396 research outputs found

    Gut microbiome and health : mechanistic insights

    Get PDF
    The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected. In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPAR alpha) and gamma (PPAR gamma), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5). Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.Peer reviewe

    Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice

    Get PDF
    Accumulating evidence points to Akkermansia muciniphila as a novel candidate to prevent or treat obesity-related metabolic disorders. We recently observed, in mice and in humans, that pasteurization of A. muciniphila increases its beneficial effects on metabolism. However, it is currently unknown if the observed beneficial effects on body weight and fat mass gain are due to specific changes in energy expenditure. Therefore, we investigated the effects of pasteurized A. muciniphila on whole-body energy metabolism during high-fat diet feeding by using metabolic chambers. We confirmed that daily oral administration of pasteurized A. muciniphila alleviated diet-induced obesity and decreased food energy efficiency. We found that this effect was associated with an increase in energy expenditure and spontaneous physical activity. Strikingly, we discovered that energy expenditure was enhanced independently from changes in markers of thermogenesis or beiging of the white adipose tissue. However, we found in brown and white adipose tissues that perilipin2, a factor associated with lipid droplet and known to be altered in obesity, was decreased in expression by pasteurized A. muciniphila. Finally, we observed that treatment with pasteurized A. muciniphila increased energy excretion in the feces. Interestingly, we demonstrated that this effect was not due to the modulation of intestinal lipid absorption or chylomicron synthesis but likely involved a reduction of carbohydrates absorption and enhanced intestinal epithelial turnover. In conclusion, this study further dissects the mechanisms by which pasteurized A. muciniphila reduces body weight and fat mass gain. These data also further support the impact of targeting the gut microbiota by using specific bacteria to control whole-body energy metabolism.Peer reviewe

    Toxicological safety evaluation of pasteurizedAkkermansia muciniphila

    Get PDF
    Gut microorganisms are vital for many aspects of human health, and the commensal bacteriumAkkermansia muciniphilahas repeatedly been identified as a key component of intestinal microbiota. Reductions inA. muciniphilaabundance are associated with increased prevalence of metabolic disorders such as obesity and type 2 diabetes. It was recently discovered that administration ofA. muciniphilahas beneficial effects and that these are not diminished, but rather enhanced after pasteurization. PasteurizedA. muciniphilais proposed for use as a food ingredient, and was therefore subjected to a nonclinical safety assessment, comprising genotoxicity assays (bacterial reverse mutation and in vitro mammalian cell micronucleus tests) and a 90-day toxicity study. For the latter, Han Wistar rats were administered with the vehicle or pasteurizedA. muciniphilaat doses of 75, 375 or 1500 mg/kg body weight/day (equivalent to 4.8 x 10(9), 2.4 x 10(10), or 9.6 x 10(10)A. muciniphilacells/kg body weight/day) by oral gavage for 90 consecutive days. The study assessed potential effects on clinical observations (including detailed arena observations and a modified Irwin test), body weight, food and water consumption, clinical pathology, organ weights, and macroscopic and microscopic pathology. The results of both in vitro genotoxicity studies were negative. No test item-related adverse effects were observed in the 90-day study; therefore, 1500 mg/kg body weight/day (the highest dose tested, equivalent to 9.6 x 10(10)A. muciniphilacells/kg body weight/day) was established as the no-observed-adverse-effect-level. These results support that pasteurizedA. muciniphilais safe for use as a food ingredient.Peer reviewe

    Exploring the endocannabinoidome in genetically obese (ob/ob) and diabetic (db/db) mice: Links with inflammation and gut microbiota

    Get PDF
    Background: Obesity and type 2 diabetes are two interrelated metabolic disorders characterized by insulin resistance and a mild chronic inflammatory state. We previously observed that leptin (ob/ob) and leptin receptor (db/db) knockout mice display a distinct inflammatory tone in the liver and adipose tissue. The present study aimed at investigating whether alterations in these tissues of the molecules belonging to the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system, whose functions are important in the context of metabolic disorders and inflammation, could reflect their different inflammatory phenotypes. Results: The basal eCBome lipid and gene expression profiles, measured by targeted lipidomics and qPCR transcriptomics, respectively, in the liver and subcutaneous or visceral adipose tissues, highlighted a differentially altered eCBome tone, which may explain the impaired hepatic function and more pronounced liver inflammation remarked in the ob/ob mice, as well as the more pronounced inflammatory state observed in the subcutaneous adipose tissue of db/db mice. In particular, the levels of linoleic acid-derived endocannabinoid-like molecules, of one of their 12-lipoxygenase metabolites and of Trpv2 expression, were always altered in tissues exhibiting the highest inflammation. Correlation studies suggested the possible interactions with some gut microbiota bacterial taxa, whose respective absolute abundances were significantly different between ob/ob and the db/db mice. Conclusions: The present findings emphasize the possibility that bioactive lipids and the respective receptors and enzymes belonging to the eCBome may sustain the tissue-dependent inflammatory state that characterizes obesity and diabetes, possibly in relation with gut microbiome alterations

    Distribution of human beta-defensin polymorphisms in various control and cystic fibrosis populations.

