	to	retrieve	C	state	and	process	120	

variables	by	producing	a	novel	data-consistent	and	spatially	explicit	analysis	of	121	

terrestrial	C	cycling	on	a	global	1°×1°	grid	(Fig.	1;	we	henceforth	refer	to	this	model-data	122	

fusion	setup	as	the	CARbon	DAta	MOdel	framework,	or	CARDAMOM).	Specifically,	we	123	

address	the	following	questions:	how	is	C	uptake	partitioned	between	the	live	biomass	124	

pools	and	respiration?	What	is	the	residence	time	of	C	within	the	major	ecosystem	C	125	

pools?	How	do	estimates	of	C	cycle	states	and	processes	vary	spatially	and	to	what	126	

degree	do	emergent	variable	patterns	match	land-cover	maps?	We	use	a	Markov	Chain	127	

Monte	Carlo	MDF	algorithm	to	retrieve	C	state	and	process	variables	–	and	their	128	

associated	uncertainty	–	within	each	1°×1°	degree	grid	cell	(see	Materials	and	Methods).	129	

The	MDF	approach	retrieves	the	state	and	process	variables	that	minimize	the	model	130	

mismatch	against	any	available	C	cycle	observations.	Therefore,	in	the	absence	of	extra-131	
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tropical	biomass	data	or	winter-time	MODIS	LAI	observations,	estimates	of	2001–10	C	132	

cycle	state	and	process	variables	are	achievable,	albeit	more	uncertain.		133	

	134	

Results	135	

	136	

Distinct	C	allocation	patterns	emerge	from	our	terrestrial	C	analysis	(Fig.	2).	Net	primary	137	

production	(NPP)	allocation	to	structural	biomass	(wood	and	fine	roots)	is	largely	≥80%	138	

(area-weighted	25th	–	75th	%ile	range	=	85–88%)	in	the	wet	tropics	(<23°N/S;	annual	139	

precipitation	>	1500mm),	in	contrast	to	the	dry	tropics	(77–87%),	and	extra-tropical	140	

regions	(73–82%).	The	highest	NPP	allocations	to	foliage	(≥30%)	spatially	coincide	with	141	

major	grassland	areas,	including	the	North	America	prairies,	Central	Asia	steppes	and	142	

the	Sahel	region	in	Africa.	The	dry	tropics	exhibit	relatively	high	NPP	allocation	to	labile	143	

C	(7–14%;	Fig.	S1);	this	reflects	the	increasing	impact	of	seasonality	on	production	as	144	

precipitation	declines,	requiring	labile	C	stores	for	leaf	flush.	Carbon	use	efficiency	(CUE	145	

=	1	-	autotrophic	respiration	fraction)	is	overall	lowest	in	within	the	wet	tropics	(0.42–146	

0.44)	in	contrast	to	the	dry	tropics	(0.45–0.50),	temperate	(23–55°N/S;	0.47–0.50)	and	147	

high	latitudes	(>55°N/S;	0.49–0.50).	148	

	149	

Live	biomass	and	dead	organic	C	residence	times	exhibit	contrasting	spatial	features	(r	=	150	

0.3;	Fig.	3).	Within	the	majority	of	wet	tropical	land	area	(56%)	–	especially	across	most	151	

of	the	Amazon	(76%)	and	Congo	(69%)	river	basins–	the	longest	C	residence	time	occurs	152	

within	the	woody	pool	(Fig.	S1).	In	the	dry	tropics	and	extra-tropical	latitudes,	soil	C	153	
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residence	times	exceed	wood	C	residence	time	by	a	median	factor	of	2.6	(1.6–4.3).	154	

Woody	residence	time	is	typically	shorter	in	the	dry	tropics	(8–19	yrs)	compared	to	155	

other	biomes	(wet	tropics:	12–21	yrs;	temperate:	21–29	yrs;	high	latitudes:	25–28	yrs).	156	

Litter	C	residence	time	is	typically	longer	in	extra-tropical	ecosystems	(0.8–1.6	yrs)	in	157	

comparison	to	tropical	ecosystems	(0.4–0.5	yrs).	The	longest	foliar	residence	time	(or	158	

leaf	lifespan)	occurs	in	the	wet	tropics	and	semi-arid	regions	(Fig.	S1).		159	

	160	

Overall,	the	wet	tropics	are	characterized	by	relatively	high	structural	C	(>100	tC	ha-1)	161	

and	photosynthetic	C	(>2.5	tC	ha-1)(Fig.	4):	in	contrast,	the	dry	tropics	and	extra-tropical	162	

regions	exhibit	less	structural	and/or	photosynthetic	C.	Foliar	C	stocks	are	typically	163	

larger	in	the	wet	tropics	(2.8–4.7	tC	ha-1)	relative	to	other	biomes	(0.2–0.6	tC	ha-1);	164	

similarly,	fine	root	stocks	are	also	greater	in	the	wet	tropics	(4.0–5.3	tC	ha-1),	compared	165	

to	other	biomes	(0.8–2.7	tC	ha-1).	Root:shoot	(fine	root	C:leaf	C)	is	lowest	in	the	wet	166	

tropics	(1.1–1.5),	followed	by		the	dry	tropics	(1.6–1.9)	and	extra-tropics	(1.8–2.1).	We	167	

find	larger	woody	C	uncertainties	(1°×1°	90%	confidence	range	/	median)	in	the	extra-168	

tropics	(1.8-4.6)	in	contrast	to	tropical	woody	C	(1.4–1.6)	due	to	the	latitudinal	limits	of	169	

the	total	above-	and	below-ground	biomass	map	(24).	Litter	C	is	greater	in	high	latitudes	170	

(2.4–3.4	tC	ha-1)	relative	to	temperate	(0.6–2.4	tC	ha-1)	and	tropical	(0.2–2.6	tC	ha-1)	171	

regions.	High-latitude	ecosystems	have	higher	labile	C	stocks	linked	to	seasonal	leaf	172	

expansion	(0.2–0.5	tC	ha-1)	relative	to	temperate	(0.1–0.3	tC	ha-1)	and	tropical	(0.1–0.3	173	

tC	ha-1)	ecosystems.		174	

	175	
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We	find	high	leaf	C	mass	per	leaf	area	(LCMA)	values	in	the	wet	tropics	(85-97	gC	m-2),	176	

and	in	semi-arid	regions,	such	as	the	Sahel,	South-western	United	States	and	the	177	

Australian	continent	(typically	>100	gC	m-2;	Fig.	5);	LCMA	estimates	are	lower	(typically	178	

<80	gC	m-2)	in	high	latitudes	and	the	dry	tropics.	We	find	a	positive	correlation	between	179	

leaf	lifespan	and	LCMA	in	high-latitude	(r	=	0.79),	temperate	(r	=	0.80),	dry	tropical	(r	=	180	

0.78)	and	wet	tropical	(r	=	0.64)	areas.		181	

	182	

Global	GPP	(global	25th	–	75th	%ile	=	91–134	Pg	C	yr-1),	ecosystem	respiration	(91–137	Pg	183	

C	yr-1)	and	fires	(1.3–2.0	Pg	C	yr-1)	are	broadly	consistent	with	the	MsTMIP	terrestrial	184	

carbon	model	ensemble	(22),	data-driven	estimates	(36)	and	bottom-up	inventories	(37)	185	

(Fig.	S5).	The	Net	Carbon	Exchange	uncertainty	(-8	to	+13	Pg	C	yr-1)	is	an	order	of	186	

magnitude	greater	than	mode	NCE	(-2	Pg	C	yr-1);	NCE	latitudinal	uncertainty	is	larger	but	187	

comparable	to	the	MsTMIP	model	range.	Global	atmospheric	model	CO2	concentrations	188	

based	on	CARDAMOM	mode	NCE	fluxes	are	seasonally	consistent	(r2	=	0.93,	RMSE	=	189	

