5 research outputs found

    Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES

    Transmission of light in deep sea water at the site of the ANTARES neutrino telescope

    No full text
    The Antares neutrino telescope is a large photomultiplier array designed to detect neutrino-induced upward-going muons by their Cherenkov radiation. Understanding the absorption and scattering of light in the deep Mediterranean is fundamental to optimising the design and performance of the detector. This paper presents measurements of blue and UV light transmission at the Antares site taken between 1997 and 2000. The derived values for the scattering length and the angular distribution of particulate scattering were found to be highly correlated, and results are therefore presented in terms of an absorption length λabs and an effective scattering length View the MathML source. The values for blue (UV) light are found to be λabs ≃ 60(26) m, View the MathML source, with significant (∌15%) time variability. Finally, the results of Antares simulations showing the effect of these water properties on the anticipated performance of the detector are presented

    The ANTARES neutrino project

    No full text

    Transmission of light in deep sea water at the site of the Antares neutrino telescope

    No full text
    corecore