ORIGINAL ARTICLE

Heterozygous Mutations Causing Partial Prohormone
Convertase 1 Deficiency Contribute to Human Obesity

John W.M. Creemers,! Hélene Choquet,? Pieter Stijnen,' Vincent Vatin,? Marie Pigeyre,?
Sigri Beckers,* Sandra Meulemans,! Manuel E. Than,? Loic Yengo,? Maithé Tauber,®
Beverley Balkau,”® Paul Elliott,” Marjo-Riitta Jarvelin,”'® Wim Van Hul,* Luc Van Gaal,'!
Fritz Horber,'? Francois Pattou,'® Philippe Froguel,>'* and David Meyre*'®

Null mutations in the PCSK1 gene, encoding the proprotein con-
vertase 1/3 (PC1/3), cause recessive monogenic early onset obe-
sity. Frequent coding variants that modestly impair PC1/3
function mildly increase the risk for common obesity. The aim
of this study was to determine the contribution of rare functional
PCSKI mutations to obesity. PCSKI exons were sequenced in
845 nonconsanguineous extremely obese Europeans. Eight novel
nonsynonymous PCSK1 mutations were identified, all heterozy-
gous. Seven mutations had a deleterious effect on either the mat-
uration or the enzymatic activity of PC1/3 in cell lines. Of interest,
five of these novel mutations, one of the previously described
frequent variants (N221D), and the mutation found in an obese
mouse model (N222D), affect residues at or near the structural
calcium binding site Ca-1. The prevalence of the newly identified
mutations was assessed in 6,233 obese and 6,274 lean European
adults and children, which showed that carriers of any of these
mutations causing partial PCSK1 deficiency had an 8.7-fold
higher risk to be obese than wild-type carriers. These results
provide the first evidence of an increased risk of obesity in het-
erozygous carriers of mutations in the PCSK1 gene. Furthermore,
mutations causing partial PCSK1 deficiency are present in 0.83%
of extreme obesity phenotypes. Diabetes 61:383-390, 2012

roprotein convertase 1/3 (PC1/3, gene symbol
PCSK1) represents the major processing enzyme
of precursor proteins in the regulated secretory
pathway and is expressed in the brain, enter-
oendocrine cells, and neuroendocrine system (1-3). PC1/3
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is synthesized as inactive proPC1/3, which is rapidly con-
verted into PC1/3 by autocatalytic cleavage of the NHo-
terminal propeptide in the endoplasmic reticulum (ER)
(4,5). A second internal cleavage of the propeptide in a
post-ER compartment is required for activation (6). COOH-
terminal processing of PC1/3 occurs in a late- or post-Golgi
compartment, a process that affects enzyme kinetics and
stability (7). On the basis of the crystal structure of the PC
furin, two calcium binding sites are predicted. The Ca-1 site
is needed for structural stabilization, and the Ca-2 site is
essential for the formation of the P1 specificity—determining
S1-binding pocket (8-10).

Three patients with recessive monogenic forms of obe-
sity due to total PCSK1 deficiency have been identified
(6,11,12). These mutations cause early onset obesity, hy-
perphagia, reactive hypoglycemia, and (entero)endocrine
dysfunctions. In the three studies, probands were either
compound heterozygous or homozygous for mutations in
PCSK1. The eight heterozygous family members appeared
clinically unaffected and not obese.

Although PCSKI-null mice are not obese, they display
growth retardation and multiple neuroendocrine abnor-
malities (13). In contrast, heterozygote PCSKI-null mice
are not growth retarded but tend to be mildly obese. Mice
homozygous for the deleterious N222D mutation are obese
with abnormal proinsulin processing and multiple endo-
crinological defects (14). N222D-heterozygous mice are
characterized by an intermediate phenotype and display an
increased body fat content compared with wild-type mice.

Recently, we suggested the contribution of PCSKI
common nonsynonymous polymorphisms (N221D and the
Q665E-S690T cluster) to polygenic obesity in European
populations, placing PCSK1 on the list of genes associated
with this common disease (15). Although the single nu-
cleotide polymorphism (SNP) N221D has a modest effect
on PC1/3 activity, it increased the risk for obesity. Since
this initial report, associations of the N221D or the Q665E-
S690T polymorphisms with obesity-related traits have
been reported in at least subgroup analyses of several in-
dependent replication studies (16-21). However, frequent
coding SNPs in PCSKI as well as all others recently
identified through Genome Wide Association Studies ex-
plain only a small fraction of obesity heritability (17,19,22—
24). In addition to common variants, rare variants that have
stronger functional effect are therefore expected to play an
important role in the genetics of common diseases (25).

