14 research outputs found

    Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation

    Get PDF
    Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance

    Investigation of Performance and Cavitation Treatment in a Kaplan Hydro Turbine

    Get PDF
    Cavitation is a phenomenon that occurs in various turbomachinery applications causing drawbacks on the. Some of these downsides are damaging the components of the system, generating noise and vibration, and loss of the turbine efficiency over time. Thus, it is imperative to address issue of cavitation to increase the life span of the equipment in addition to improve the system performance. This thesis introduces a method used to mitigate the cavitation phenomenon in a 3-inch Kaplan hydro turbine via injecting air at the leading edge of the rotor blades. The study is based on modeling the turbine using Computational Fluid Dynamics (CFD) software as well as carrying out experimental tests. The simulations were conducted at different air injection pressures over a spectrum of rotational speeds using Large Eddy Simulation (LES) for turbulence and volume of fluid for multiphase interactions: water, vapor water and air. The cavitation behavior was observed first without aeration, then followed by air injection simulations to investigate the effect of aeration. Each case was simulated for 12 cycles at rotational speeds of 1000, 2000, 3000, 4000, and 5000 rpm. The Vapor Volume Fraction (VVF) and the output mechanical power were monitored throughout the simulations. The data acquired from the simulations were compared to the experimental results for verifications. It was observed that the cavitation was mitigated in both the computer simulations and the experiment testing reaching up to 49.7% as an average reduction, while the output power was reduced by 6.6%

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1-/- and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a pro-inflammatory phenotype and the release of cytokines such as TNF-ɑ. Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice

    Inhibition of glutamine synthetase in monocytes from patients with acute-on-chronic liver failure resuscitates their antibacterial and inflammatory capacity

    Get PDF
    OBJECTIVE: Acute-on-chronic liver failure (ACLF) is associated with dysfunctional circulating monocytes whereby patients become highly susceptible to bacterial infections. Here, we identify the pathways underlying monocyte dysfunction in ACLF and we investigate whether metabolic rewiring reinstates their phagocytic and inflammatory capacity. // DESIGN: Following phenotypic characterisation, we performed RNA sequencing on CD14+CD16- monocytes from patients with ACLF and decompensated alcoholic cirrhosis. Additionally, an in vitro model mimicking ACLF patient-derived features was implemented to investigate the efficacy of metabolic regulators on monocyte function. // RESULTS: Monocytes from patients with ACLF featured elevated frequencies of interleukin (IL)-10-producing cells, reduced human leucocyte antigen DR isotype (HLA-DR) expression and impaired phagocytic and oxidative burst capacity. Transcriptional profiling of isolated CD14+CD16- monocytes in ACLF revealed upregulation of an array of immunosuppressive parameters and compromised antibacterial and antigen presentation machinery. In contrast, monocytes in decompensated cirrhosis showed intact capacity to respond to inflammatory triggers. Culturing healthy monocytes in ACLF plasma mimicked the immunosuppressive characteristics observed in patients, inducing a blunted phagocytic response and metabolic program associated with a tolerant state. Metabolic rewiring of the cells using a pharmacological inhibitor of glutamine synthetase, partially restored the phagocytic and inflammatory capacity of in vitro generated- as well as ACLF patient-derived monocytes. Highlighting its biological relevance, the glutamine synthetase/glutaminase ratio of ACLF patient-derived monocytes positively correlated with disease severity scores. // CONCLUSION: In ACLF, monocytes feature a distinct transcriptional profile, polarised towards an immunotolerant state and altered metabolism. We demonstrated that metabolic rewiring of ACLF monocytes partially revives their function, opening up new options for therapeutic targeting in these patients

    Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease

    Get PDF
    Background & Aims: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. Methods: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1(-/-) and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. Results: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a proinflammatory phenotype and the release of cytokines such as TNF-alpha Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. Conclusions: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver.Peer reviewe

    RNA-sequencing-based comparative analysis of human hepatic progenitor cells and their niche from alcoholic steatohepatitis livers

    Get PDF
    Hepatic progenitor cells (HPCs) are small cells with a relative large oval nucleus and a scanty cytoplasm situated in the canals of Hering that express markers of (immature) hepatocytes and cholangiocytes. HPCs are present in large numbers in alcoholic steatohepatitis (ASH), one of the leading causes of chronic liver disease. To date, the mechanisms responsible for proliferation and differentiation of human HPCs are still poorly understood and the role of HPCs in ASH development is unknown. In this study, we aimed to characterise human HPCs and their interactions with other cells through comparison, on both protein and RNA level, of HPC-enriched cell populations from adult human liver tissue using different isolation methods. Fresh human liver tissue was collected from ASH explant livers and HPC-enriched cell populations were obtained via four different isolation methods: side population (SP), epithelial cell adhesion molecule (EpCAM) and trophoblast antigen 2 (TROP-2) membrane marker isolation and laser capture microdissection. Gene expression profiles of fluorescent-activated cell-sorted HPCs, whole liver extracts and laser microdissected HPC niches were determined by RNA-sequencing. Immunohistochemical evaluation of the isolated populations indicated the enrichment of HPCs in the SP, EpCAM+ and TROP-2+ cell populations. Pathway analysis of the transcription profiles of human HPCs showed an enrichment and activation of known HPC pathways like Wnt/β-catenin, TWEAK and HGF. Integration of the HPC niche profile suggests autocrine signalling by HPCs (TNFα, PDGFB and VEGFA) as well as paracrine signalling from the surrounding niche cells including MIF and IGF-1. In addition, we identified IL-17 A signalling as a potentially novel pathway in HPC biology. In conclusion, we provide the first RNA-seq-based, comparative transcriptome analysis of isolated human HPCs from ASH patients and revealed active signalling between HPCs and their surrounding niche cells in ASH livers and suggest that HPCs can actively contribute to liver inflammation.status: publishe

    Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4⁺ CD25⁺ FoxP3⁺ regulatory T cells activation

    No full text
    RATIONALE: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. METHODS: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. RESULTS: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4⁺/CD25⁺/FoxP3⁺ T cells (Tregs). CONCLUSIONS: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance

    YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role

    No full text
    Primary liver cancer comprises a diverse group of liver tumors. The heterogeneity of these tumors is seen as one of the obstacles to finding an effective therapy. The Hippo pathway, with its downstream transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), has a decisive role in the carcinogenesis of primary liver cancer. Therefore, we examined the expression pattern of YAP and TAZ in 141 patients with hepatocellular carcinoma keratin 19 positive (HCC K19+), hepatocellular carcinoma keratin 19 negative (HCC K19−), combined hepatocellular–cholangiocarcinoma carcinoma (cHCC-CCA), or cholangiocarcinoma (CCA). All cHCC-CCA and CCA patients showed high expression levels for YAP and TAZ, while only some patients of the HCC group were positive. Notably, we found that a histoscore of both markers is useful in the challenging diagnosis of cHCC-CCA. In addition, positivity for YAP and TAZ was observed in the hepatocellular and cholangiocellular components of cHCC-CCA, which suggests a single cell origin in cHCC-CCA. Within the K19− HCC group, our results demonstrate that the expression of YAP is a statistically significant predictor of poor prognosis when observed in the cytoplasm. Nuclear expression of TAZ is an even more specific and independent predictor of poor disease-free survival and overall survival of K19− HCC patients. Our results thus identify different levels of YAP/TAZ expression in various liver cancers that can be used for diagnostics

    YAP and TAZ Heterogeneity in Primary Liver Cancer: An Analysis of Its Prognostic and Diagnostic Role

    Get PDF
    Primary liver cancer comprises a diverse group of liver tumors. The heterogeneity of these tumors is seen as one of the obstacles to finding an effective therapy. The Hippo pathway, with its downstream transcriptional co-activator Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), has a decisive role in the carcinogenesis of primary liver cancer. Therefore, we examined the expression pattern of YAP and TAZ in 141 patients with hepatocellular carcinoma keratin 19 positive (HCC K19⁺), hepatocellular carcinoma keratin 19 negative (HCC K19-), combined hepatocellular⁻cholangiocarcinoma carcinoma (cHCC-CCA), or cholangiocarcinoma (CCA). All cHCC-CCA and CCA patients showed high expression levels for YAP and TAZ, while only some patients of the HCC group were positive. Notably, we found that a histoscore of both markers is useful in the challenging diagnosis of cHCC-CCA. In addition, positivity for YAP and TAZ was observed in the hepatocellular and cholangiocellular components of cHCC-CCA, which suggests a single cell origin in cHCC-CCA. Within the K19- HCC group, our results demonstrate that the expression of YAP is a statistically significant predictor of poor prognosis when observed in the cytoplasm. Nuclear expression of TAZ is an even more specific and independent predictor of poor disease-free survival and overall survival of K19- HCC patients. Our results thus identify different levels of YAP/TAZ expression in various liver cancers that can be used for diagnostics.status: publishe

    Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice

    No full text
    The Hippo signaling pathway and its two downstream effectors, the YAP and TAZ transcriptional coactivators, are drivers of tumor growth in experimental models. Studying mouse models, we show that YAP and TAZ can also exert a tumor-suppressive function. We found that normal hepatocytes surrounding liver tumors displayed activation of YAP and TAZ and that deletion of Yap and Taz in these peritumoral hepatocytes accelerated tumor growth. Conversely, experimental hyperactivation of YAP in peritumoral hepatocytes triggered regression of primary liver tumors and melanoma-derived liver metastases. Furthermore, whereas tumor cells growing in wild-type livers required YAP and TAZ for their survival, those surrounded by Yap- and Taz-deficient hepatocytes were not dependent on YAP and TAZ. Tumor cell survival thus depends on the relative activity of YAP and TAZ in tumor cells and their surrounding tissue, suggesting that YAP and TAZ act through a mechanism of cell competition to eliminate tumor cells.status: publishe
    corecore