75 research outputs found

    Extending the Minimum Information About BIobank Data Sharing Terminology to Describe Samples, Sample Donors, and Events

    Get PDF
    Introduction: The Minimum Information About BIobank data Sharing (MIABIS) was initiated in 2012. MIABIS aims to create a common biobank terminology to facilitate data sharing in biobanks and sample collections. The MIABIS Core terminology consists of three components describing biobanks, sample collections, and studies, in which information on samples and sample donors is provided at aggregated form. However, there is also a need to describe samples and sample donors at an individual level to allow more elaborate queries on available biobank samples and data. Therefore the MIABIS terminology has now been extended with components describing samples and sample donors at an individual level. Materials and Methods: The components were defined according to specific scope and use cases by a large group of experts, and through several cycles of reviews, according to the new MIABIS governance model of BBMRI-ERIC (Biobanking and Biomolecular Resources Research Infrastructure-European Research Infrastructure Consortium). The guiding principles applied in developing these components included the following terms: model should consider only samples of human origin, model should be applicable to all types of samples and all sample donors, and model should describe the current status of samples stored in a given biobank. Results: A minimal set of standard attributes for defining samples and sample donors is presented here. We added an "event" component to describe attributes that are not directly describing samples or sample donors but are tightly related to them. To better utilize the generic data model, we suggest a procedure by which interoperability can be promoted, using specific MIABIS profiles. Discussion: The MIABIS sample and donor component extensions and the new generic data model complement the existing MIABIS Core 2.0 components, and substantially increase the potential usability of this terminology for better describing biobank samples and sample donors. They also support the use of individual level data about samples and sample donors to obtain accurate and detailed biobank availability queries

    Brain computer tomography in critically ill patients -- a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients.</p> <p>Methods</p> <p>In a prospective observational study data were collected during one year on the reasons to request a brain CT, expected abnormalities, abnormalities found by the radiologist and consequences for treatment. An “expected abnormality” was any finding that had been predicted by the physician requesting the brain CT. A brain CT was “diagnostically positive”, if the abnormality found was new or if an already known abnormality was increased. It was “diagnostically negative” if an already known abnormality was unchanged or if an expected abnormality was not found. The treatment consequences of the brain CT, were registered as “treatment as planned”, “treatment changed, not as planned”, “treatment unchanged”.</p> <p>Results</p> <p>Data of 225 brain CT in 175 patients were analyzed. In 115 (51%) brain CT the abnormalities found were new or increased known abnormalities. 115 (51%) brain CT were found to be diagnostically positive. In the medical group 29 (39%) of brain CT were positive, in the surgical group 86 (57%), <it>p</it> 0.01. After a positive brain CT, in which the expected abnormalities were found, treatment was changed as planned in 33%, and in 19% treatment was changed otherwise than planned.</p> <p>Conclusions</p> <p>The results of this study show that the diagnostic and therapeutic yield of brain CT in critically ill patients is moderate. The development of guidelines regarding the decision rules for performing a brain CT in ICU patients is needed.</p

    A genetic risk score is associated with statin-induced low-density lipoprotein cholesterol lowering

    Get PDF
    To find new genetic loci associated with statin response, and to investigate the association of a genetic risk score (GRS) with this outcome. In a discovery meta-analysis (five studies, 1991 individuals), we investigated the effects of approximately 50000 single nucleotide polymorphisms on statin response, following up associations with p < 1 × 10(-4) (three independent studies, 5314 individuals). We further assessed the effect of a GRS based on SNPs in ABCG2, LPA and APOE. No new SNPs were found associated with statin response. The GRS was associated with reduced statin response: 0.0394 mmol/l per allele (95% CI: 0.0171-0.0617, p = 5.37 × 10(-4)). The GRS was associated with statin response, but the small effect size (˜2% of the average low-density lipoprotein cholesterol reduction) limits applicabilit

    A genetic risk score is associated with statin-induced low-density lipoprotein cholesterol lowering