We hypothesized that rare heterozygous mutations in
PCSK1 may contribute to severe forms of obesity. There-
fore, we have sequenced coding regions of PCSKI in 845
extremely obese subjects and compared our data with the
DNA sequences available from the public human genome
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databases. A combination of in silico and in vitro charac-
terization was applied to the eight detected nonsynonymous
mutations to evaluate their consequences on the maturation
and activity of PC1/3. Finally, the eight mutations have been
genotyped in 6,233 obese and 6,274 lean European subjects
to estimate their association to obesity risk.

RESEARCH DESIGN AND METHODS

The study protocol has been approved by all local ethics committees, and
informed consent was obtained from each subject before participating in the
study, in accordance with the Declaration of Helsinki. For children aged <18
years, verbal consent was obtained and parents provided written informed
consent. All subjects were European Caucasians.

The 97th BMI percentile was used as the threshold for childhood obesity, and
children with a BMI lower than the 90th percentile were classified as lean,
according to the recommendations of the European Childhood Obesity Group
study (26). To calculate the BMI z score and threshold for childhood obesity, we
used the national growth charts provided by Rolland-Cachera et al. (27) (French
children) or Roelants et al. (28) (Belgian children). Adult subjects were defined
as follows: lean (BMI <25 kg/m?), class I obese (BMI =30 and <35 kg/m?), class
II obese (BMI =35 and <40 kg/m?), or class IIl obese (BMI =40 kg/m?).
Screening sample. The populations involved in screening are described in
Table 1. The MC4R gene was previously sequenced in this sample, and carriers
of deleterious mutations were excluded from the screening sample. A set of
422 French class III obese adults and 124 French obese children (BMI 2z score
=2.35) were first screened for rare exonic PCSKI gene mutations. In total, 48
of the 422 French adults were selected from the ABOS (Atlas Biologique de
1'Obesité Sévere) cohort and were recruited by the Department of General and
Endocrine Surgery, CHRU Lille (29). The other obese French adults and
children were recruited by the CNRS UMR8090 and the Department of Nu-
trition of Paris Hotel Dieu Hospital. Finally, 299 extremely obese adults (BMI
=50 kg/m?) were sequenced. This set of 299 patients included 64 obese Bel-
gian patients recruited from the outpatient obesity clinic at the University of
Antwerp Hospital (30) and 235 obese Swiss subjects who were recruited for
gastric surgery in Zurich, Switzerland (31). To compare the PCSK1 sequencing
data collected in obese subjects with those available in European general
populations, we used the May 2011-released sequences from the 1000
Genomes Project (http:/www.1000genomes.org) and dbSNP (SNP database)
build 131 (http:/www.ncbi.nlm.nih.gov/).
Genotyping sample. To find additional carriers of PCSK1 mutations, 6,233
unrelated obese subjects (BMI =30 kg/m®) and 6,274 lean control subjects
(BMI <25 kg/m?) of European descent were genotyped for eight pathogenic
mutations (K26E, M125I, T175M, N180S, Y181H, G226R, S325N, and T558A).
Genotyped populations are described in Table 2.

The set of obese subjects included

586 unrelated obese French children recruited through a multimedia cam-
paign (CNRS UMR8090)

79 obese French children, patients of Toulouse Children’s Hospital

861 obese French adults recruited by the CNRS UMRS090 and the Depart-
ment of Nutrition of Paris Hotel Dieu Hospital

173 obese Finnish adolescents from the Northern Finland Birth Cohort
(NFBC) 1986 (32)

1,662 obese Swiss subjects recruited for obesity surgery (Lindberg Clinic)
BD

376 obese Belgian children recruited in the Virga Jesse hospital (Hasselt,
Belgium) (33)

2,496 obese Belgian adults recruited from the outpatient obesity clinic (Uni-
versity of Antwerp Hospital) (30)

The set of control subjects included

TABLE 1
Clinical characteristics of the sequenced populations

e 1,406 lean French subjects selected from the D.E.S.LL.R. (Data from an Epi-
demiological Study on the Insulin Resistance Syndrome) general prospec-
tive study (34)

e 4,714 lean Finnish adolescents from the NFBC 1986 (32)

e 154 lean Belgian subjects from University of Antwerp Hospital (30)

Measurements. Weight and height were measured by trained personnel, and
BMI was calculated as weight/height? (kg/m?).