0.53	ppm	CO2)	with	mean	total	column	CO2	measurements	(38,Fig.	S6).	The	mean	190	

integrated	C	residence	time	by	(31)	is	within	the	range	of	individual	pool	residence	times	191	

at	locations	B,	T,	D	and	W	(Fig.	3).	The	2001–10	CARDAMOM	analysis	spatial	and	192	

temporal	LAI	variability	is	consistent	with	the	MODIS	LAI	constraints	(r2	=	0.8;	RMSE	=	193	

0.6	m2/m2).	When	alternative	GPP	(36),	alternative	model	structure	or	biased	data	194	

constraints	(±20%)	are	imposed	at	locations	B,	T,	D	and	W,	88%	of	median	sensitivity	195	

analysis	estimates	are	within	±50%	of	median	C	state	and	process	variable	retrievals	196	

(Fig.	S2).		197	
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	198	

Retrieved	C	cycle	variables	are	broadly	consistent	with	a	range	of	in-situ	measurements	199	

(Table	S3).	Estimates	of	CUE	within	the	Amazon	river	basin	are	comparable	to	the	upper	200	

bound	of	recent	measurements	(0.32–0.47)(39).	Recent	estimates	of	extra-tropical	201	

forest	C	density	(40)	are	on	average	38%	lower	than	CARDAMOM	total	biomass	202	

estimates	within	forested	areas	(although	these	are	typically	within	the	CARDAMOM	203	

1°×1°	uncertainty).	Estimates	of	mean	Amazon	woody	C	residence	times	(15–21	yrs)	are	204	

lower	but	comparable	to	above-ground	woody	C	residence	times	derived	from	site-level	205	

measurements	(~20–70	yrs;	20).		206	

	207	

We	find	that	88-99%	of	C	state	and	process	variability	is	accounted	for	by	8	empirical	208	

orthogonal	basis	functions	(EOFs,	Fig.	6);	in	other	words,	retrieved	C	state	and	process	209	

variables	are	largely	explained	by	eight	modes	of	spatial	variability	(Fig.	S4).	On	average,	210	

GLOBCOVER	land-cover	type	classifications	(41,	e.g.	deciduous	forests,	evergreen	forests	211	

and	grasslands)	account	for	<50%	of	C	state	and	process	variability	(median	multiple	212	

correlation	coefficient	R	=	0.41);	GLOBCOVER	land-cover	types	best	describe	spatial	213	

variations	in	C	stocks	(0.5≤R≤0.8),	followed	by	LCMA	(R	=	0.4),	residence	times	214	

(0.3≤R≤0.5)	and	allocation	fractions	(0.1≤R≤0.4).		215	

	216	

Discussion		217	

	218	
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Typically	C	allocation	and	residence	time	parameters	are	based	on	land-cover	types	in	219	

global-scale	terrestrial	C	cycle	studies	(9,	22,	amongst	others);	here,	spatially	broad	220	

allocation	and	residence	patterns	emerge	instead,	as	a	result	of	the	model-data	fusion	221	

approach.	For	example,	high	biomass	ecosystems	throughout	the	wet	tropics	display	222	

similar	C	allocation,	residence	time	and	LCMA	configurations	(Fig.	2–5).	Similarly,	we	223	

find	that	dead	organic	matter	(DOM)	C	residence	is	generally	longer	in	high	latitudes	224	

(Fig.	3).	In	comparison	to	conventional	land-cover	types,	EOFs	1-4	account	for	a	larger	225	

degree	of	the	spatial	structures	in	retrieved	C	variables	(Fig.	6);	for	most	variables,	the	226	

two	dominant	EOF	modes	–	which	together	reflect	first-order	variations	in	latitude	and	227	

global	precipitation	patterns	(Fig.	S4)	–	explain	more	spatial	variability	than	GLOBCOVER	228	

land-cover	types.	The	mismatch	between	land-cover	types	and	retrieved	variables	has	229	

major	implications	for	the	estimation	and	prediction	of	terrestrial	C	cycling,	which	is	230	

currently	based	on	small	sets	of	globally	applied	parameters	linked	to	land-cover	types.	231	

The	importance	of	climate,	biodiversity,	fire	and	anthropogenic	disturbance	in	232	

generating	these	mismatches	needs	to	be	explored	in	further	research	(42).	233	

	234	

It	also	is	clear	that	plant	traits	vary	across	biomes	(Fig.	2-4,	S1),	not	just	at	biome	235	

boundaries	(43),	and	that	there	are	continental-scale	trade-offs	and	correlations	among	236	

traits	(44).	Our	analysis	is	consistent	with	these	viewpoints:	for	example,	the	emergent	237	

relationship	between	LCMA	(proportional	to	leaf	mass	per	area)	and	leaf	lifespan	(Fig.	5)	238	

matches	the	positive	correlation	found	in	global	plant	trait	datasets	(45).	Evaluating	239	

global	plant-trait	patterns	emerging	from	CARDAMOM	provides	a	novel	opportunity	for	240	
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connections	to	theoretical	and	functional	biodiversity	research,	and	a	route	to	241	

integrating	this	knowledge	into	predictive	terrestrial	C	cycle	modeling.	242	

	243	

The	residence	times	of	major	C	stocks	provide	substantial	insights	into	the	sensitivity	244	

and	potential	future	trajectories	of	the	terrestrial	C	cycle.	For	example,	land-cover	245	

changes	in	the	wet	tropics	may	result	in	rapid	DOM	C	losses,	given	the	relatively	short	246	

DOM	residence	times	(<30	yrs)	(Fig.	3).	In	contrast,	high-latitude	C	residence	times	are	247	

an	order	of	magnitude	higher	(30–300	yrs),	and	therefore	shifts	in	C	allocation	or	248	

turnover	rates	are	likely	to	result	in	long-lived	C	flux	responses.	Overall,	given	the	249	

predominant	role	of	C	residence	times	in	future	terrestrial	uptake	responses	(9),	the	250	

derived	residence	times	provide	a	first-order	estimate	of	ecosystem	response	times	as	a	251	

result	of	changes	in	C	cycling	regimes.	However,	we	note	that	model	structure	is	likely	to	252	

be	a	major	source	of	uncertainty	in	long-lived	(>10yr)	C	flux	predictions.	For	example,	253	

while	reduced	complexity	models	can	capture	some	of	the	principal	long-term	(>10yr)	254	

DOM	dynamics	represented	in	earth	system	models	(46)	systematic	errors	in	DOM	255	

dynamics	can	arise	due	to	the	under-representation	of	processes	controlling	DOM	256	

residence	times	(47,	48).		We	also	note	that	our	decadal	analysis	is	unlikely	to	be	able	to	257	

capture	slow	feedback	processes	acting	on	longer	time-scales	such	as	permafrost	re-258	

mobilization	and	priming	(49).	The	large	allocation	and	stocks	and	short	residence	time	259	

of	wood	in	the	wet	tropics	indicates	the	potentially	rapid	potential	for	regrowth	and	C	260	

accumulation	post-disturbance	(50).	We	note	that	fires	are	less	frequent	but	major	261	
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events	within	boreal	ecosystems	(51),	and	therefore	longer	time-periods	are	required	262	

for	retrievals	to	fully	account	for	the	effect	of	fires	on	high-latitude	C	residence	times.		263	

	264	

C	state	and	process	variable	retrievals	are	sensitive	to	the	uncertainty	characteristics	of	265	

C	cycle	observations	(35)	and	the	prior	parameter	ranges	(Table	S1).	We	highlight	that	266	

the	current	coverage	and	accuracy	of	C	cycle	observations	(24,	52)	remains	a	major	267	

limiting	factor	in	our	approach.	For	example,	temperate	and	high-latitude	C	stock	and	268	

residence	time	uncertainties	are	higher	due	to	the	absence	of	biomass	observations.	269	

Undoubtedly,	future	estimates	of	globally-spanning	biomass	density	will	provide	a	major	270	

constraint	on	CARDAMOM	estimates	of	extra-tropical	C	state	and	process	variables	(53).		271	