    Get PDF
    Abstract Human beta defensins contribute to the first line of defense against infection of the lung. Polymorphisms in these genes are therefore potential modifiers of the severity of lung disease in cystic fibrosis. Polymorphisms were sought in the human beta-defensin genes DEFB1, DEFB4, DEFB103A, and DEFB104 in healthy individuals and cystic fibrosis (CF) patients living in various European countries. DEFB1, DEFB4, and DEFB104 were very polymorphic, but DEFB103A was not. Within Europe, differences between control populations were found for some of the frequent polymorphisms in DEFB1, with significant differences between South-Italian and Czech populations. Moreover, frequent polymorphisms located in DEFB4 and DEFB104 were not in Hardy Weinberg equilibrium in all populations studied, while those in DEFB1 were in Hardy Weinberg equilibrium. Sequencing of a monochromosomal chromosome 8 mouse-human hybrid cell line revealed signals for multiple alleles for some loci in DEFB4 and DEFB104, but not for DEFB1. This indicated that more than one DEFB4 and DEFB104 gene was present on this chromosome 8, in agreement with recent findings that DEFB4 and DEFB104 are part of a repeat region. Individual DEFB4 and DEFB104 PCR amplification products of various samples were cloned and sequenced. The results showed that one DNA sample could contain more than two haplotypes, indicating that the various repeats on one chromosome were not identical. Given the higher complexity found in the genomic organization of the DEFB4 and DEFB104 genes, association studies with CF lung disease severity were performed only for frequent polymorphisms located in DEFB1. No association with the age of first infection by Pseudomonas aeruginosa or with the FEV1 percentage at the age of 11-13 years could be found

    Re-visiting the detection of porcine cysticercosis based on full carcass dissections of naturally Taenia solium infected pigs

    Get PDF
    Background: Taenia solium is a neglected zoonotic parasite. The performances of existing tools for the diagnosis of porcine cysticercosis need further assessment, and their shortcomings call for alternatives. The objective of this study was to evaluate the performance of tongue palpation and circulating antigen detection for the detection of porcine cysticercosis in naturally infected pigs of slaughter age compared to full carcass dissections (considered the gold standard). Additionally, alternative postmortem dissection procedures were investigated. A total of 68 rural pigs of slaughter age randomly selected in the Eastern Province of Zambia were dissected. Dissections were conducted on full carcasses (or half carcass in case cysticerci were already detected in the first half), including all the organs. Total cysticercus counts, location and stages were recorded and collected cysticerci were identified morphologically and molecularly. All sera were analysed with the B158/B60 antigen detecting ELISA (Ag-ELISA). Results: Key findings were the high occurrence of T. solium infected pigs (56%) and the presence of T. solium cysticerci in the livers of 26% of infected animals. More than half of the infected carcasses contained viable cysticerci. Seven carcasses had T. hydatigena cysticerci (10%), out of which five carcasses were co-infected with T. hydatigena and T. solium; two carcasses (3%) had only T. hydatigena cysticerci. Compared to full carcass dissection, the specificity of the Ag-ELISA to detect infected carcasses was estimated at 67%, the sensitivity at 68%, increasing to 90% and 100% for the detection of carcasses with one or more viable cysticerci, and more than 10 viable cysts, respectively. Tongue palpation only detected 10% of the cases, half carcass dissection 84%. Selective dissection of the diaphragm, tongue and heart or masseters can be considered, with an estimated sensitivity of 71%, increasing to 86% in carcasses with more than 10 cysticerci. Conclusions: Depending on the aim of the diagnosis, a combination of Ag-ELISA and selective dissection, including investigating the presence of T. hydatigena, can be considered. Full carcass dissection should include the dissection of the liver, kidneys, spleen and lungs, and results should be interpreted carefully, as small cysticerci can easily be overlooked

    Acute effect of L-796568, a novel beta 3-adrenergic receptor agonist, on energy expenditure in obese men