Sequencing. Direct sequencing was performed to screen the coding se-
quence of the PCSK1 gene. The protocol was carried out using the auto-
mated ABI Prism 3730xl DNA sequencer in combination with the BigDye
Terminator Cycle Sequencing Ready Reaction kit 3.1 (Applied Biosystems,
Foster City, CA). PCR conditions and primer sequences are available on
request.

Genotyping. Eight pathogenic mutations were genotyped in a large case-
control sample of 6,233 obese and 6,274 lean Europeans. The three mutations
located in exon 4 (T175M, Y181H, and N180S) were genotyped by direct se-
quencing. The M125I and S3256N mutations were genotyped using LightCycler
480 High Resolution Melting Master kit (Roche, Basel, Switzerland). Finally,
because common variants were located in the vicinity of the G226R and T558A
mutations, making the high resolution melting method inefficient, these two
mutations were genotyped by melting curve using labeled probes (TIB MOL-
BIOL, Berlin, Germany) in combination with LightCycler 480. Each mutation
detected using the LightCycler 480 was confirmed by direct sequencing. Ge-
notype distribution for the mutations did not deviate from the Hardy-Weinberg
equilibrium (P > 0.05; analyses made separately in case and control subjects).
In silico analysis. Phylogenetic conservation of the different parts of PCSK1
containing a mutation was tested using University of California-Santa Cruz Ver-
tebrate Multiz Alignment & Conservation, based on a phylogenetic hidden Mar-
kov model, phastCons (35). The impact of the mutations on the three-dimensional
structure of PC1/3 was analyzed using the homology model based on the crystal
structure of furin and kexin (8,9).

Construction of vector-expressing mutant PC1/3. The expression vector
for human PC1/3 containing a FLAG epitope tag (Asp-Tyr-Lys-Asp-Asp-Asp-
Asp-Lys) between the propeptide and the catalytic domain has been described
previously (6,11). The mutations (K26E, M125I, T175M, N180S, Y181H, G226R,
S325N, and T558A) were introduced using the QuikChange site-directed mu-
tagenesis kit (Stratagene, Foster City, CA).

Transient expression of recombinant PC1/3 in cell lines. The neuro-
blastoma cell line Neuro-2a (N,A) was transfected with empty vector; or vec-
tors containing cDNAs encoding wild-type PC1/3; or the PC1/3 variants K26E,
M1251, T175M, N180S, Y181H, G226R, S325N, T558A, or G593R using Lip-
ofectamine 2000 (Invitrogen, Madison, WI). The human embryonic kidney cell
line HEK293T was transfected using FUuGENE 6 (Roche, Basel, Switzerland).
PC1/3 maturation and activity. Western blot analyses were performed as
described previously using anti-FLAG M2 (Sigma-Aldrich, St. Louis, MO)
(6,11). Catalytic activity of the PC1/3 was analyzed using immunopurified
enzyme and the fluorogenic substrate pyr-Glu-Arg-Thr-Lys-Arg-amino methyl-
coumarin (Bachem, Bubendorf, Switzerland) (6,11). Activity was normalized
for PC1/3 protein levels as reported previously (15).

Endoglycosidase-F digestion. Deglycosylation experiments were performed
essentially as described previously (36). HEK293T cells were transfected with
wild-type PC1/3 and T175M, pulse labeled with translabel for 30 min, and
chased for 60 min. Cell extracts and medium were immunoprecipitated using
M2 antibody, and 50% of these immunoprecipitates were incubated in the
absence (—E) or presence (+E) of endoglycosidase-F (Roche) at 37°C over-
night. The digestion products and controls were separated by SDS-PAGE.
Statistical analysis. In vitro data are expressed as mean values. Differences
between groups were compared with the use of unpaired Student ¢ tests (for
the activity of PC1/3 recombinants). Logistic regression tests were used to
calculate the association of the overall load of deleterious mutations or of the
Y118H mutation with obesity, adjusting for age, sex, or geographical origin.