	272	

Land-to-atmosphere	C	flux	estimates	could	be	used	to	further	constrain	CARDAMOM	C	273	

fluxes	(Fig.	S5)	and	C	cycle	variables	associated	to	non-steady	C	states.	For	example,	soil	274	

C	residence	time	samples	are	negatively	correlated	with	corresponding	mean	2001–10	275	

NCE	samples	at	locations	B	(r	=	-0.3),	T	(r	=	-0.4),	D	(r	=	-0.5)	and	W	(r	=	-0.3);	therefore,	276	

regional-	or	grid-scale	estimates	of	NCE	could	provide	a	much-needed	additional	277	

constraint	on	soil	C	residence	time.	CARDAMOM	flux	magnitude	and	uncertainty	can	be	278	

used	as	prior	information	in	global	atmospheric	CO2	inversions;	in	turn,	the	assimilation	279	

of	GOSAT	and	OCO-2	atmospheric	CO2	observations	(54)	should	further	constrain	280	

CARDAMOM	NCE	estimates	and	their	associated	uncertainties.	In	this	manner,	non-281	

steady	state	C	fluxes	can	ultimately	be	reconciled	with	ecosystem	state	and	process	282	

variables,	such	as	C	stocks	and	residence	times.	283	
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	284	

The	CARDAMOM	approach	provides	a	framework	to	test	alternative	model	structures	285	

(55):	in	this	manner,	combined	C	cycle	model	parametric	and	structural	uncertainties	286	

can	be	characterized,	while	ensuring	consistency	between	models	and	global-scale	287	

datasets.	This	assessment	would	amount	to	a	major	step	forward	from	conventional	C	288	

cycle	model	inter-comparison	studies.	Ultimately	an	ensemble	of	models	can	be	used	to	289	

determine	the	degree	to	which	retrievals	of	key	C	state	and	process	variables	are	model-290	

dependent.	Moreover,	alternative	model	structures	could	be	used	in	CARDAMOM	to	291	

assimilate	globally	spanning	plant	traits	related	to	C	cycling	(56)	and	satellite	292	

observations	such	as	solar-induced	fluorescence	(27),	vegetation	optical	depth	(57),	soil	293	

moisture	(58,	59)	and	changes	in	above-ground	biomass	(25,	60,	61).	We	anticipate	that	294	

the	incorporation	of	additional	datasets	and	alternative	model	structures	into	295	

CARDAMOM	will	generate	quantifiable	reductions	in	retrieved	C	variable	uncertainties	296	

and	new	ecological	insights	on	the	state	of	terrestrial	C	cycle.	297	

	298	

Materials	and	Methods	299	

		300	

We	grid	MODIS	LAI,	ABGB	(24),	and	HWSD	topsoil	and	subsoil	(0-100cm)	C	density	(23)	301	

at	a	1°×1°	resolution	(section	S1	of	the	SI).	The	Data	Assimilation	Linked	Ecosystem	302	

Carbon	model	version	two	(DALEC2)	is	analytically	described	by	(35);	an	overview	of	303	

DALEC2	C	fluxes	and	pools	is	shown	in	Fig.	1.	The	17	DALEC2	parameters	(controlling	the	304	

processes	of	photosynthesis	and	phenology,	allocation,	and	turnover	rates)	and	six	305	
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initial	C	pools	robustly	characterize	terrestrial	ecosystem	C	balance	(19).	DALEC2	is	a	306	

generic	representation	of	C-cycling,	where	plant-functional	types	(PFTs)	are	not	explicit:	307	

instead,	model	parameters	are	treated	as	unknown	and	independent	quantities	for	each	308	

1°×1°	grid	cell	(Table	S1).	We	incorporate	a	fire	C	loss	parameterization	to	account	for	309	

seasonal	and	inter-annual	variations	in	fire	C	fluxes	from	DALEC2	(section	S2	of	the	SI).	310	

The	model	drivers	consist	of	monthly	time-step	ERA	interim	meteorology	and	MODIS	311	

burned	area	(34)	at	a	1°×1°	resolution.		312	

	313	

For	each	1°	x	1°	grid	cell,	we	use	Bayesian	inference	to	retrieve	the	probability	of	314	

DALEC2	model	parameters	xi	(Table	S1)	given	observational	constraints	Oi,	henceforth	315	

p(xi|Oi),	where	316	

	317	

p(xi|Oi)	∝ p(xi)	p(Oi|xi)	 	 	 	 	 	 	 	 (1)	318	

	319	

p(xi)	is	the	prior	parameter	information	and	p(Oi|xi)	is	the	likelihood	of	xi	with	respect	to	320	

Oi.	We	use	a	Markov	Chain	Monte	Carlo	algorithm	to	sample	xi	from	p(xi|Oi):	we	321	

henceforth	refer	to	the	retrieved	DALEC2	parameter	values	at	pixel	i	as	yi.	Within	each	322	

grid	cell,	C	allocation	fractions,	residence	times	within	each	C	pool,	stocks,	LCMA,	and	323	

associated	C	fluxes	are	derived	from	4000	samples	of	yi	(section	S3	of	the	SI).	We	hence	324	

obtain	a	probability	density	function	(PDF)	for	all	C	cycle	variables	within	each	1°×1°	grid	325	

cell.		326	

	327	
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We	do	not	impose	PFT	specific	prior	parameter	distributions,	or	steady	state	328	

assumptions:	p(xi)	consists	of	ecologically	viable	parameter	ranges	(Table	S1)	and	329	

ecological	and	dynamical	constraints	(35).	Together	these	guarantee	ecologically	330	

consistent	parameter	retrievals	within	a	globally	prescribed	parameter	space,	without	331	

imposing	spatially	explicit	prior	parameter	information.	332	

	333	

From	the	C	state	and	process	variable	estimates	within	each	1°×1°	grid	cell	we	use	4000	334	

samples	of	yi	to	determine	the	mean,	median,	mode,	and	%ile	ranges	for	each	C	state	335	

and	process	variable	ranges.	In	Fig.	2-4,	we	present	C	allocation,	residence	time	and	C	336	

stock	5th,	25th,	median,	75th	and	95th	%iles	at	four	selected	locations:	B:	boreal	[62.5°N,	337	

81.5°E];	T:	temperate	[40.5°N,	120.5°W];	D:	dry	tropics	[12.5°N,	20.5°E]	and	W:	wet	338	

tropics	[7.5°S,	60.5°W].	We	chose	B,	T,	D	and	W	as	representative	examples	for	C	state	339	

and	process	variable	values	within	each	area	(the	full	1°×1°	C	state	and	process	variable	340	

maps	are	shown	in	Fig.	S1).	To	determine	the	robustness	of	our	C	state	and	process	341	

variable	estimates,	we	perform	dedicated	sensitivity	tests	to	characterize	the	role	of	342	

systematic	errors	in	data	constraints	and	model	structure:	we	repeat	our	C	variable	343	

retrievals	using	±20%	LAI,	±20%	ABGB,	±20%	HWSD,	±20%	combustion	coefficients,	344	

alternative	GPP	(36)	and	limited	heterotrophic	respiration	at	<°0C	(section	S4	of	the	SI).		345	

	346	

We	compare	our	results	against	in-situ	and	regional	observations	of	C	allocation,	pools	347	

and	residence	times	(section	S5	of	the	SI),	and	we	evaluate	the	resulting	fluxes	against	348	

atmospheric	CO2	observations	across	12	Total	Carbon	Column	Observing	Network	sites	349	
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(38)	by	incorporating	NCE	results	in	a	4D	atmospheric	transport	model	(29).	To	350	

determine	whether	global	land-cover	types	can	predict	the	spatial	variability	of	our	351	

results,	we	conduct	a	multiple	correlation	coefficient	analysis	between	C	state	and	352	

process	variables	and	18	GLOBCOVER	land-cover	fractions	at	1°×1°.	We	also	employed	a	353	

principal	component	analysis	on	C	state	and	process	variables	to	retrieve	the	primary	354	

