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Travelling wave solutions for degenerate pseudo-parabolic

equation modelling two-phase flow in porous media

C.J.van Duijn, Y.Fan, L.A.Peletier, I.S.Pop

January 5, 2010

Abstract

We discuss a pseudo-parabolic equation modelling two-phase flow in porous media,
which includes a dynamic capillary pressure term. We extend results obtained pre-
viously for linear higher order terms and investigate the existence of travelling wave
solutions in the non-linear and degenerate case. These cases may lead to non-smooth
travelling waves, as well as to a discontinuous capillary pressure.

Keywords: Dynamic capillary pressure, non-linear, degenerate, pseudo-parabolic equa-
tions, sharp travelling waves.

1 Introduction

In this paper we discuss non-classical solutions of the Buckley-Leverett (BL) equation, from
the perspective of a regularization derived from two-phase flow through porous media. The
corresponding fundamental equation is:

(1.1)
∂u

∂t
+

∂f(u)
∂x

= ε
∂

∂x

(
H(u)

∂pc

∂x

)
.

Equation (1.1) is written in dimensionless form, and arises in two-phase flow in porous
media as a model of oil recovery by water-drive in a one-dimensional horizontal flow. Here
u stands for water saturation, and is expected to take values in [0,1].

Equation (1.1) results by coupling the mass conservation equations and Darcy laws for
the water and the oil phases. Furthermore, pc stands for the capillary pressure expressing
the difference of phase pressures:

(1.2) pc = po − pw,

where pw and po are the water pressure and the oil pressure respectively. Typically, pc

is determined experimentally as a function of u. However, in this paper we consider
the dynamic extension suggested by Hassanizadeh and Gray in [14], where the capillary
pressure has a relaxation term:

(1.3) pc = pstatic
c + pdynamic

c = pstatic
c + ετL(u)ut,
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where pstatic
c and pdynamic

c are the static and dynamic capillary pressures.
Furthermore, f and H are the water fractional flow function and the capillary induced

diffusion function, which are given by

(1.4) f(u) =
λw(u)

λw(u) + Mλo(u)
, and H(u) =

λw(u)λo(u)
λw(u) + Mλo(u)

,

where M is the water/oil viscosity ratio, while λw and λo are the normalized relative
permeabilities. Commonly accepted in the engineering literature is the Brooks-Corey
model:

(1.5) λw(u) = up+1, and λo(u) = (1− u)q+1, p > 0, q > 0,

leading to a function H that vanishes at u = 0 and u = 1. This degeneracy is an important
feature of the model considered here. In this paper, we restrict to the specific functions in
(1.5) to avoid non-essential technical difficulties. For simplicity we further take pstatic

c = u
and L(u) = 1. Thus (1.1) becomes

(1.6)
∂u

∂t
+

∂f(u)
∂x

= ε
∂

∂x

{
H(u)(

∂u

∂x
+ ετ

∂2u

∂x∂t
)
}

,

where τ is a positive constant, while the functions H and f are given by

(1.7) H(u) =
up+1(1− u)q+1

up+1 + M(1− u)q+1
, and f(u) =

up+1

up+1 + M(1− u)q+1
.

Their graphs are shown in Figure 1. Notice that

H(u) > 0, and f(u) > 0, for 0 < u < 1.

Remark 1.1 The definitions in (1.5) and (1.7) make sense only in the physically relevant
regimes for 0 ≤ u ≤ 1. For mathematical completeness we extend λw and λo by continuity
with constant values 0 or 1 whenever u is outside [0, 1]. The functions f and H are
extended accordingly.

For ε = 0, (1.1) becomes the non-viscous BL equation

(1.8)
∂u

∂t
+

∂f(u)
∂x

= 0,

a hyperbolic conservation law that can be seen as the limit (ε → 0) of a family of extended
equations of the form

(1.9)
∂u

∂t
+

∂f(u)
∂x

= Aε(u), ε > 0.

