83 research outputs found

    GLAcier Feature Tracking testkit (GLAFT): a statistically and physically based framework for evaluating glacier velocity products derived from optical satellite image feature tracking

    Get PDF
    Glacier velocity measurements are essential to understand ice flow mechanics, monitor natural hazards, and make accurate projections of future sea-level rise. Despite these important applications, the method most commonly used to derive glacier velocity maps, feature tracking, relies on empirical parameter choices that rarely account for glacier physics or uncertainty. Here we test two statistics- and physics-based metrics to evaluate velocity maps derived from optical satellite images of Kaskawulsh Glacier, Yukon, Canada, using a range of existing feature-tracking workflows. Based on inter-comparisons with ground truth data, velocity maps with metrics falling within our recommended ranges contain fewer erroneous measurements and more spatially correlated noise than velocity maps with metrics that deviate from those ranges. Thus, these metric ranges are suitable for refining feature-tracking workflows and evaluating the resulting velocity products. We have released an open-source software package for computing and visualizing these metrics, the GLAcier Feature Tracking testkit (GLAFT).</p

    Crevasse density, orientation and temporal variability at Narsap Sermia, Greenland

    Get PDF
    Mass loss from iceberg calving at marine-terminating glaciers is one of the largest and most poorly constrained contributors to sea-level rise. However, our understanding of the processes controlling ice fracturing and crevasse evolution is incomplete. Here, we use Gabor filter banks to automatically map crevasse density and orientation through time on a ~150 km2 terminus region of Narsap Sermia, an outlet glacier of the southwest Greenland ice sheet. We find that Narsap Sermia is dominated by transverse (flow-perpendicular) crevasses near the ice front and longitudinal (flow-aligned) crevasses across its central region. Measured crevasse orientation varies on sub-annual timescales by more than 45∘^\circ in response to seasonal velocity changes, and also on multi-annual timescales in response to broader dynamic changes and glacier retreat. Our results show a gradual up-glacier propagation of the zone of flow-transverse crevassing coincident with frontal retreat and acceleration occurring in 2020/21, in addition to sub-annual crevasse changes primarily in transition zones between longitudinal to transverse crevasse orientation. This provides new insight into the dynamics of crevassing at large marine-terminating glaciers and a potential approach for the rapid identification of glacier dynamic change from a single pair of satellite images

    Structure and dynamics of surface uplift induced by incremental sill emplacement

    Get PDF
    Shallow-level sill emplacement can uplift Earth’s surface via forced folding, providing insight into the location and size of potential volcanic eruptions. Linking the structure and dynamics of ground deformation to sill intrusion is thus critical in volcanic hazard assessment. This is challenging, however, because (1) active intrusions cannot be directly observed, meaning that we rely on transient host-rock deformation patterns to model their structure; and (2) where ancient sill-fold structure can be observed, magmatism and deformation has long since ceased. To address this problem, we combine structural and dynamic analyses of the Alu dome, Ethiopia, a 3.5-km-long, 346-m-high, elliptical dome of outward-dipping, tilted lava flows cross-cut by a series of normal faults. Vents distributed around Alu feed lava flows of different ages that radiate out from or deflect around its periphery. These observations, coupled with the absence of bounding faults or a central vent, imply that Alu is not a horst or a volcano, as previously thought, but is instead a forced fold. Interferometric synthetic aperture radar data captured a dynamic growth phase of Alu during a nearby eruption in A.D. 2008, with periods of uplift and subsidence previously attributed to intrusion of a tabular sill at 1 km depth. To localize volcanism beyond its periphery, we contend that Alu is the first forced fold to be recognized to be developing above an incrementally emplaced saucer-shaped sill, as opposed to a tabular sill or laccolith

    Predictors of consent to cell line creation and immortalisation in a South African schizophrenia genomics study

    Get PDF
    Background Cell line immortalisation is a growing component of African genomics research and biobanking. However, little is known about the factors influencing consent to cell line creation and immortalisation in African research settings. We contribute to addressing this gap by exploring three questions in a sample of Xhosa participants recruited for a South African psychiatric genomics study: First, what proportion of participants consented to cell line storage? Second, what were predictors of this consent? Third, what questions were raised by participants during this consent process? Methods 760 Xhose people with schizophrenia and 760 controls were matched to sex, age, level of education and recruitment region. We used descriptive statistics to determine the proportion of participants who consented to cell line creation and immortalization. Logistic regression methods were used to examine the predictors of consent. Reflections from study recruiters were elicited and discussed to identify key questions raised by participants about consent. Results Approximately 40% of participants consented to cell line storage. The recruiter who sought consent was a strong predictor of participant’s consent. Participants recruited from the South African Eastern Cape (as opposed to the Western Cape), and older participants (aged between 40 and 59 years), were more likely to consent; both these groups were more likely to hold traditional Xhosa values. Neither illness (schizophrenia vs control) nor education (primary vs secondary school) were significant predictors of consent. Key questions raised by participants included two broad themes: clarification of what cell immortalisation means, and issues around individual and community benefit. Conclusions These findings provide guidance on the proportion of participants likely to consent to cell line immortalisation in genomics research in Africa, and reinforce the important and influential role that study recruiters play during seeking of this consent. Our results reinforce the cultural and contextual factors underpinning consent choices, particularly around sharing and reciprocity. Finally, these results provide support for the growing literature challenging the stigmatizing perception that people with severe mental illness are overly vulnerable as a target group for heath research and specifically genomics studies

    Gravitational sliding of the Mt. Etna massif along a sloping basement

    Get PDF
    Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year−1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes

    A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya

    Get PDF
    On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. Over 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile debris flow that transported boulders &gt;20 m in diameter, and scoured the valley walls up to 220 m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure resulted in a disaster, which highlights key questions about adequate monitoring and sustainable development in the Himalaya as well as other remote, high-mountain environments

    Crevasse density, orientation and temporal variability at Narsap Sermia, Greenland

    No full text
    Abstract Mass loss from iceberg calving at marine-terminating glaciers is one of the largest and most poorly constrained contributors to sea-level rise. However, our understanding of the processes controlling ice fracturing and crevasse evolution is incomplete. Here, we use Gabor filter banks to automatically map crevasse density and orientation through time on a ~150 km2 terminus region of Narsap Sermia, an outlet glacier of the southwest Greenland ice sheet. We find that Narsap Sermia is dominated by transverse (flow-perpendicular) crevasses near the ice front and longitudinal (flow-aligned) crevasses across its central region. Measured crevasse orientation varies on sub-annual timescales by more than 45 ∘^\circ in response to seasonal velocity changes, and also on multi-annual timescales in response to broader dynamic changes and glacier retreat. Our results show a gradual up-glacier propagation of the zone of flow-transverse crevassing coincident with frontal retreat and acceleration occurring in 2020/21, in addition to sub-annual crevasse changes primarily in transition zones between longitudinal to transverse crevasse orientation. This provides new insight into the dynamics of crevassing at large marine-terminating glaciers and a potential approach for the rapid identification of glacier dynamic change from a single pair of satellite images.</jats:p
    • 

    corecore