9,083 research outputs found

    Dynamics of the solar magnetic bright points derived from their horizontal motions

    Full text link
    The sub-arcsec bright points (BP) associated with the small scale magnetic fields in the lower solar atmosphere are advected by the evolution of the photospheric granules. We measure various quantities related to the horizontal motions of the BPs observed in two wavelengths, including the velocity auto-correlation function. A 1 hr time sequence of wideband Hα\alpha observations conducted at the \textit{Swedish 1-m Solar Telescope} (\textit{SST}), and a 4 hr \textit{Hinode} \textit{G}-band time sequence observed with the Solar Optical telescope are used in this work. We follow 97 \textit{SST} and 212 \textit{Hinode} BPs with 3800 and 1950 individual velocity measurements respectively. For its high cadence of 5 s as compared to 30 s for \textit{Hinode} data, we emphasize more on the results from \textit{SST} data. The BP positional uncertainty achieved by \textit{SST} is as low as 3 km. The position errors contribute 0.75 km2^2 s−2^{-2} to the variance of the observed velocities. The \textit{raw} and \textit{corrected} velocity measurements in both directions, i.e., (vx,vy)(v_x,v_y), have Gaussian distributions with standard deviations of (1.32,1.22)(1.32,1.22) and (1.00,0.86)(1.00, 0.86) km s−1^{-1} respectively. The BP motions have correlation times of about 22−3022 - 30 s. We construct the power spectrum of the horizontal motions as a function of frequency, a quantity that is useful and relevant to the studies of generation of Alfv\'en waves. Photospheric turbulent diffusion at time scales less than 200 s is found to satisfy a power law with an index of 1.59.Comment: Accepted for publication in The Astrophysical Journal. 24 pages, 9 figures, and 1 movie (not included

    Pre- and post-weaning performance of artificially reared lambs

    Get PDF
    No Abstract

    Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency

    Get PDF
    Although most components of the mitochondrial translation apparatus are encoded by nuclear genes, all known molecular defects associated with impaired mitochondrial translation are due to mutations in mitochondrial DNA. We investigated two siblings with a severe defect in mitochondrial translation, reduced levels of oxidative phosphorylation complexes containing mitochondrial DNA (mtDNA)–encoded subunits, and progressive hepatoencephalopathy. We mapped the defective gene to a region on chromosome 3q containing elongation factor G1 (EFG1), which encodes a mitochondrial translation factor. Sequencing of EFG1 revealed a mutation affecting a conserved residue of the guanosine triphosphate (GTP)–binding domain. These results define a new class of gene defects underlying disorders of oxidative phosphorylation

    Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East

    Get PDF
    BACKGROUND: To help conservation programs of the endangered spur-thighed tortoise and to gain better insight into its systematics, genetic variation and evolution in the tortoise species Testudo graeca (Testudines: Testudinidae) was investigated by sequence analysis of a 394-nucleotide fragment of the mitochondrial 12S rRNA gene for 158 tortoise specimens belonging to the subspecies Testudo graeca graeca, Testudo graeca ibera, Testudo graeca terrestris, and a newly recognized subspecies Testudo graeca whitei. A 411-nucleotide fragment of the mitochondrial D-loop was additionally sequenced for a subset of 22 T. graeca, chosen because of their 12S gene haplotype and/or geographical origin. RESULTS: Haplotype networks generated by maximum-likelihood and neighbor-joining analyses of both the separate and the combined sequence data sets suggested the existence of two main clades of Testudo graeca, comprising Testudo graeca from northern Africa and Testudo graeca from the Turkey and the Middle East, respectively. CONCLUSION: Mitochondrial DNA haplotyping suggests that the tortoise subspecies of T. g. graeca and T. g. ibera are genetically distinct, with a calculated divergence time in the early or middle Pleistocene. Other proposed subspecies could not clearly be recognized based upon their mt haplotypes and phylogenetic position, and were either part of the T. g. graeca or of the T. g. ibera clade, suggesting that genetic evidence for the existence of most of the 15 proposed subspecies of T. graeca is weak

    ROSAT HRI Observations of the Crab Pulsar: An Improved Temperature upper limit for PSR 0531+21