1°×1°	empirical	orthogonal	functions	(EOFs).	The	details	of	the	CARDAMOM	results	355	

evaluation	and	analyses	are	fully	described	in	sections	S5-8	of	the	SI.	Statistical	356	

abbreviations	throughout	the	text	include	r	(Pearson	correlation	coefficient),	RMSE	357	

(root-mean-square	error).	All	spatially	derived	r	and	RMSE	values	reported	in	the	text	358	

are	area-weighted.	Retrieved	C	variable	ranges	–	reported	as	area-weighted	25th	–	75th	359	

%iles	–	are	derived	from	1°×1°	mean	allocation	and	C	stocks,	log-based	mean	C	360	

residence	times	(Fig.	S1)	and	median	LCMA	values	(Fig.	6).	All	CARDAMOM	datasets	361	

presented	in	this	study	can	be	downloaded	from	datashare.is.ed.ac.uk/	362	

handle/10283/875.	363	

	364	
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Figure	captions	581	

	582	

Fig.	1:	Diagnostic	ecosystem	carbon	(C)	balance	model	DALEC2	(19,35)	and	datasets	583	

used	to	retrieve	1°×1°	C	state	and	process	variables.	Gross	primary	production	(GPP),	a	584	

function	of	climate	and	foliar	C,	is	partitioned	into	autotrophic	respiration	(Ra)	and	net	585	

primary	production	(NPP).	NPP	is	partitioned	into	the	live	biomass	pools.	Plant	mortality	586	

provides	input	to	the	dead	organic	matter	(DOM)	pools.	Heterotrophic	respiration	(Rh)	587	

is	derived	from	decomposing	DOM	pools.	Fire	fluxes	are	derived	from	burned	area	data	588	

(35)	and	all	C	pools	(see	section	S3).	Within	each	1°	x	1°	grid	cell,	we	use	a	Bayesian	589	

model-data	fusion	algorithm	to	retrieve	C	state/process	variables	and	uncertainties;	590	

variables	are	retrieved	without	prior	land-cover	type	or	steady	state	assumptions.	Data	591	

constraints	consist	of	MODIS	leaf	area,	total	biomass	(24,	tropics	only)	and	soil	C	(23).	592	
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Details	on	the	Bayesian	fusion	approach	are	provided	in	the	Materials	and	Methods	593	

section.	594	

	595	

Fig.	2:	Retrievals	of	net	primary	production	(NPP)	allocation	to	structural	(wood	and	fine	596	

roots)	and	photosynthetic	(labile	and	foliage)	C	pools.	Allocation	fractions	were	597	

retrieved	at	1°×1°	using	a	Bayesian	model-data	fusion	approach	(Fig.	1).	The	gross	598	

primary	production	allocation	fraction	retrievals	at	locations	B,	T,	D	and	W	are	shown	in	599	

the	three	right-hand	panels	(median	=	black	dot,	50%	confidence	range	=	box	and	90%	600	

confidence	range	=	line).	601	

	602	

Fig.	3:	Retrievals	of	C	residence	time	(RT)	in	live	biomass	and	dead	organic	matter	C	603	

pools;	residence	times	are	retrieved	at	1°	x	1°	using	a	Bayesian	model-data	fusion	604	

approach	(Fig.	1).	Brown	colors	denote	ecosystems	with	high	residence	times	for	all	C	605	

pools,	green	areas	denote	ecosystems	with	long	live	biomass	C	residence	times	and	606	

orange	areas	denote	ecosystems	with	low	live	biomass	residence	time.	The	residence	607	

times	for	individual	C	pools	at	locations	B,	T,	D	and	W	are	shown	in	the	three	right-hand	608	

panels	(median	=	black	dot,	50%	confidence	range	=	box	and	90%	confidence	range	=	609	

line).	Mean	C	residence	times	by	(31)	are	shown	as	grey	boxes	(50%	confidence	interval)	610	

and	black	dots	(median).	611	

	612	

Fig.4:	Retrieved	mean	photosynthetic	(foliar	and	labile)	and	structural	(wood	and	fine	613	

roots)	C	pool	stocks;	C	stocks	are	retrieved	at	1°	x	1°	using	a	Bayesian	model-data	fusion	614	
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approach	(Fig.	1).	Retrieved	mean	C	stocks	for	each	pool	at	locations	B,	T,	D	and	W	are	615	

shown	in	the	four	right-hand	panels	(median	=	black	dot,	50%	confidence	range	=	box	616	

and	90%	confidence	range	=	line).	Dark	colors	denote	high	structural	C/high	617	

photosynthetic	C	ecosystems,	green	colors	denote	low	structural	C/high	photosynthetic	618	

C	ecosystems,	red	colors	denote	low	photosynthetic	C/high	structural	C	ecosystems,	and	619	

yellow	colors	denote	low	photosynthetic	C/low	structural	C	ecosystems.	620	

	621	

Fig.	5.	Top:		Retrieved	median	1°	x	1°	leaf	C	mass	per	leaf	area	(LCMA,	gC	m-2).	Top	right:	622	

zonal	mean	of	median	LCMA	and	50%	confidence	range.	Bottom:	LCMA	against	leaf	623	

lifespan	for	high	latitudes	(>55°N/S),	temperate	regions	(23°–55°N/S),	dry	tropics	624	

(precip.<1500mm,	<23°N/S)	and	wet	tropics	(precip.>1500mm,	<23°N/S).		625	

	626	

Fig.	6.	Multiple	correlation	coefficients	(R,	x-axis)	of	retrieved	C	state	and	process	627	

variables	(allocation	fractions,	residence	times,	mean	C	pools	and	LCMA;	y-axis)	against	628	

18	GLOBCOVER	land-cover	fractions	and	C	variable	primary	empirical	orthogonal	629	

functions	(EOFs).	R	denotes	the	ability	of	GLOBCOVER	land-cover	types	and	primary	630	

EOFs	to	predict	1°	x	1°	state	and	process	variables	(R	would	equal	1	if	all	C	state	and	631	

process	variables	could	be	expressed	as	a	linear	sum	of	land-cover	fractions	or	EOFs).		632	



Foliar	

Wood	

Fine	
roots	

Soil	
carbon	

Li2er	

Labile	

GPP
	

NPP 	
NP

P	
al
lo
ca
(o

n	

Dead	organic		
ma1er	

Pl
an

t	m
or
ta
lit
y	

Fires	
Live	

biomass	Ra	 Fires	 Rh	

De
co
m
po

si(
on

	

Carbon	(C)	fluxes	
GPP	=	Gross	primary	produc/on	
Ra	=	Autotrophic	respira/on	
Rh	=	Heterotrophic	respira/on	
NPP	=	Net	primary	produc/on	(GPP	-	Ra)	
Re	=	Ecosystem	respira/on	(Ra	+	Rh)	
NCE	=	Net	C	exchange	(Re	+	Fires	-	GPP)	

C1	

C3	

C2	

D2	

Data	constraints	
C1	MODIS	leaf	area		
C2	Biomass	(24)*		
C3	Soil	C	(23)	
*Tropics	only		