    Get PDF
    Acute effect of L-796568, a novel beta 3-adrenergic receptor agonist, on energy expenditure in obese men. van Baak MA, Hul GB, Toubro S, Astrup A, Gottesdiener KM, DeSmet M, Saris WH. Nutrition and Toxicology Research Institute (NUTRIM), Department of Human Biology, Maastricht University, The Netherlands. [email protected] OBJECTIVE: Our objective was to investigate the thermogenic efficacy of single oral doses of the novel beta(3)-adrenergic receptor agonist L-796568 [(R )-N -[4-[2-[[2-hydroxy-2-(3-pyridinyl)ethyl]amino]ethyl]-phenyl]-4-[4-[4-(trifluoromethyl)phenyl]thiazol-2-yl]-benzenesulfonamide, dihydrochloride] in humans. METHODS: Twelve healthy overweight to obese men participated in this 2-center, 3-period, randomized, placebo-controlled, crossover trial. In each period subjects received 250 mg L-796568, 1000 mg L-796568, or placebo. Energy expenditure and respiratory quotient were determined by indirect calorimetry; blood samples were taken; and ear temperature, heart rate, and blood pressure were measured at baseline and during the 4-hour period after administration. RESULTS: Energy expenditure increased significantly after the 1000-mg dose (about 8%) and this was accompanied by an increase in plasma glycerol and free fatty acid concentrations. Systolic blood pressure also increased significantly. No changes in heart rate, diastolic blood pressure, ear temperature, plasma catecholamine, potassium, or leptin were found. CONCLUSIONS: Single-dose administration of 1000 mg of the novel beta(3)-adrenergic receptor agonist L-796568 increased lipolysis and energy expenditure in overweight men. This is the first study to show such an effect of beta(3)-adrenergic receptor agonists in humans without significant evidence for beta(2)-adrenergic receptor involvement

    Fasting and postprandial remnant-like particle cholesterol concentrations in obese participants are associated with plasma triglycerides, insulin resistance, and body fat distribution

    Get PDF
    Elevated plasma concentrations of remnant-like particle cholesterol (RLP-C) are atherogenic. However, factors that determine RLP-C are not fully understood. This study evaluates which factors affect RLP-C in the fasting and postprandial state, using multiple regression analyses in a large cohort of lean and obese participants. All participants (n = 740) underwent a test meal challenge containing 95 energy % (en%) fat (energy content 50% of predicted daily resting metabolic rate). Fasting and postprandial concentrations of circulating metabolites were measured over a 3-h period. Obese participants (n = 613) also participated in a 10-wk weight loss program (-2510 kJ/d), being randomized to either a low-fat or a high-fat diet (20-25 vs. 40-45en% fat). Postprandial RLP-C was associated with fasting RLP-C, waist:hip ratio (WHR), HOMA(IR) (homeostasis model assessment index for insulin resistance) (P < 0.001), and age, independently of BMI and gender [adjusted R(2) (adj. R(2)) = 0.70). These factors were also related to fasting RLP-C (P < 0.010), along with gender and physical activity (adj. R(2) = 0.23). The dietary intervention resulted in significantly lower fasting RLP-C concentrations, independently mediated by weight loss, improvements in HOMA(IR), and the fat content of the prescribed diet. However, after inclusion of plasma triglyceride (TG), HDL-cholesterol, and FFA concentrations in the models, HOMA(IR) and WHR no longer significantly predicted fasting RLP-C, although WHR remained a predictor of postprandial RLP-C (P = 0.002). Plasma TG was strongly associated with both fasting and postprandial RLP-C (P < 0.001). In conclusion, plasma RLP-C concentrations are mainly associated with plasma TG concentrations. Interestingly, the high-fat diet was more effective at decreasing fasting RLP-C concentrations in obese participants than the low-fat diet

    Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism

    Get PDF
    OBJECTIVE: To examine the role of hepatocyte myeloid differentiation primary-response gene 88 (MyD88) on glucose and lipid metabolism. DESIGN: To study the impact of the innate immune system at the level of the hepatocyte and metabolism, we generated mice harbouring hepatocyte-specific deletion of MyD88. We investigated the impact of the deletion on metabolism by feeding mice with a normal control diet or a high-fat diet for 8 weeks. We evaluated body weight, fat mass gain (using time-domain nuclear magnetic resonance), glucose metabolism and energy homeostasis (using metabolic chambers). We performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS: Hepatocyte-specific deletion of MyD88 predisposes to glucose intolerance, inflammation and hepatic insulin resistance independently of body weight and adiposity. These phenotypic differences were partially attributed to differences in gene expression, transcriptional factor activity (ie, peroxisome proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes, resembling those observed during diet-induced obesity. Finally, obese humans with NASH displayed a decreased expression of different cytochromes P450 involved in bioactive lipid synthesis. CONCLUSIONS: Our study identifies a new link between innate immunity and hepatic synthesis of bile acids and bioactive lipids. This dialogue appears to be involved in the susceptibility to alterations associated with obesity such as type 2 diabetes and NASH, both in mice and humans
    • …
    corecore