    Get PDF
    ROSAT HRI observations have been used to determine an upper limit of the Crab pulsar surface temperature from the off-pulse count rate. For a neutron star mass of 1.4 \Mo and a radius of 10 km as well as the standard distance and interstellar column density, the redshifted temperature upper limit is\/ Ts∞≀1.55×106T_s^\infty \le 1.55\times 10^6 K (3σ)(3\sigma). This is the lowest temperature upper limit obtained for the Crab pulsar so far. Slightly different values for Ts∞T_s^\infty are computed for the various neutron star models available in the literature, reflecting the difference in the equation of state.Comment: 5 pages, uuencoded postscript, to be published in the Proceedings of the NATO Advanced Study Insitute on "Lives of the Neutron Stars", ed. A. Alpar, U. Kiziloglu and J. van Paradijs ( Kluwer, Dordrecht, 1995 )

    The Coulomb unitarity relation and some series of products of three Legendre functions

    Get PDF
    We obtain from the off‐shell Coulomb unitarity relation a closed expression for J∞l = 0(2l+1)Pl(x) ×Qliγ ( y) Ql−iγ (z), and we consider some related series of products of Legendre functions

    Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell

    Full text link
    © 2020, Springer Nature Switzerland AG. In this study, magnetic snail shell (MSS) prepared by impregnating of iron oxide onto snail shell (SS) powder was used for removing Cr(VI) from aqueous solution. Among six different mass ratios of Fe/SS powder studied, the MSS25 produced at a ratio of 25% achieved the highest Cr(VI) adsorption capacity. Batch adsorption experiments were conducted to investigate the adsorption isotherm, kinetics, and mechanism of Cr(VI) onto MSS25. The results illustrated that adsorption of Cr(VI) onto MSS25 reached equilibrium after 150 min at pH 3. The adsorption kinetics could be well described by the pseudo-second order model (R2 = 0.986). The Langmuir model (R2 = 0.971) was the best-fitting model that described the adsorption isotherm of Cr(VI) onto MSS25. The maximum adsorption capacity was 46.08 mg Cr(VI) per gram of MSS25. Ion exchange, electrostatic attraction, and adsorption-coupled reduction were determined as the main adsorption mechanisms of Cr(VI) onto MSS25. The high percentages of CaCO3 and Fe3O4 found in the MSS25 structure made a significant contribution to the Cr(VI) adsorption process

    Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study.

    Get PDF
    Antimicrobial resistance (AMR) poses a threat to public health. Clinical microbiology laboratories typically rely on culturing bacteria for antimicrobial-susceptibility testing (AST). As the implementation costs and technical barriers fall, whole-genome sequencing (WGS) has emerged as a 'one-stop' test for epidemiological and predictive AST results. Few published comparisons exist for the myriad analytical pipelines used for predicting AMR. To address this, we performed an inter-laboratory study providing sets of participating researchers with identical short-read WGS data from clinical isolates, allowing us to assess the reproducibility of the bioinformatic prediction of AMR between participants, and identify problem cases and factors that lead to discordant results. We produced ten WGS datasets of varying quality from cultured carbapenem-resistant organisms obtained from clinical samples sequenced on either an Illumina NextSeq or HiSeq instrument. Nine participating teams ('participants') were provided these sequence data without any other contextual information. Each participant used their choice of pipeline to determine the species, the presence of resistance-associated genes, and to predict susceptibility or resistance to amikacin, gentamicin, ciprofloxacin and cefotaxime. We found participants predicted different numbers of AMR-associated genes and different gene variants from the same clinical samples. The quality of the sequence data, choice of bioinformatic pipeline and interpretation of the results all contributed to discordance between participants. Although much of the inaccurate gene variant annotation did not affect genotypic resistance predictions, we observed low specificity when compared to phenotypic AST results, but this improved in samples with higher read depths. Had the results been used to predict AST and guide treatment, a different antibiotic would have been recommended for each isolate by at least one participant. These challenges, at the final analytical stage of using WGS to predict AMR, suggest the need for refinements when using this technology in clinical settings. Comprehensive public resistance sequence databases, full recommendations on sequence data quality and standardization in the comparisons between genotype and resistance phenotypes will all play a fundamental role in the successful implementation of AST prediction using WGS in clinical microbiology laboratories
    • 

    corecore