D1	D1	

Model	drivers	
D1	Meteorology	
D2	MODIS	burned	area	













Supporting	information	1	
	2	
“The	decadal	state	of	the	terrestrial	carbon	cycle:	global	retrievals	of	terrestrial	carbon	3	
allocation,	pools	and	residence	times”.	4	
	5	
A.	Anthony	Bloom1,2,3,		Jean-François	Exbrayat2,3,	Ivar	van	der	Velde4,	Liang	Feng2,3,	Mathew	6	
Williams2,3	7	
	8	
	9	
1.	Jet	Propulsion	Laboratory,	California	Institute	of	Technology,	Pasadena,	CA,	USA	10	
2.	School	of	GeoSciences,	University	of	Edinburgh,	Edinburgh,	UK	11	
3.	National	Centre	for	Earth	Observation,	Edinburgh,	UK	12	
4.	Wageningen	University,	Wageningen,	The	Netherlands		13	
	14	
	15	
S1.	Global	1°	×	1°	grid	model-data	fusion	16	
	17	
Global	datasets.	We	grid	the	30-second	Harmonized	World	Soil	Database	soil	carbon	(C)	density	18	
(HWSD,	based	on	national	inventories	of	top	1	m	soil	bulk	density	and	organic	C	content)	(23)	19	
and	a	~1km	×	1km	above-	and	below-ground	pan-tropical	biomass	map	(24)	at	1°	×	1°.	We	grid	20	
the	MOD15A2	MODIS	LAI	product	(1km	×	1km)	and	a	MODIS	Burned	Area	product	(0.25°	×	21	
0.25°)	(34)	at	a	1°	×	1°	monthly	resolution	for	each	month	within	the	period	2001-2010.	While	22	
finer	spatial/temporal	resolutions	can	potentially	be	implemented,	we	chose	a	1°	×	1°	monthly	23	
resolution	as	a	consequence	of	the	computational	cost	of	our	approach.	We	use	ERA-interim	1°	24	
×	1°	monthly	re-analysis	products	as	DALEC2	drivers;	see	(35)	for	MODIS	quality	flag	and	ERA-25	
interim	driver	details.	We	exclude	1°	×	1°	grid-cells	where	desert	and	ice-covered	areas	account	26	
for	more	than	90%	of	the	grid-cell	land-cover	(based	on	GLOBCOVER	2009	Global	land-cover	27	
maps,	41),	as	their	role	in	the	terrestrial	C	cycle	is	negligible.		28	
	29	
Model-data	fusion.	Within	each	1°	×	1°	degree	grid	cell	i,	we	use	the	1°	×	1°	aggregated	biomass	30	
(tropics	only),	soil	C	and	MODIS	LAI	datasets	(observations	Oi)	to	constrain	DALEC2	parameters	xi	31	
(for	a	complete	description	of	the	DALEC2	model	and	C	pools,	we	refer	the	reader	to	(35)	and	32	
references	therein).	We	implement	a	Metropolis-Hastings	Markov	Chain	Monte	Carlo	33	
(MHMCMC,	33,	35)	to	determine	the	probability	of	xi	given	observational	constraints	Oi	(see	34	
equation	1	in	main	text).	35	
	36	
The	prior	ranges	of	DALEC2	parameters	xi	are	shown	in	Table	S1.	We	also	imposed	a	prior	log-37	
normal	distribution	on	autotrophic	respiration	fraction	xi,a	(autotrophic	respiration	=	0.5	×	1.2±1)	38	
and	a	prior	log-normal	distribution	on		canopy	efficiency	xi,c	(canopy	efficiency	parameter	=	17.5	39	
×	1.2±1),	where	±1	represents	a	normal	distribution	with	mean	0	and	variance	1.	These	40	
constraints	yield	a	range	of	results	that	are	broadly	consistent	with	the	global	GPP	range	41	
reported	by	(30)	and	represent	the	range	of	autotrophic	respiration	estimates	reported	by	(62).	42	
The	prior	parameter	probability,	p(xi)	is	therefore	expressed	as:	43	
	44	
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where	pBW(xi)	is	the	prior	parameter	probability	described	by	(35).	Within	each	1°	×	1°	grid	cell,	46	
we	prescribe	an	uncertainty	factor	of	1.5	to	mean	2001-10	HWSD	soil	C	and	total	above	and	47	
below-ground	biomass	density	(i.e.	mean	labile	+	foliar	+	fine	roots	+	wood),	and	an	uncertainty	48	
factor	of	2	to	mean	monthly	MODIS	LAI	observations.	For	total	biomass,	given	that	the	49	
maximum	entropy	algorithm	employed	by	(24)	was	based	on	bins	of	12.5	tC	ha-1,	we	anticipate	50	
that	low	biomass	density	values	(such	as	the	edges	of	the	Sahel	and	Kalahari	deserts)	exhibit	51	
comparable	uncertainty.	We	therefore	prescribe	an	uncertainty	factor	of	max(1.5,	12.5/Bi),	52	
where	Bi	is	the	total	biomass	density	and	the	max()	function	denotes	the	maximum	of	the	two	53	
values.	The	likelihood	function	p(Oi|xi)	is	therefore	expressed	as:	54	
	55	
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	56	
where	Oij	and	Uij	are	the	jth	observations	and	uncertainty	factors	at	location	i,	and	Mij	is	the	57	
equivalent	DALEC2	model	output	based	on	parameter	vector	xi	(we	note	that	Oij,	Uij	and	Mij	are	58	
log-transformed,	e.g.	for	a	soil	C	value	of	100	tC	ha-1,	Oij	=	log(100)	and	Uij	=	log(1.5)).	For	each	59	
LAI	observation,	Mij	is	the	DALEC2	foliar	C	(on	the	corresponding	month)	divided	by	leaf	C	mass	60	
per	leaf	area.		For	biomass	and	soil	C,	Mij	is	the	DALEC2	soil	C	stock	and	mean	live	biomass	(labile	61	
+		foliar	+		fine	roots	+	wood)	on	Jan	1st	2001.	For	the	analytical	description	of	DALEC2,	the	62	
MHMCMC	algorithm	and	pBW(xi),	we	refer	the	reader	to	(35)	and	references	therein;	the	DALEC2	63	
fire	module	is	described	in	section	S3.		64	
	65	
Ecological	and	Dynamical	Constraints.	The	twelve	Ecological	and	Dynamical	Constraints	(EDCs	66	
1-12,	35)	are	a	component	of	the	prior	parameter	probability	–	pBW(xi)	–	and	consist	of	relative	67	
constraints	on	allocation	parameters,	turnover	rates,	growth	rates,	exponential	decays	and	68	
steady	state	proximity.	When	steady	state	is	not	assumed,	steady	state	proximity	conditions	are	69	
necessary	to	distinguish	between	real	and	nonsensical	C	pool	trajectories	(35).	We	developed	a	70	
simpler	numeric	equivalent	of	the	steady	state	proximity	EDCs	(EDCs	9-12),	to	account	for	the	71	
stochastic	C	losses	from	fires.	For	each	pool,	we	derive	the	steady	state	proximity	factor	(𝑆!"#$)	72	
as	follows:	73	
	74	

𝑆!"#$ =  𝑪!"#$%
𝑪!"#$"#

,                                         (3)	 	75	
	76	
	77	
where	𝑪!"#$%	and	𝑪!"#$"#		are	the	mean	inputs	and	outputs	from	each	pool.	We	impose	a	78	
steady	state	proximity	condition	of	0.5>	𝑆!"#$ 	>2	for	each	pool.		79	
	80	
We	found	that	EDC	8	–	the	ecological	and	dynamic	constraint	limiting	rapid	exponential	pool	81	
trajectories	–	was	excessively	rigid	for	relatively	small	amounts	of	exponential	pool	trajectories	82	
(which	can	occur	naturally	and/or	as	a	model	artifact).	Here	we	use	a	simpler	approach	to	83	
minimize	the	rapid	exponential	decay	of	C	pools:	we	ensure	that	the	steady	state	proximity	of	84	
each	C	pool	at	time	zero		–	Sprox(jan2001)	–		is	within	0.05	of	Sprox,	i.e.		85	
	86	

𝑆!"#$ −  𝑆!"#$ !"#!""# < 0.05.                                     (4) 	
	87	
𝑆!"#$ !"#!""#

	can	be	derived	as:	88	



	89	
𝑆!"#$ !"#!""# =  𝑆!"#$  ×  !!"#!""#!!"