Screening sample of Sex ratio Age at examination

extremely obese patients N (male to female) (years) BMI (kg/m?) 2BMI (kg/m?)
Obese French adults 422 107:315 46.46 = 12.50 49.16 * 9.96 —
Obese French children 124 58:66 10.49 =+ 3.62 31.29 + 4.53 8.62 = 3.29
Obese Swiss adults 235 60:175 42.88 = 11.22 53.6 = 3.12

Obese Belgian adults 64 27:37 44.76 £ 11.41 54.77 £ 4.98 —

Data are means * SD.
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TABLE 2
Clinical characteristics of the genotyped populations

Case-control study subjects N Sex ratio (male-to-female)  Age at examination (years)  BMI (kgm?)  2BMI (kg/m®)
Obese French children 665 291:374 10.34 = 3.67 29.03 = 6.59 6.55 = 2.91
Obese French adults 861 211:650 46.75 = 12.80 44.07 = 6.85 —
Obese Swiss adults 1,662 407:1,255 4258 = 11.13 42.24 = 5.50 —
Obese Finnish children 173 99:74 16 32.47 £ 3.12 3.48 = 1.04
Obese Belgian children 376 155:221 12.0 = 3.9 31.2 = 6.0 2.6 =05
Obese Belgian adults 2,496 703:1,793 43.90 = 13.81 36.96 = 5.03 —
Lean French adults 1,406 478:928 45.87 = 9.77 21.59 = 1.7 —
Lean Finnish children 4,714 2,323:2,391 16 20.34 = 2.61 —0.25 = 0.62
Lean Belgian adults 154 25:129 34.0 = 13.0 22.10 = 3.10 —

Data are means * SD. Obese adults: BMI =30 kg/m?; obese children: BMI =97th percentile for sex and age; lean adults: BMI <25 kg/m?, and

lean children: BMI <90th percentile for sex and age.

A categorical variable was defined to provide information about the geo-
graphical origin of the subjects under study: Finland, 1; Belgium, 2; France, 3;
and Switzerland, 4. We used a second method, the kernel-based adaptive
cluster (KBAC), to assess the association between the overall load of rare
variants in PCSK1 and obesity (37). We performed 200,000 permutations to
estimate the KBAC test-derived P value of association with obesity. SPSS 14.0
software was used for general statistical analyses (SPSS Inc., Chicago, IL). All
reported P values are two-sided. P < 0.05 was considered significant.

RESULTS

Detection of eight novel mutations in PCSKI. The
clinical characteristics of the 845 nonconsanguineous ex-
tremely obese European subjects are reported in Table 1.
Rare variants (frequency <1%) found in the coding se-
quence were considered a mutation. Eight rare nonsyn-
onymous mutations were identified in eight different
carriers (0.95% of the 845 case subjects): the K26E, M125I,
T175M, N180S, Y181H, G226R, S325N, and T558A amino
acid substitutions. All carriers were heterozygous. The
clinical characteristics of each PCSK1 mutation carrier are
reported in Supplementary Table 1. Among the eight PCSK1
mutation carriers, two subjects were also heterozygous for
the two common polymorphisms (Q665E-S690T) that have
previously been reported not to significantly impair PC1/3
function (15). All results, including missense, synonymous
mutations, and frequent variants (minor allele frequency
>b%) are presented in Table 3. To compare these data with

those available in European general populations, we used
the complete genomic sequences currently available through
the 1000 Genomes Project (http:/www.1000genomes.org)
and through dbSNP build 131 (http://www.ncbi.nlm.nih.gov/).
None of the eight mutations and no additional rare mutations
were found in these databases.

In silico analysis predicts novel functional mutations.
K26 is located one amino acid before the signal peptide
cleavage site, and mutation into Glu is predicted to have no
effect (http://www.cbs.dtu.dk/services/SignalP/). The M125I,
T175M, N180S, Y181H, G226R, and S325N mutations are
located in the catalytic domain, and the T558A substitution
is located in the middle domain (Fig. 14) (12). Using in
silico analysis, a high evolutionary conservation among
species was observed for the M125, T175, N180, Y181,
G226, S325, and T558 amino acids in 44 vertebrates, in-
cluding mammalian, amphibian, bird, and fish species (35).
In contrast, K26 is weakly conserved. On the basis of the
homology model of PC1/3 (9), the mutations in the cata-
lytic and middle domain were analyzed (Fig. 1B). M125 is
predicted to be located within 8 A of the Ca-1 site. M1251
mutation will result in loss of hydrophobic contacts, po-
tentially affecting the formation of the Ca-1 site after
cleavage of the propeptide. T175 also lies within 8 A of the
Ca-1 site, and replacement by Met forces a hydrophobic
amino acid to be located at the surface of the protein,

TABLE 3
List of variants identified in PCSK1 gene
Chromosome Gene position Nucleic acid Amino acid