    Get PDF
    Aim: To find new genetic loci associated with statin response, and to investigate the association of a genetic risk score (GRS) with this outcome. Patients & methods: In a discovery meta-analysis (five studies, 1991 individuals), we investigated the effects of approximately 50000 single nucleotide polymorphisms on statin response, following up associations with p < 1 × 10-4 (three independent studies, 5314 individuals). We further assessed the effect of a GRS based on SNPs in ABCG2, LPA and APOE. Results: No new SNPs were found associated with statin response. The GRS was associated with reduced statin response: 0.0394 mmol/l per allele (95% CI: 0.0171–0.0617, p = 5.37 × 10-4). Conclusion: The GRS was associated with statin response, but the small effect size (˜2% of the average low-density lipoprotein cholesterol reduction) limits applicability

    Adult height, coronary heart disease and stroke: a multi-locus Mendelian randomization meta-analysis

    Get PDF
    BACKGROUND: We investigated causal effect of completed growth, measured by adult height, on coronary heart disease (CHD), stroke and cardiovascular traits, using instrumental variable (IV) Mendelian randomization meta-analysis. METHODS: We developed an allele score based on 69 single nucleotide polymorphisms (SNPs) associated with adult height, identified by the IBCCardioChip, and used it for IV analysis against cardiovascular risk factors and events in 21 studies and 60 028 participants. IV analysis on CHD was supplemented by summary data from 180 height-SNPs from the GIANT consortium and their corresponding CHD estimates derived from CARDIoGRAMplusC4D. RESULTS: IV estimates from IBCCardioChip and GIANT-CARDIoGRAMplusC4D showed that a 6.5-cm increase in height reduced the odds of CHD by 10% [odds ratios 0.90; 95% confidence intervals (CIs): 0.78 to 1.03 and 0.85 to 0.95, respectively],which agrees with the estimate from the Emerging Risk Factors Collaboration (hazard ratio 0.93; 95% CI: 0.91 to 0.94). IV analysis revealed no association with stroke (odds ratio 0.97; 95% CI: 0.79 to 1.19). IV analysis showed that a 6.5-cm increase in height resulted in lower levels of body mass index (P < 0.001), triglycerides (P < 0.001), non high-density (non-HDL) cholesterol (P < 0.001), C-reactive protein (P = 0.042), and systolic blood pressure (P = 0.064) and higher levels of forced expiratory volume in 1 s and forced vital capacity (P < 0.001 for both). CONCLUSIONS: Taller individuals have a lower risk of CHD with potential explanations being that taller people have a better lung function and lower levels of body mass index, cholesterol and blood pressure

    Gene-Centric Meta-Analysis of Lipid Traits in African, East Asian and Hispanic Populations

    Get PDF
    Meta-analyses of European populations has successfully identified genetic variants in over 100 loci associated with lipid levels, but our knowledge in other ethnicities remains limited. To address this, we performed dense genotyping of ∼2,000 candidate genes in 7,657 African Americans, 1,315 Hispanics and 841 East Asians, using the IBC array, a custom ∼50,000 SNP genotyping array. Meta-analyses confirmed 16 lipid loci previously established in European populations at genome-wide significance level, and found multiple independent association signals within these lipid loci. Initial discovery and in silico follow-up in 7,000 additional African American samples, confirmed two novel loci: rs5030359 within ICAM1 is associated with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (p=8.8×107andp=1.5×106(p = 8.8×10^{−7} and p = 1.5×10^{−6} respectively) and a nonsense mutation rs3211938 within CD36 is associated with high-density lipoprotein cholesterol (HDL-C) levels (p=13.5×1012)(p = 13.5×10^{−12}). The rs3211938-G allele, which is nearly absent in European and Asian populations, has been previously found to be associated with CD36 deficiency and shows a signature of selection in Africans and African Americans. Finally, we have evaluated the effect of SNPs established in European populations on lipid levels in multi-ethnic populations and show that most known lipid association signals span across ethnicities. However, differences between populations, especially differences in allele frequency, can be leveraged to identify novel signals, as shown by the discovery of ICAM1 and CD36 in the current report

    Coding Variation in ANGPTL4, LPL, and SVEP1 and the Risk of Coronary Disease.