!!"#!""#
,                      (5)	 	90	

	91	
where	𝐶!"#!""#!!"	is	the	mean	January	C	pool	stock	and	C	(Jan2001)	is	the	C	pool	stock	in	January	92	
2001.	The	CARDAMOM	code	used	in	this	manuscript	(DALEC2	model,	EDCs	and	adaptive	93	
Metropolis-Hastings	Markov	Chain	Monte	Carlo)	is	available	upon	request.		94	
	 	95	
S2.	DALEC2	fire	module	96	
	97	
To	determine	the	monthly	C	losses	from	fires	at	time	t,	we	determine	the	monthly	fraction	of	98	
each	grid	cell	burned,	Barea(t),	based	on	the	MODIS-derived	burned	area	product	(34).	At	each	99	
monthly	time	step,	the	fire	losses	within	each	1°	×	1°	grid	cell	are	derived	as	follows:	100	
	101	

𝐹! ! = 𝐵!"#! ! × 𝑘!"#$%& !  𝐶 !,!  
!

!!!

,                                                   (6)	

where	Fe(t)	are	the	total	fire	C	emissions	at	time	t,	kfactor(p)	is	the	combustion	factor	for	pool	p,	and	102	
C(p,t)	is	the	C	in	pool	p	at	time	t.	We	also	impose	a	resilience	factor	r	to	the	remaining	pools	103	
within	the	burned	area:	from	live	biomass	pool,	a	fire-mortality	flux	is	derived	from	the	un-104	
combusted	C	pools	as	follows:	105	
	106	

𝐹! !,! = 𝐵!"#! !  × (1 − 𝑘!"#$%& ! ) 1 − 𝑟 𝐶 !,! ,                          (7) 	
	107	
The	fire-mortality	C	flux	from	foliage,	roots	and	labile	is	deposited	into	the	litter	pool,	and	fire	108	
mortality	C	flux	from	wood	is	transferred	to	the	soil	C	pool.	Equally,	(1	-	r)	of	un-combusted	litter	109	
C	is	transferred	to	the	soil	C	pool.	The	kfactor	values	for	labile	(0.1),	foliar	(0.9),	root	(0.1),	wood	110	
(0.1),	litter	(0.5)	and	soil	C	(0.01)	are	broadly	equivalent	to	the	kfactor	values	used	by	the	Global	111	
Fire	Emission	Database	(37).	We	apply	a	resilience	factor	of	r	=	0.5.	The	sensitivity	calculations	112	
associated	with	kfactor(p)	and	rf	are	described	in	section	S4.	113	
	114	
S3.	Global	state	and	process	variables	115	
	116	
The	spatial	distributions	of	individual	C	pool	allocation	fractions,	residence	times	and	stocks	are	117	
shown	in	Fig.	S1.	The	residence	time	for	each	C	pool	at	grid	cell	i	is	derived	as	follows:	118	
	119	

𝑅𝑇!""# ! =
𝐶!""# !

𝐹!" ! − 𝛥𝐶!""# !
 × 365.25,                                                             (8)	

	120	
where	𝐶!""# ! 	is	the	mean	pool	size,	𝐹!" ! 	is	the	mean	daily	C	pool	input	and	𝛥𝐶!""# ! 	is	the	121	
mean	daily	change	in	pool	size	throughout	2001-10	for	the	jth	parameter	vector	sample	of	yi	(i.e.	122	
𝐶!""# ! ,	𝐹!" ! 	and	𝛥𝐶!""# ! 	are	calculated	from	DALEC2	output	driven	with	jth	parameter	123	
vector	sample	of	yi).	Mean	live	biomass	(dead	organic	matter)	pool	residence	times	are	derived	124	
based	on	equation	8,	where	𝐶!""# ! ,	𝐹!" ! 	and	𝛥𝐶!""# ! 	are	the	total	live	biomass	(dead	125	
organic	matter)	C	corresponding	to	jth	parameter	vector	sample	of	yi.	Leaf	lifespan	is	equivalent	126	
to	RTfoliar.	Reported	global	and	zonal	25th	–	75th	%ile	ranges	of	total	annual	fluxes	were	derived	127	
from	the	sum	of	monthly	1°	×	1°	25th	and	75th	%iles	for	each	flux	multiplied	by	the	1°	×	1°	grid	128	
cell	area;	the	same	approach	was	used	to	derive	median	fluxes	and	mode	net	C	exchange	(NCE).	129	



Monthly	mode	NCE	within	each	1°	×	1°	grid-cell	was	derived	by	binning	NCE	samples	into	0.01	130	
gC	m-2	day-1	intervals.	131	
	132	
S4.	Sensitivity	Tests	133	
	134	
We	determine	the	sensitivity	of	C	allocation,	residence	times	and	C	pool	size	estimates	at	135	
locations	B,	T,	D	and	W	(see	Materials	and	Methods	in	main	text	for	B,	T,	D	and	W	coordinates)	136	
to	LAI,	biomass	and	soil	C	data	constraints	(sensitivity	tests	S1-S6),	fire	combustion	and	137	
resilience	factor	coefficients	(sensitivity	test	S7-S10),	the	use	of	MPI	GPP	(36)	instead	of	the	138	
default	DALEC	(19)	GPP	(sensitivity	test	S11),	and	the	suppression	of	heterotrophic	respiration	139	
under	-10°C	(sensitivity	test	S12).	The	sensitivity	experiments	are	summarized	in	Table	S2.	The	140	
results	of	the	sensitivity	tests	are	shown	in	Fig.	S2.	141	
	142	
S5	Comparison	against	in-situ	and	regional	observations		143	
	 	144	
CARDAMOM	results	are	compared	against	a	range	of	in-situ	measurements	in	Table	S3.	We	145	
compare	each	in-situ	measurement	against	the	50%	and	90%	confidence	range	of	the	mean	1°	×	146	
1°	values	within	the	stated	region.	Comparison	details	and	footnotes	are	included	in	Table	S3.	147	
We	also	compare	CARDAMOM	total	biomass	against	a	boreal	forest	biomass	dataset	derived	148	
from	synthetic	aperture	radar	data	(BIOMASAR	map,	40)	aggregated	to	1°	×	1°.	The	149	
CARDAMOM-to-BIOMASAR	comparison	is	conducted	for	the	total	biomass	across	all	1°	×	1°	150	
areas	with	at	least	95%	BIOMASAR	map	coverage;	total	BIOMASAR	biomass	within	those	areas	is	151	
38%	lower	than	CARDAMOM	biomass.	We	note	that	lower-than-expected	LCMA	estimates	in	152	
boreal	ecosystems	(Fig.	6)	could	be	explained	by	(i)	understory	plant	traits	(linked	to	deciduous	153	
shrubs);	or	(ii)	seasonal	MODIS	LAI	biases	(53).	In	particular,	the	significant	correlation	between	154	
LCMA	and	leaf	lifespan	suggests	that	retrieved	LCMA	accuracy	could	be	strongly	linked	to	155	
seasonal	biases	in	MODIS	LAI.		156	
	157	
S6	Comparison	to	GLOBCOVER	land-cover	types	and	EOFs	158	
	159	
For	each	1°	×	1°	grid	cell	i	we	determine	the	fraction	of	each	GLOBCOVER	(41)	land-cover	type	L,	160	
FL(i).	We	then	determine	the	Pearson’s	correlation	coefficients	(rLS)	between	fL	(the	vector	of	all	161	
1°	×	1°	land-cover	type	L	fractions)	and	each	C	state	and	process	variable	vector	cS	(the	vector	of	162	
each	1°	×	1°	state	and	process	variable):	state	or	process	variables	(denoted	by	subscript	S)	163	
consist	of	allocation	fractions,	C	residence	times,	C	pool	sizes	and	leaf	C	mass	per	leaf	area.	The	164	
rLS2	values	between	each	GLOBCOVER	land-cover	type	fraction	L	and	each	C	state/process	165	
variable	S	are	shown	in	Fig.	S3.	The	land-cover	categories	are:	irrigated	croplands	(CRI);	Rainfed	166	
croplands	(CRR);	Mosaic	cropland	>	vegetation	(MCV);	Mosaic	vegetation	>	cropland	(MVC);	167	
Closed	to	open	broadleaved	evergreen	or	semi-deciduous	forest	(BESDF);	Closed	broadleaved	168	
deciduous	forest	(BDF);	Open	broadleaved	deciduous	forest/woodland	(BDFW);	Closed	(>40%)	169	
needleleaved	evergreen	forest	(NEF);	Open	needleleaved	deciduous	or	evergreen	forest	(NDEF);	170	
Closed	to	open	mixed	forest	(MF);	Mosaic	forest	or	shrubland	>	grassland	(MFSG);	Mosaic	171	
grassland	>	forest	or	shrubland	(MGFS);	Closed	to	open	shrubland	(SRB);	Closed	to	open	172	
herbaceous	vegetation	(GRA);	Sparse	vegetation	(SPA);	Closed	to	open	broadleaved	forest	173	
regularly	flooded	(FWE);	forest	or	shrubland,	permanently	flooded	(SWE);	Closed	to	open	174	
vegetation	on	flooded	or	waterlogged	soil	(WET)	(54).		175	
	176	



