6 research outputs found

    Full lifetime perspectives on the costs and benefits of lay date variation in tree swallows

    Get PDF
    Animals must balance various costs and benefits when deciding when to breed. The costs and benefits of breeding at different times have received much attention, but most studies have been limited to investigating short-term season-to-season fitness effects. However, breeding early, versus late, in a season may influence lifetime fitness over many years, trading off in complex ways across the breeder?s lifepan. In this study, we examined the complete life histories of 867 female tree swallows (Tachycineta bicolor) breeding in Ithaca, New York, between 2002 and 2016. Earlier breeders outperformed later breeders in short-term measures of reproductive output and offspring quality. Though there were weak indications that females paid long-term future survival costs for breeding early, lifetime fledgling output was markedly higher overall in early-breeding birds. Importantly, older females breeding later in the season did not experience compensating life-history advantages that suggested an alternative equal-fitness breeding strategy. Rather, most or all of the swallows appear to be breeding as early as they can, and differences in lay dates appear to be determined primarily by differences in individual quality or condition. Lay date had a significant repeatability across breeding attempts by the same female, and the first lay date of females fledged in our population was strongly influenced by the first lay date of their mothers, indicating the potential for ongoing selection on lay date. By examining performance over the entire lifespan of a large number of individuals, we were able to clarify the relationship between timing of breeding and fitness and gain new insight into the sources of variability in this important life history trait.Fil: Winkler, David Ward. Cornell University; Estados UnidosFil: Hallinger, Kelly K.. Cornell University; Estados UnidosFil: Pegan, Teresa M.. University of Michigan; Estados UnidosFil: Taff, Conor C.. Cornell University; Estados UnidosFil: Verhoeven, Mo A.. University of Groningen; Países BajosFil: Van Oordt, David Chang. Cornell University; Estados UnidosFil: Stager, Maria. University of Montana; Estados UnidosFil: Uehling, Jennifer J.. Cornell University; Estados UnidosFil: Vitousek, Maren N.. Cornell University; Estados UnidosFil: Andersen, Michael J.. University of New Mexico; Estados UnidosFil: Ardia, Daniel R.. Franklin & Marshall College; Estados UnidosFil: Belmaker, Amos. Tel Aviv University; IsraelFil: Ferretti, Valentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Forsman, Anna M.. University Of Central Florida; Estados UnidosFil: Gaul, Jennifer R.. International High School at La Guardia Community College; Estados UnidosFil: Llambias, Paulo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; ArgentinaFil: Orzechowski, Sophia C.. Harvard University; Estados UnidosFil: Shipley, Ryan. Max Planck Institute For Animal Behavior; AlemaniaFil: Wilson, Maya. Virginia Polytechnic Institute. Department Of Geological Sciences; Estados UnidosFil: Yoon, Hyun Seok. University of Tennessee; Estados Unido

    NSrp70 is a novel nuclear speckle-related protein that modulates alternative pre-mRNA splicing in vivo

    Get PDF
    Nuclear speckles are known to be the storage sites of mRNA splicing regulators. We report here the identification and characterization of a novel speckle protein, referred to as NSrp70, based on its subcellular localization and apparent molecular weight. This protein was first identified as CCDC55 by the National Institutes of Health Mammalian Gene Collection, although its function has not been assigned. NSrp70 was colocalized and physically interacted with SC35 and ASF/SF2 in speckles. NSrp70 has a putative RNA recognition motif, the RS-like region, and two coiled-coil domains, suggesting a role in RNA processing. Accordingly, using CD44, Tra2β1 and Fas constructs as splicing reporter minigenes, we found that NSrp70 modulated alternative splice site selection in vivo. The C-terminal 10 amino acids (531–540), including 536RD537, were identified as a novel nuclear localization signal, and the region spanning 290–471 amino acids was critical for speckle localization and binding to SC35 and ASF/SF2. The N-terminal region (107–161) was essential for the pre-mRNA splicing activity. Finally, we found that knockout of NSrp70 gene in mice led to a lack of progeny, including fetal embryos. Collectively, we demonstrate that NSrp70 is a novel splicing regulator and essentially required early stage of embryonic development
    corecore