12,790 research outputs found

    Limitations of Absolute Current Densities Derived from the Semel & Skumanich Method

    Full text link
    Semel and Skumanich proposed a method to obtain the absolute electric current density, |Jz|, without disambiguation of 180 degree in the transverse field directions. The advantage of the method is that the uncertainty in the determination of the ambiguity in the magnetic azimuth is removed. Here, we investigate the limits of the calculation when applied to a numerical MHD model. We found that the combination of changes in the magnetic azimuth with vanishing horizontal field component leads to errors, where electric current densities are often strong. Where errors occur, the calculation gives |Jz| too small by factors typically 1.2 ~ 2.0.Comment: 10 pages, 4 figures. To appear on Science in China Series G: Physics, Mechanics & Astronomy, October 200

    Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media

    Get PDF
    We discuss a pseudo-parabolic equation modelling two-phase flow in porous media, which includes a dynamic capillary pressure term. We extend results obtained previously for linear higher order terms and investigate the existence of travelling wave solutions in the non-linear and degenerate case. These cases may lead to non-smooth travelling waves, as well as to a discontinuous capillary pressure

    Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous media

    Get PDF
    We discuss a pseudo-parabolic equation modelling two-phase flow in porous media, which includes a dynamic capillary pressure term. We extend results obtained previously for linear higher order terms and investigate the existence of travelling wave solutions in the non-linear and degenerate case. These cases may lead to non-smooth travelling waves, as well as to a discontinuous capillary pressure

    Thermal signatures of tether-cutting reconnections in pre-eruption coronal flux ropes: hot central voids in coronal cavities

    Full text link
    Using a 3D MHD simulation, we model the quasi-static evolution and the onset of eruption of a coronal flux rope. The simulation begins with a twisted flux rope emerging at the lower boundary and pushing into a pre-existing coronal potential arcade field. At a chosen time the emergence is stopped with the lower boundary taken to be rigid. Then the coronal flux rope settles into a quasi-static rise phase during which an underlying, central sigmoid-shaped current layer forms along the so called hyperbolic flux tube (HFT), a generalization of the X-line configuration. Reconnections in the dissipating current layer effectively add twisted flux to the flux rope and thus allow it to rise quasi-statically, even though the magnetic energy is decreasing as the system relaxes. We examine the thermal features produced by the current layer formation and the associated "tether-cutting" reconnections as a result of heating and field aligned thermal conduction. It is found that a central hot, low-density channel containing reconnected, twisted flux threading under the flux rope axis forms on top of the central current layer. When viewed in the line of sight roughly aligned with the hot channel (which is roughly along the neutral line), the central current layer appears as a high-density vertical column with upward extensions as a "U" shaped dense shell enclosing a central hot, low-density void. Such thermal features have been observed within coronal prominence cavities. Our MHD simulation suggests that they are the signatures of the development of the HFT topology and the associated tether-cutting reconnections, and that the central void grows and rises with the reconnections, until the flux rope reaches the critical height for the onset of the torus instability and dynamic eruption ensues.Comment: 30 pages, 12 figures, accepted for publication in Ap

    Nonsaturating magnetoresistance and nontrivial band topology of type-II Weyl semimetal NbIrTe4

    Full text link
    Weyl semimetals, characterized by nodal points in the bulk and Fermi arc states on the surface, have recently attracted extensive attention due to the potential application on low energy consumption electronic materials. In this report, the thermodynamic and transport properties of a theoretically predicted Weyl semimetal NbIrTe4 is measured in high magnetic fields up to 35 T and low temperatures down to 0.4 K. Remarkably, NbIrTe4 exhibits a nonsaturating transverse magnetoresistance which follows a power-law dependence in B. Low-field Hall measurements reveal that hole-like carriers dominate the transport for T >> 80 K, while the significant enhancement of electron mobilities with lowering T results in a non-negligible contribution from electron-like carriers which is responsible for the observed non-linear Hall resistivity at low T. The Shubnikov-de Haas oscillations of the Hall resistivity under high B give the light effective masses of charge carriers and the nontrivial Berry phase associated with Weyl fermions. Further first-principles calculations confirm the existence of 16 Weyl points located at kz = 0, ±\pm0.02 and ±\pm0.2 planes in the Brillouin zone.Comment: 5 figures, 1 tabl

    On Signatures of Twisted Magnetic Flux Tube Emergence

    Full text link
    Recent studies of NOAA active region 10953, by Okamoto {\it et al.} ({\it Astrophys. J. Lett.} {\bf 673}, 215, 2008; {\it Astrophys. J.} {\bf 697}, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood ({\it Astrophys. J. Lett.} {\bf 716}, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto {\it et al.} (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.Comment: 14 pages, 8 figures, accepted for publication in Solar Physic

    Deep Gradient Learning for Efficient Camouflaged Object Detection

    Get PDF
    This paper introduces DGNet, a novel deep framework that exploits objectgradient supervision for camouflaged object detection (COD). It decouples thetask into two connected branches, i.e., a context and a texture encoder. Theessential connection is the gradient-induced transition, representing a softgrouping between context and texture features. Benefiting from the simple butefficient framework, DGNet outperforms existing state-of-the-art COD models bya large margin. Notably, our efficient version, DGNet-S, runs in real-time (80fps) and achieves comparable results to the cutting-edge modelJCSOD-CVPR21_{21} with only 6.82% parameters. Application results also showthat the proposed DGNet performs well in polyp segmentation, defect detection,and transparent object segmentation tasks. Codes will be made available athttps://github.com/GewelsJI/DGNet.<br

    The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone

    Get PDF
    We present three-dimensional numerical simulations of the rise and fragmentation of twisted, initially horizontal magnetic flux tubes which evolve into emerging Omega-loops. The flux tubes rise buoyantly through an adiabatically stratified plasma that represents the solar convection zone. The MHD equations are solved in the anelastic approximation, and the results are compared with studies of flux tube fragmentation in two dimensions. We find that if the initial amount of field line twist is below a critical value, the degree of fragmentation at the apex of a rising Omega-loop depends on its three-dimensional geometry: the greater the apex curvature of a given Omega-loop, the lesser the degree of fragmentation of the loop as it approaches the photosphere. Thus, the amount of initial twist necessary for the loop to retain its cohesion can be reduced substantially from the two-dimensional limit. The simulations also suggest that as a fragmented flux tube emerges through a relatively quiet portion of the solar disk, extended crescent-shaped magnetic features of opposite polarity should form and steadily recede from one another. These features eventually coalesce after the fragmented portion of the Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres
    • …
    corecore