The	multiple	correlation	coefficient	RS	between	C	state/process	variable	S	and	18	GLOBCOVER	177	
land-cover	type	fractions	is	derived	as	follows:	178	
	179	

𝑅!  =  𝐫!! 𝐑!!!! 𝐫!,	
	 	 	 (9)	180	

	181	
where	rS	is	the	1	x	18	vector	of	correlations	coefficients	between	state/process	variable	vector	cS	182	
and	18	1°	×	1°	land-cover	type	fraction	vectors	fL,	rsT	is	the	transpose	of	rs,	and	𝐑!!!!	is	the	inverse	183	
of	the	correlation	matrix	RLL,	which	contains	the	inter-correlations	between	18	land-cover	type	184	
fraction	vectors	fL.	RS	is	equivalent	to	the	maximum	correlation	(Pearson’s	r2)	between	the	185	
spatial	variability	of	C	state/process	variable	cS	and	the	best-fitting	linear	combination	of	land-186	
cover	type	fractions	fL.	The	resulting	RS	values	are	shown	in	Fig.	6	(main	text).		187	
	188	
We	also	employ	a	multiple	correlation	coefficient	analysis	on	the	empirical	orthogonal	functions	189	
(EOFs,	or	the	“primary	modes”	of	variability)	of	all	cs.	We	conducted	a	principal	component	190	
analysis	to	derive	the	eight	primary	EOFs	(EOFs	were	derived	using	“pca.m”	function	in	Matlab;	191	
each	cs	vector	is	centered	at	zero	and	scaled	to	the	standard	deviation	of	cs).	Standardized	EOFs	192	
(normalized	by	EOF	standard	deviation)	and	EOF	coefficients	are	shown	in	Fig.	S4.	The	EOF	maps	193	
exhibit	the	primary	modes	of	cs	variability	in	space;	for	each	cs,	the	maximum	spatial	variability	194	
explained	by	EOFs	1	–	N	is	the	sum	of	standardized	EOFs	1	–	N	multiplied	by	their	associated	195	
coefficients.	EOF	multiple	correlation	coefficients	–	RS(EOF)	–	were	derived	for	the	primary	two,	196	
four	and	eight	EOFs	based	on	equation	9,	where	RLL	is	the	identity	matrix	(as	EOFs	are	197	
orthogonal).	RS(EOF)

	results	are	shown	in	Fig.	6	in	the	main	text.		198	
	199	
S7	Comparison	against	the	MsTMIP	terrestrial	biosphere	model	ensemble	200	
	201	
We	compare	GPP,	ecosystem	respiration	and	NCE	against	the	MsTMIP	terrestrial	biosphere	202	
model	ensemble	Version	1.0	(64)	net	C	exchange	(note:	total	C	exchange	reported	as	net	203	
ecosystem	exchange,	or	‘NEE’,	by	MsTMIP).	The	0.5°	×	0.5°	monthly	GPP,	total	(heterotrophic	204	
and	autotrophic)	respiration	and	NCE	values	for	2001-10	–	based	on	the	BG1	simulation	–	were	205	
downloaded	from	(http://nacp.ornl.gov/mstmipdata/),	and	were	aggregated	to	a	1°	×	1°	grid	206	
(the	BG1	simulation	includes	time-varying	nitrogen	deposition,	atmospheric	CO2	and	land-use	207	
history	(22)).	The	eight	MsTMIP	models	shown	in	Fig.	S5	are	BIOME-BGC,	CLASS-CTEM-N,	208	
CLM4VIC,	CLM4,	DLEM,	ISAM,	TEM6,	TRIPLEX-GHG	(for	the	sake	of	brevity,	we	did	not	label	each	209	
individual	MsTMIP	model	in	Fig.	S5);		210	
	211	
S8	Atmospheric	CO2	comparison	212	
	213	
We	incorporated	the	2009-2010	CARDAMOM	monthly	mode	net	C	exchange	(NCE)	values	into	214	
the	GEOS-Chem	atmospheric	chemistry	and	transport	model	(29).	The	GEOS-Chem	model	215	
simulations	are	based	on	GEOS-Chem	version	8.2,	driven	by	NASA	GEOS-5	meteorological	fields.		216	
In	addition	to	NCE,	fossil	fuel	emissions	and	oceanic	surface	CO2	fluxes	are	prescribed	(56).	We	217	
compared	the	2009-2010	GEOS-Chem	model	CO2	concentrations	against	the	monthly	mean	218	
anomaly	across	12	Total	Carbon	Column	Observing	Network	sites	(TCCON,	38):	Bialystok,	219	
Poland;	Darwin,	Australia;	Eureka,	Canada;	Garmisch,	Germany;		Karlsruhe,	Germany;	Lauder,	220	
New	Zealand;		Lauder,	New	Zealand;		Lamont,	Oklahoma;		Orleans,	France;	Park	Falls,	Wisconsin;	221	
Sodankyla,	Finland;	Wollongong,	Australia.	Details	of	the	GEOS-Chem	TCCON	comparison	are	222	
reported	by	(63)	and	references	therein.	We	note	that	the	uncertainty	in	the	GEOS-Chem	trend	223	