    Get PDF
    BACKGROUND: The discovery of low-frequency coding variants affecting the risk of coronary artery disease has facilitated the identification of therapeutic targets. METHODS: Through DNA genotyping, we tested 54,003 coding-sequence variants covering 13,715 human genes in up to 72,868 patients with coronary artery disease and 120,770 controls who did not have coronary artery disease. Through DNA sequencing, we studied the effects of loss-of-function mutations in selected genes. RESULTS: We confirmed previously observed significant associations between coronary artery disease and low-frequency missense variants in the genes LPA and PCSK9. We also found significant associations between coronary artery disease and low-frequency missense variants in the genes SVEP1 (p.D2702G; minor-allele frequency, 3.60%; odds ratio for disease, 1.14; P=4.2×10(-10)) and ANGPTL4 (p.E40K; minor-allele frequency, 2.01%; odds ratio, 0.86; P=4.0×10(-8)), which encodes angiopoietin-like 4. Through sequencing of ANGPTL4, we identified 9 carriers of loss-of-function mutations among 6924 patients with myocardial infarction, as compared with 19 carriers among 6834 controls (odds ratio, 0.47; P=0.04); carriers of ANGPTL4 loss-of-function alleles had triglyceride levels that were 35% lower than the levels among persons who did not carry a loss-of-function allele (P=0.003). ANGPTL4 inhibits lipoprotein lipase; we therefore searched for mutations in LPL and identified a loss-of-function variant that was associated with an increased risk of coronary artery disease (p.D36N; minor-allele frequency, 1.9%; odds ratio, 1.13; P=2.0×10(-4)) and a gain-of-function variant that was associated with protection from coronary artery disease (p.S447*; minor-allele frequency, 9.9%; odds ratio, 0.94; P=2.5×10(-7)). CONCLUSIONS: We found that carriers of loss-of-function mutations in ANGPTL4 had triglyceride levels that were lower than those among noncarriers; these mutations were also associated with protection from coronary artery disease. (Funded by the National Institutes of Health and others.).Supported by a career development award from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) (K08HL114642 to Dr. Stitziel) and by the Foundation for Barnes–Jewish Hospital. Dr. Peloso is supported by the National Heart, Lung, and Blood Institute of the NIH (award number K01HL125751). Dr. Kathiresan is supported by a Research Scholar award from the Massachusetts General Hospital, the Donovan Family Foundation, grants from the NIH (R01HL107816 and R01HL127564), a grant from Fondation Leducq, and an investigator-initiated grant from Merck. Dr. Merlini was supported by a grant from the Italian Ministry of Health (RFPS-2007-3-644382). Drs. Ardissino and Marziliano were supported by Regione Emilia Romagna Area 1 Grants. Drs. Farrall and Watkins acknowledge the support of the Wellcome Trust core award (090532/Z/09/Z), the British Heart Foundation (BHF) Centre of Research Excellence. Dr. Schick is supported in part by a grant from the National Cancer Institute (R25CA094880). Dr. Goel acknowledges EU FP7 & Wellcome Trust Institutional strategic support fund. Dr. Deloukas’s work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit, which is supported and funded by the National Institute for Health Research (NIHR). Drs. Webb and Samani are funded by the British Heart Foundation, and Dr. Samani is an NIHR Senior Investigator. Dr. Masca was supported by the NIHR Leicester Cardiovascular Biomedical Research Unit (BRU), and this work forms part of the portfolio of research supported by the BRU. Dr. Won was supported by a postdoctoral award from the American Heart Association (15POST23280019). Dr. McCarthy is a Wellcome Trust Senior Investigator (098381) and an NIHR Senior Investigator. Dr. Danesh is a British Heart Foundation Professor, European Research Council Senior Investigator, and NIHR Senior Investigator. Drs. Erdmann, Webb, Samani, and Schunkert are supported by the FP7 European Union project CVgenes@ target (261123) and the Fondation Leducq (CADgenomics, 12CVD02). Drs. Erdmann and Schunkert are also supported by the German Federal Ministry of Education and Research e:Med program (e:AtheroSysMed and sysINFLAME), and Deutsche Forschungsgemeinschaft cluster of excellence “Inflammation at Interfaces” and SFB 1123. Dr. Kessler received a DZHK Rotation Grant. The analysis was funded, in part, by a Programme Grant from the BHF (RG/14/5/30893 to Dr. Deloukas). Additional funding is listed in the Supplementary Appendix.This is the author accepted manuscript. The final version is available from the Massachusetts Medical Society via http://dx.doi.org/10.1056/NEJMoa150765

    Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height

    Get PDF
    Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 × 10−6), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 × 10−8). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 × 10−11). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait
    corecore