SNP description dbSNP position (exon) base change change MAF
K26E — 95,794,427 1 a>g K/E <0.01
P40P — 95,794,383 1 c>t — <0.01
L90 L — 95,790,688 2 a>g — <0.01
M1251 — 95,787,301 3 g>a M/1 <0.01
T175M — 95,784,792 4 c>t /M <0.01
N180S — 95,784,777 4 a>g N/S <0.01
Y181H — 95,784,775 4 t>c YH <0.01
N204N rs6231 95,783,348 5 c>t N/N < 0.01
N221D rs6232 95,777,541 6 a>g N/D 0.05
G226R — 95,777,526 6 g>a G/R <0.01
S325N — 95,772,355 8 g>a S/N <0.01
N550N rs6233 95,758,868 12 c>t N/N 0.38
TH558A — 95,758,846 12 a>g T/A <0.01
Q665E 156234 95,754,730 14 c>g QE 0.28
S690T 156235 95,754,654 14 c>g S/T 0.28

MAF, minor allele frequency.
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FIG. 1. Location of rare nonsynonymous mutations identified in the
screening of 845 extremely obese subjects on the PC1/3 protein. A: The
domains are depicted in the schematic representation of PC1/3. S, sig-
nal peptide; Pro, propeptide; C-Terminal, COOH-terminal domain.
G593R has previously been described (12) and is included in this study
as a control. B: Stereo representation of the PC1/3 model showing the
protein backbone in gray cartoon representation, the dec-RVKR-CMK
inhibitor in dark gray marking the active site cleft, and the two calcium
ions in cyan. The sites of mutations found in this study are represented
in green, and the previously described common variant N221D (15) and
the N222D mutation found in an obese mouse model (14) are indicated
in blue (prepared with PYMOL [DeLano Scientific LLC, www.pymol.
org)).

resulting in an energetically unfavorable situation. In ad-
dition, T175 is part of the motif for N-glycosylation of
N173. N180 is also located in close proximity to the Ca-1
site (~11 A) The shorter side chain of Ser cannot make
the stabilizing contacts made by Asn, hence destabilizing
the enzyme. The neighboring Y181 is located within 13 A of
the Ca-1 site, and replacement with His is likely to have
a similar affect as N180S. G226 is a direct ligand of the Ca-1
site, which contacts the Ca®* via its carbonyl oxygen. Be-
cause there is no space for the much larger and con-
formationally restricted Arg, this mutation is predicted to
have a severe impact. The S325N mutation is energetically
unfavorable because the Asn requires more space and
forms different hydrogen bonds, which will destabilize the
enzyme. Finally, the T5568A mutation disrupts the specific
hydrogen bonds made by the hydroxyl side chain of Thr and
the surrounding S555 and T533. This mutation is therefore
predicted to destabilize the fold of the middle domain.
Taken together, the homology model of PC1/3 indicates that
all seven mutations in the catalytic and middle domains will
have an impact on the folding and stability of the enzyme,
albeit at varying degrees of severity.

Functional characterization confirmed and amplified
in silico predictions. The functional consequences of the
K26E, M1251, T175M, N180S, Y181H, G226R, S325N, and
T558A mutations on PC1/3 maturation and activity were
investigated in transiently transfected HEK293T fibroblasts
and NsA neuroectodermal cells. The activity was assessed
by measuring the processing of a fluorogenic substrate by
recombinant PC1/3 mutants immunoprecipitated from
conditioned medium (Fig. 2). As an internal control, the
GHI3R loss-of-function mutation was used (12). In vitro studies

386 DIABETES, VOL. 61, FEBRUARY 2012
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FIG. 2. PC1/3 activity is impaired in G226R, M1251, T175N, and N180S
mutants. PC1/3 mutants were immunopurified from conditioned me-
dium of transfected HEK293T and N;A cells. Activity was determined
using the fluorogenic substrate p-Glu-Arg-Thr-Lys-Arg-amino methyl-
coumarin and normalized for the amount of recombinant PC1/3. A: NoA
cells. B: HEK293T cells. EV, empty vector; WT, wild-type PC1/3. G593R
recombinant PC1/3 serves as a negative control. Bars represent mean +
SD; n = 3-6 independent experiments conducted. *P < 0.05, **P < 0.01,
#EP < 0.001.