due	to	CARDAMOM	flux	uncertainty	is	substantial:	global	NCE	25th	–	75th	percentile	=		-8	–	+13Pg	224	
C	yr-1,	which	roughly	corresponds	to	a	±5ppm	growth	rate	(1).	To	evaluate	the	CARDAMOM	225	
seasonal	NCE	variability,	we	compare	the	linearly	de-trended	model	and	observations	(Fig.	S6).	226	
	227	
	228	
Figures	229	
	230	
Fig.	S1:	Left	two	columns:	posterior	GPP	C	allocation	to	autotrophic	respiration	(equivalent	to	1	231	
–	C	use	efficiency),	labile	C,	foliar	C,	fine	roots,	wood	(mean,	left	column)	and	associated	232	
uncertainty	(standard	deviation,	right	column).	Middle	two	columns:	Posterior	C	residence	time	233	
in	foliar	C,	fine	roots,	wood,	litter	and	soil	C	(log-based	mean,	left	column)	and	associated	234	
uncertainty	factors	(based	on	logarithmic	standard	deviation,	right	column).	Right	two	columns:	235	
Posterior	mean	2001-10	C	stocks	in	labile,	foliar,	fine	roots,	wood,	litter	C	pools	(mean,	left	236	
column)	and	associated	uncertainties	(standard	deviation,	right	column).		237	
	238	
Fig.	S2.	Posterior	median	and	50%	confidence	ranges	shown	for	1°	×	1°	grid-cells	B,	T,	D	and	W		239	
shown	for	the	unperturbed	results	(S0)	and	sensitivity	experiments	S1-S12.	The	coordinates	of	B,	240	
T,	D	and	W	are	reported	in	the	Materials	and	Methods	(locations	shown	in	inset	map).	Across	all	241	
locations,	88%	of	median	sensitivity	analysis	estimates	(sensitivity	tests	S1-S12)	are	within	±50%	242	
of	unperturbed	median	C	state	and	process	variable	retrievals.	243	
		244	
Fig.	S3.	Pearson	correlation	coefficients	(r2,	shown	in	color	bar)	between	GLOBCOVER	land-cover	245	
types	fractions	(x-axis)	and	C	state	and	process	variables	(y-axis),	based	on	their	correlation	246	
across	all	1°	×	1°	grid	cells	within	the	global	study	area.	See	section	S5	for	land-cover	type	247	
acronyms.		248	
	249	
Fig.	S4:	Maps:	Eight	primary	1°	×	1°	standardized	empirical	orthogonal	functions	(EOFs	1-8)	250	
derived	from	a	principal	component	analysis	of	standardized	C	state	and	process	variables	(see	251	
section	S6).	The	two	dominant	modes	(EOF1	and	EOF2)	together	reflect	first-order	global	252	
variations	in	C	state/process	variables	(cs)	due	to	in	latitude	and	precipitation,	while	higher	order	253	
modes	reflect	increasingly	complex	spatial	structures	(however,	EOFs	3-8	typically	account	for	a	254	
smaller	portion	of	cs	spatial	variability).	Scatter	plots:	standardized	EOF	1-8	coefficients	255	
corresponding	to	each	C	state/process	variable	(shown	as	symbol-color	combinations).	The	256	
linear	sum	of	standardized	EOFs	1-4	(1-8)	and	their	associated	coefficients	reproduces	29-95%	257	
(88-99%)	of	C	state/process	variability	(see	Fig.	6	in	the	main	text).	258	
			259	
Fig.	S5:	CARDAMOM	zonal	profiles	of	median	gross	primary	production,	ecosystem	respiration,	260	
fires	and	net	C	exchange	(red).	The	50%	confidence	range	is	depicted	as	a	light-pink	shaded	261	
area.	The	blue	lines	represent	the	8	global	MsTMIP	models	(64;	see	section	S7	for	details).	The	262	
dashed	black	line	denotes	the	flux-tower	derived	GPP	(36).	The	continuous	black	line	denotes	263	
the	GFED	version	3	total	C	emissions	(36).	264	
	265	
Fig.	S6.	2009-2010	GEOS-Chem	model	-	with	CARDAMOM	mode	NCE	-	compared	against	mean	266	
monthly	TCCON	atmospheric	column	measurements	across	12	TCCON	sites:	the	left	panel	shows	267	
atmospheric	CO2	concentrations,	and	the	right	panel	shows	the	linearly	de-trended	CO2	268	
anomalies.	The	de-trended	comparison	Pearson’s	r	=	0.93	and	RMSE	=	0.53	ppm.	269	
	270	
	271	
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Table	S1:	DALEC2	parameters,	descriptions	and	prior	ranges	(the	DALEC2	equations	are	fully	274	
described	in	(35)).	275	
	276	
Table	S2:	Sensitivity	tests	for	C	allocation,	residence	times	and	C	pool	size	estimates	at	locations	277	
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Table	S1:	DALEC2	parameters,	descriptions	and	prior	ranges	(the	DALEC2	equations	are	fully	
described	in	(35)).	
	
	 Parameters	 Prior	Range	

Al
lo
ca
tio

n	
fr
ac
tio

ns
	 Autotrophic	Respiration	

Labile	
Foliage	
Fine	roots	
Wood	

0.2-0.8*	
0.01-0.5	
0.01-0.5	
0.01-0.5	
0.01-0.5	

Tu
rn
ov
er
	

ra
te
s	

Woody	C	turnover	rate	
Fine	root	turnover	rate	
Litter	turnover	rate	
Soil	organic	C	turnover	rate	
Litter	mineralization	rate	
Exponential	temperature	dependence	

2.5	×	10−5	–10−3	d-

1	

10−4	–10−2	d-1	

10−4	–10−2	d-1	

10−7	–10−3	d-1	

10−2	–10−5	d−1	

0.018–0.08	

Ca
no

py
	

pa
ra
m
et
er
s	

Leaf	onset	day	
Leaf	fall	day	
Canopy	efficiency	
Leaf	C	mass	per	leaf	area	(LCMA)	
Annual	leaf	loss	fraction	
Labile	C	release	period	
Leaf	fall	period	

1-365.25	
1-365.25	
5	–	50*	
5	-	200	gC	m-2	

1/8	–	1	
10	–	100	days	
20	–	150	days	

In
iti
al
	C
	st
oc
ks
	 Labile	C	

Foliar	C	
Fine	root	C	
Litter	C	
Above	&	Below	ground	wood	
Soil	C	(1m	depth)	

1-2000gC	m-2	

1-2000gC	m-2	

1-2000gC	m-2	

1-2000gC	m-2	

1	-	100,000gC	m-2	

1	-	200,000gC	m-2	

*	Autotrophic	Respiration	and	Canopy	efficiency	parameter	log-normal	prior	distributions	are	
described	in	section	S1.	
	



Table	S2:	Sensitivity	tests	for	C	allocation,	residence	times	and	C	pool	size	estimates	at	locations	
B,	T,	D	and	W.	
Sensitivity	
Test(s)	

Description	

S1	&	S2	 +20%	&	-20%	in	LAI	observations	
S3	&	S4		 +20%	&	-20%	increase	in	biomass	observations	
S5	&	S6	 +20%	&	-20%	increase	in	HWSD	Soil	Carbon	observations	
S7	&	S8	 +20%1	&	-20%	increase	in	fire	combustion	factors	
S9	&	S10	 +20%	&	-20%	increase	in	fire	resilience	factor	
S11		 	Use	mean	1°	×	1°	aggregated	MPI	GPP	(36)	as	driver		
S12	 No	heterotrophic	respiration2	under	-10°C	
1Foliar	combustion	factor	increase	by	10%	(from	0.9	to	0.99).	
2Respiration	temperature	dependence	coefficient	(19)	set	to	zero	at	<-10°C,	scaled	by	unity	at	
>0°C,	and	scaled	from	0	to	1	between	-10°C	and	0°C.	
	



Table	S3:	In-situ	observations	and	CARDAMOM	posterior	state	and	process	variable	estimates.		
Measurement	
(region)	

CARDAMOM		
range*	

In-situ	observations	
(study)	

Fine	roots	
(Amazon	river	basin)	

9.2	–	10.8	tC	ha-1		
(2.8	–	11.5	tC	ha-1)	

5	–	8	tC**	ha-1(a)	(65)	
	

Fine	roots		
(North-East	U.S.;	>30°N,	>100°W)	

	1.6	–	3.3		tC	ha-1	
	(0.9	–	6.0	tC	ha-1)	

1.25	tC**	ha-1(a)	(66)	

Fine	root	residence	time		
(North-East	U.S.,	>30°N,	>100°W)		

1.1	–	1.5	yrs	
	(0.9	–	3.2	yrs)	

0.83	–	1.25	yrs(a)	(66)	

Fine	root	RT		
(global:	where	woody	C	>	10tC	ha-1)	

1.2	–	2.6	yrs	
	(0.9	–	4.7	yrs)	

1.25	–	2.5	yrs(b)	(67)	

Wood	Carbon	RT	
(Amazon	river	basin)	

15	–	21	yrs		
(9	–	24	yrs)	

~20	–	70yrs(b)	(20,	above-
ground	only)		

Carbon	Use	Efficiency	(CUE)***	
(Amazon	river	basin)	

0.42	–	0.43			
(0.42	–	0.45	)	

Amazon	field	sites:		
0.32	–	0.47(b)	(39)	

Fine	root	C	(Lat	>	66°N)	 0.3	–	0.4		tC	ha-1	
(0.2	–	0.6	tC	ha-1)	

Arctic	Ecosystems:		
0.1	–	5	tC	ha-1(b)	(68)		

*Area-weighted	25th	–	75th	%ile	(5th	–	95th	%ile)	1°	×	1°	C	state	and	process	variables	(see	
Materials	and	Methods).	
**Dry	mass	to	C	mass	conversion	factor	=	0.5	
***CUE	=	1	–	autotrophic	respiration	fraction	
aIndividual	site	range	
bregional	or	global	range	
	


