56 research outputs found

    The funhouse mirror: the I in personalised healthcare

    Get PDF
    Precision Medicine is driven by the idea that the rapidly increasing range of relatively cheap and efficient self-tracking devices make it feasible to collect multiple kinds of phenotypic data. Advocates of N = 1 research emphasize the countless opportunities personal data provide for optimizing individual health. At the same time, using biomarker data for lifestyle interventions has shown to entail complex challenges. In this paper, we argue that researchers in the field of precision medicine need to address the performative dimension of collecting data. We propose the fun-house mirror as a metaphor for the use of personal health data; each health data source yields a particular type of image that can be regarded as a ‘data mirror’ that is by definition specific and skewed. This requires competence on the part of individuals to adequately interpret the images thus provided

    Escherichia coli RuvBL268S: A mutant RuvB protein that exhibits wild-type activities in vitro but confers a UV-sensitive ruv phenotype in vivo

    Get PDF
    The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiatio

    An integrated framework of personalized medicine: from individual genomes to participatory health care

    Get PDF
    Abstract Promising research developments in both basic and applied sciences, such as genomics and participatory health care approaches, have generated widespread interest in personalized medicine among almost all scientific areas and clinicians. The term personalized medicine is, however, frequently used without defining a clear theoretical and methodological background. In addition, to date most personalized medicine approaches still lack convincing empirical evidence regarding their contribution and advantages in comparison to traditional models. Here, we propose that personalized medicine can only fulfill the promise of optimizing our health care system by an interdisciplinary and translational view that extends beyond traditional diagnostic and classification systems

    The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex

    Get PDF
    Transcription-coupled repair (TCR), a subpathway of nucleotide excision repair (NER) defective in Cockayne syndrome A and B (CSA and CSB), is responsible for the preferential removal of DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. Here we demonstrate by microinjection of antibodies against CSB and CSA gene products into living primary fibroblasts, that both proteins are required for TCR and for recovery of RNA synthesis after UV damage in vivo but not for basal transcription itself. Furthermore, immunodepletion showed that CSB is not required for in vitro NER or transcription. Its central role in TCR suggests that CSB interacts with other repair and transcription proteins. Gel filtration of repair- and transcription-competent whole cell extracts provided evidence that CSB and CSA are part of large complexes of different sizes. Unexpectedly, there was no detectable association of CSB with several candidate NER and transcription proteins. However, a minor but significant portion (10-15%) of RNA polymerase II was found to be tightly associated with CSB. We conclude that within cell-free extracts, CSB is not stably associated with the majority of core NER or transcription components, but is part of a distinct complex involving RNA polymerase II. These findings suggest that CSB is implicated in, but not essential for, transcription, and support the idea that Cockayne syndrome is due to a combined repair and transcription deficiency

    An integrated framework of personalized medicine: from individual genomes to participatory health care

    Get PDF
    Abstract Promising research developments in both basic and applied sciences, such as genomics and participatory health care approaches, have generated widespread interest in personalized medicine among almost all scientific areas and clinicians. The term personalized medicine is, however, frequently used without defining a clear theoretical and methodological background. In addition, to date most personalized medicine approaches still lack convincing empirical evidence regarding their contribution and advantages in comparison to traditional models. Here, we propose that personalized medicine can only fulfill the promise of optimizing our health care system by an interdisciplinary and translational view that extends beyond traditional diagnostic and classification systems

    Fasting Proinsulin Independently Predicts Incident Type 2 Diabetes in the General Population

    Get PDF
    Fasting proinsulin levels may serve as a marker of beta-cell dysfunction and predict type 2 diabetes (T2D) development. Kidneys have been found to be a major site for the degradation of proinsulin. We aimed to evaluate the predictive value of proinsulin for the risk of incident T2D added to a base model of clinical predictors and examined potential effect modification by variables related to kidney function. Proinsulin was measured in plasma with U-PLEX platform using ELISA immunoassay. We included 5001 participants without T2D at baseline and during a median follow up of 7.2 years; 271 participants developed T2D. Higher levels of proinsulin were associated with increased risk of T2D independent of glucose, insulin, C-peptide, and other clinical factors (hazard ratio (HR): 1.28; per 1 SD increase 95% confidence interval (CI): 1.08-1.52). Harrell's C-index for the Framingham offspring risk score was improved with the addition of proinsulin (p = 0.019). Furthermore, we found effect modification by hypertension (p = 0.019), eGFR (p = 0.020) and urinary albumin excretion (p = 0.034), consistent with an association only present in participants with hypertension or kidney dysfunction. Higher fasting proinsulin level is an independent predictor of incident T2D in the general population, particularly in participants with hypertension or kidney dysfunction

    Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens

    Get PDF
    Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection

    Tackling the translational challenges of multi-omics research in the realm of European personalised medicine : A workshop report

    Get PDF
    Personalised medicine (PM) presents a great opportunity to improve the future of individualised healthcare. Recent advances in -omics technologies have led to unprecedented efforts characterising the biology and molecular mechanisms that underlie the development and progression of a wide array of complex human diseases, supporting further development of PM. This article reflects the outcome of the 2021 EATRIS-Plus Multi-omics Stakeholder Group workshop organised to 1) outline a global overview of common promises and challenges that key European stakeholders are facing in the field of multi-omics research, 2) assess the potential of new technologies, such as artificial intelligence (AI), and 3) establish an initial dialogue between key initiatives in this space. Our focus is on the alignment of agendas of European initiatives in multi-omics research and the centrality of patients in designing solutions that have the potential to advance PM in long-term healthcare strategies.Peer reviewe
    corecore