Activity [arbitrary units]

*

%

* *

*
*

EV |
WT

S325N I ¢
T175M I

K26E I
M1251 I

N180S N —
Y181H N
T558A I

G226R |
G593R |

o)

150

100

50

Activity [Arbitrary units]

LS *

%
*

EV |
WT

S325N I
T175M I
M1251 I

N180S I

Y181H I
T558A I

G226R |
G593R |

confirmed the catalytic inactivity of G593R (99. 4% de-
crease compared with wild type PC1/3; P < 10~ ) and
blocked propeptide cleavage and secretion (Fig. 3), vali-
dating the experimental design. A complete loss of cata-
lytic activity was observed for recombinant G226R (99.4%
decrease; P < 10™°), whereas the M125I mutation induced
a s1gmﬁcant reduction in activity by 73.6% (P < 0.01) and
54.9% (P < 0.001) in HEK293T and N-A cells, respectively.
In a similar manner, the activity of T175M was reduced in
both cell lines (32.1% in HEK293T, P < 0.01; and 27.3% in
NoA cells, P < 0.05). N180S had a significantly decreased
activity in NoA cells only (26.3%, P < 0.05), consistent with
the more pronounced difference in COOH-terminal pro-
cessing of this mutant in NoA cells (Fig. 3). S325N had
a decreased activity in HEK293T cells only (23.5%, P <
0.05). The T558A and the Y181H amino acid changes did not
appear to influence the enzymatic activity significantly in
either cell line.
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FIG. 3. Maturation and/or secretion are impaired in seven of eight PC1/3 mutants. Western blots of cell lysates and conditioned medium of
transfected N>A and HEK293T cells with EV (empty vector), WT (wild-type PC1/3), S325N, T175M, K26E, M1251, N180S, Y181H, G226R, T558A, or
G593R using FLAG M2 for detection of recombinant PC1/3 proteins. ACt corresponds to COOH-terminal truncated PC1/3. G593R recombinant

PC1/3 serves as a negative control.

The consequences of these mutations on maturation and
secretion were characterized by Western blotting (Fig. 3).
G226R and T1756M showed reduced propeptide cleavage,
COOH-terminal processing, and secretion compared with
wild-type PC1/3 in both HEK293T and N,;A cells. The
S3256N, Y181H, and T558A mutations affected only pro-
peptide cleavage, particularly notable in N>A lysates. It is
remarkable that in N»A cells, the N180S mutation resulted
in a severely reduced amount of secreted full-length PC1/3,
with little reduction of the COOH-terminally processed
forms. No change in maturation or secretion was observed
for K26E.

For T175M, a slight downward shift for all bands was ob-
served, most notably in the NoA medium. The T175M muta-
tion is located at one of the two potential N-glycosylation
sites of PC1/3. Therefore, the implication on N-glycosylation
was investigated using the deglycosylation enzyme
endoglycosidase-F. No reduction in molecular weight was
found after endoglycosidase-F digestion of T175M, either in
lysate or in medium, whereas wild-type PC1/3 forms shifted
downward to the same apparent molecular weight as the
T175M mutant (Fig. 4).

Altogether, these data show that seven of eight muta-
tions have a functional effect on PC1/3: G226R induces
complete loss of activity, whereas S3256N, M1251, T175M,
N180S, Y181H, and T558A mutations are partially delete-
rious, and only the K26E substitution seems to have no
detectable impact. The functional data are summarized in
Supplementary Table 2.

Deleterious PCSKI mutations associate with common
obesity. After genotyping the eight mutations in 6,233
unrelated obese subjects and 6,274 control subjects of
European descent (Table 2), 11 additional carriers for the
Y181H mutation were identified (9 obese and 2 control
subjects) as well as 2 obese subjects for the N180S muta-
tion and 1 obese subject for the M125I mutation. No new
carriers for the K26E, T1756M, S325N, G226R, or T558A
mutations were found. The clinical characteristics of each
PCSK1 mutation carrier in the case-control study are re-
ported in Supplementary Table 3. The putative association
of these mutations with obesity was first assessed by
comparing the prevalence of the overall load of the dele-
terious mutations in PCSKI in obese and lean subjects
using logistic regression adjusted for age, sex, and geo-
graphy. The load of deleterious mutations in PCSK1 showed a
statistically significant 8.7-fold enrichment in obese subjects
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compared with lean control subjects (odds ratio [OR] 8.66
[95% CI 1.04-72.01]; P = 0.046) (Table 4). Using the re-
cently developed KBAC method to assess the association
between the overall load of rare loss-of-function coding
variants in PCSK1 and obesity gave similar results (OR
6.07, P = 0.006). This overall association was mainly driven
by the more frequent mutation Y181H that showed a bor-
derline association with obesity when analyzed solely in
a logistic regression model (7.31 [0.84-63.55]; P = 0.072)
(Table 4).

DISCUSSION

The most important observation in this study is that rare
nonsynonymous mutations causing partial PCSK1 de-
ficiency are enriched in common severe obesity. Further-
more, 0.83% of our cohort of subjects with extreme obesity
carry these variants, suggesting that after MC4R (38) and
the chromosome 16p deletion (39), PCSKI is the third
most prevalent contributor to extreme obesity in European
populations identified so far. We previously reported that
the modestly deleterious variant N221D is associated with
a small increase in the risk for obesity (15). Not only null
mutations cause a recessive monogenic form of obesity
with syndromic features (6,11,12); we show here that

WT T175M WT T175M
KDa - + - + - + - +
80 —
60 —
Lysate Medium

FIG. 4. The T175M mutation impairs N-glycosylation of PC1/3. Analysis
was performed on transfected HEK293T cells. Absence (—) or presence
(+) of endoglycosidase-F. Note the reduction in molecular weight of
wild-type (WT) PC1/3 in the medium to the same apparent molecular
weight of untreated (and treated) T175M mutant.
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TABLE 4

Frequency of deleterious PCSK1 mutations in obese and lean subjects

Variant Obese carrier (n) Frequency obese (%) Lean carrier (n) Frequency lean (%) OR (95% CI)* P value*
M1251 1 0.02 0 0 — —
T175M 0 0 0 0 — —
N180S 2 0.03 0 0 — —
Y181H 9 0.14 2 0.03 7.3 (0.8-63.5) 0.072
G226R 0 0 0 0 — —
S3256N 0 0 0 0 — —
TH558A 0 0 0 0 — —
Total 12 of 6,233 0.19 2 of 6,274 0.03 8.7 (1.0-72.0) 0.046

*OR (95% CI) and P value of the association with obesity. The logistic regression has been adjusted for age, sex, and geography.

haploinsufficient heterozygous mutations, although in-
frequent, associate with a rather penetrant form of obesity.
Indeed, these functional variants increase the risk of de-
veloping obesity 8.7 times in Europeans. Association does
not imply causality, but by combining the sequencing data
with the comprehensive studies on PC1/3 maturation and
activity, the functional molecular link between the PCSK1
genotype and obesity becomes likely.

Dickson et al. (40) recently proposed that rare genetic
variants, by occurring, stochastically, more often in asso-
ciation with one of the alleles at the common site versus
the other allele, can create synthetic associations that are
credited to common variants. Our data do not favor the
synthetic association hypothesis at the PCSK1 locus and,
rather, support an independent contribution of rare and
common coding variants in PCSK1 to obesity predisposition,
as recently demonstrated at the MC4R locus (41). Among
the eight PCSK1 rare mutation carriers identified in our
screening of 845 obese subjects, only 2 subjects are also
heterozygous for the common polymorphisms Q665E-S690T,
signifying that no N221D carrier and only 0.5% of the QG65E-
S690T carriers harbor simultaneously rare deleterious mut-
ations in PCSK1.

An important finding is that seven of eight of the novel
nonsynonymous PCSKI mutations found in the screening
of extremely obese patients were deleterious. It shows the
important role of this gene in obesity because the average
of damaging nonsynonymous mutations for complex dis-
eases in humans has been estimated to be 73% (42). Of the
eight mutations we detected in obese subjects, one resul-
ted in a total loss of function, six were partially deleteri-
ous, and only the K26E mutation was found neutral by
both prediction and functional analysis. A remarkable
observation is that five damaging mutations are predicted
to affect the Ca-1 binding site. The Ca-1 site is conserved in
eukaryotic PCs and bacterial subtilisins. Mutation of this
site in subtilisin results in an active enzyme, albeit with
significantly lower stability (43). The N222D mutation in
the previously reported obese mouse model (14) also
affects the Ca-1 site. N222 is one of the side chain ligands
of the calcium ion, and although the side chain oxygen of
Asp might take over, its charge, polarity, and hydrogen-
bonding potential are clearly different. Maturation of N222D
is normal except for reduced COOH-terminal processing,
and its activity is reduced by 36%. Although this effect on
functionality might appear limited, the obese phenotype
segregated in a dominant manner in mice fed a high fat
diet (14). The frequent variant N221D that increases the
risk of obesity can therefore be expected to influence the
Ca-1 site by changing the position of N222. The side
chain of residue 221 mostly interacts with the solvent, so
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a major change is not expected. In furin, the corresponding
Asn (N207) makes a strong hydrogen bond with the amide
nitrogen of a Thr (T114). This might also be the case in
PC1/3, but the homology model is not sufficiently accurate
to allow this prediction. The change in charge caused by
the N221D variant, however, is likely to have at least some
effect on this region and the Ca-1 site.

For the first time, a mutation on an N-glycosylation site
of PC1/3 was identified. N-glycosylation is a key process in
cellular signaling and protein maturation that starts in the
ER and concludes in the Golgi compartment. Our study
shows that the T175M mutation in the N-glycosylation site
NHT induces an inhibition of N-glycosylation of PC1/3,
indicating that the second potential N-glycosylation site
NLT at position 401 is not used. This is consistent with
a recent study that shows that in mouse PC1/3, which
contains three potential N-glycosylation sites, the first site
is critical for propeptide cleavage, whereas the second is not
used (44). The third site, present in mouse but not human
PC1/3, is of lesser importance. Our in vitro data confirm this
because the T175M mutation altered the maturation and
secretion of the protein and reduced the enzymatic activity
significantly in both HEK293T and N>A cells.

The differential effect of the mutations in the two cell
lines may be the consequence of different relative ex-
pression levels of secreted full-length and COOH-terminal
processed PC1/3. COOH-terminal processing of PC1/3 is
cell-type dependent and, for instance, is more pronounced
in pancreas than in brain. Mutations can have a cell type—
dependent effect on COOH-terminal processing of PC1/3,
as described before for the N222D mutation (14).

In the three previously reported case subjects harboring
complete PC1/3 deficiency, probands were either com-
pound heterozygote (6,12) or homozygote (11). In these
studies, the eight heterozygous carriers of mutations in
pedigrees were described as clinically unaffected. This
result is somewhat surprising because heterozygosity for
other monogenic obesity genes, such as MC4R (45), POMC
(46), LEP (47), and LEPR (48) mutations, are usually as-
sociated with an increased body weight. Furthermore,
heterozygous N222D mice presented an obesity-intermediate
phenotype (14). In the current study, the observation of 21
heterozygous carriers of PCSK1 deleterious mutations and
their association with obesity suggest that partial PC1/3 de-
ficiency contributes to an energy imbalance in humans.

One limitation of this study is that a multicentric re-
cruitment of lean and obese European patients was per-
formed to achieve a large sample size. Case and control
subjects were recruited in different European countries
(Finland, France, Belgium, and Switzerland) and, there-
fore, introduced a potential cause of genetic heterogeneity.
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Because European populations can be classified into two
clusters, the northern (including Finnish, French, Belgian,
and Swiss) and the southern (including Greek, Italian,
Spanish, and Portuguese) (49), the populations included in
this study are part of the same northern European genetic
cluster and are less likely to display major genetic differ-
ences. This is reinforced by the fact that correcting for
geographical area did not affect the significance of the
association between the overall load of deleterious non-
synonymous mutations and obesity. However, we acknowl-
edge that geographic location is only a proxy for population
substructure, and correcting the data for geographical area
does not perfectly account for latent population stratifi-
cation. Another limitation of this study could be the in-
troduction of a bias concerning the risk ratios reported as
a result of the study design (50). Indeed, the recruitment of
study case subjects has been performed in clinical centers
based on obesity criteria, and obese individuals have not
been selected from a population-based study. However,
given the rarity of the deleterious mutants, population
cohorts are probably not sufficiently enriched in extreme
obesity cases to offer adequate statistical power for rare
variant analysis in candidate genes. Another limitation of
this study relates to the fact that other rare deleterious
mutations might be present in the 6,233 obese and 6,274
lean subjects that were not detected by genotyping the
seven loss-of-function mutations identified in our screen-
ing. The estimation of the prevalence of deleterious PCSK1
mutations in the obese (0.19%) and lean (0.03%) subjects is
therefore likely to underestimate the real prevalence in the
case-control study.

In conclusion, our results suggest that rare pathogenic
variants in genes involved in appetite regulation, such as
PCSK1, may contribute to obesity risk. The current and
previous studies (12,15) support that a continuous spec-
trum of genetic defects in PCSK1 (from the rare coding
mutations to the common polymorphisms) contributes to
the genetic architecture of obesity, as also observed at the
MC4R locus (51-53). Although modest at the population
level, mutations that may result in partial PCSK1 deficiency
should be considered as a serious risk factor for future,
extreme obesity at an individual level.
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