In the above, Aε(u) is a regularization term involving higher order derivatives. Classical
entropy solutions to the BL equation are constructed as limits of travelling wave (TW )
solutions to (1.9), with Aε(u) defined as

Aε(u) = ε
∂2u

∂x2
.
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Figure 1: The functions H (left) and f (right) for p = 0.5, q = 0.5 and M = 2.5

A non-classical regularization is given in (1.6), which is motivated by dynamic capillarity
effects, as mentioned in (1.3). For the case H = 1, we have the following linear pseudo-
parabolic regularization of the BL equation

∂u

∂t
+

∂f(u)
∂x

= ε
∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
,

for which the existence of TW solution has been studied in [10]. In the limit ε → 0, these
TW solutions become shocks, which are weak solutions to the non-viscous BL equation.
These shocks violate the Oleinik entropy conditions, and therefore are called non-classical.
TW solutions to (1.9) and the relation with non-standard shock solutions to (1.8) are
analyzed in [20], see also [2], [3], [15], [17]. The regularization there involves higher order
spatial derivatives, but no mixed terms. Furthermore, non-local regularization operators
and their effect on shocks solutions to hyperbolic conservation laws are studied in [19],
[31]. The TW approach for degenerate pseudo-parabolic problems modelling one phase
flow in porous media is considered in [4], [5], [12], [26]. In a similar context, a fourth order
regularization is studied in [8] .

The present paper deals with (1.6), which is a non-linear and degenerate regularization
of (1.8). In the spirit of [10], we seek TW solutions connecting a left state u` to a right
state ur. Here we only consider the case ul > ur, but in the degenerate context. As will
be seen below, the degeneracy can lead to the so-called ”sharp TW solutions”, which are
non-smooth, see [1], [21], [22], [32]. The case ul < ur in the degenerate context is left for a
future investigation. For linear regularization, this has been thoroughly analyzed in [10].

Qualitative properties of solutions to pseudo-parabolic problems are discussed in [18],
where the small and waiting-time behavior of solutions to a Darcy type model involving a
dynamic pressure saturation is analyzed. Short time existence is obtained in [11], whereas
global existence results can be found in [24] and [25]. In particular, the model analyzed
in [24] is very close to the present one. Besides, there it is shown that the solution
is bounded essentially by the degeneracy values. A non-linear model involving memory
terms is investigated in [30]. The present paper is also motivated by the experimental
results in [9]. We further refer to [13] for a review of experimental work on dynamic
effects in the pressure-saturation relationship, and to [23] for a dimensional analysis of
such models.
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This paper is organized in the following way: In Section 2 we investigate the non-
linear, non-degenerate case where ur > 0 and u` < 1. Then the results are similar to
the ones for a linear regularization (see [10]). In particular, a monotone and continuous
dependence of τ on u` is shown. Section 3 includes degenerate cases, but is devoted to
smooth TW , defined in the classical sense. The focus lies on the case ur = 0. Depending
on the parameters, two situations are encountered. These are described in terms of two
constants α ∈ (ur, 1) and β ∈ (α, 1] that will be defined below. In the first situation, β < 1
and for any u` ∈ (α, β), there exists a τ > 0 s.t. TW solutions connecting ul to ur are
possible. Whenever β = 1, smooth TW solutions are only possible if τ < τ∗. In the limit
case τ ↗ τ∗, the corresponding ul approaches 1. Section 4 continues the investigations in
Section 3 by considering the case τ > τ∗, when smooth TW solutions are not possible.
Then we consider the notion of TW in a larger sense, allowing for discontinuities in the
derivatives and connecting u` = 1 to ur > 0. In the spirit of [1], [21], [22], [32], such
solutions are called ”sharp front solutions”. These fronts are encountered due to the
degeneracy at u = 1 and appear at the transition from regions where u = 1 to values of u
below 1. At the end of Section 4 we also consider two degenerate points. Specifically, we
take u` = 1 and ur = 0. Then we give a selection criterion leading to sharp TW that are
continuously differentiable whenever u < 1. In particular, the transition u > 0 to u = 0
is smooth and encountered at some finite coordinate. Finally, Section 5 presents some
numerical examples to illustrate the theoretical results.

2 Travelling waves: non-linear, non-degenerate case

Entropy shock solutions to BL equation are based on TW solutions to (1.8) and their
limits as ε → 0. A TW solution has the form

(2.1) u(x, t) = u(η), where η =
x− st

ε
.

Notice that the TW solution is still denoted by u to avoid unnecessary notations. Applying
this into (1.6) we obtain

(2.2) −su′ + (f(u))′ = {H(u)(u′ − τsu′′)}′.

With given 0 ≤ ur < u` ≤ 1, these waves are connecting the left state u` to the right state
ur,

(2.3) u(−∞) = u`, and u(+∞) = ur.

Remark 2.1 Values outside [0, 1] are physically unrealistic. From the mathematical point
of view, if one of the states is outside [0, 1], the problem degenerates and the solution
remains constant, so no connection with different states is possible. This is why we only
consider the case 0 ≤ u ≤ 1.

Integrating (2.2) over R and assuming u′(η) → 0 as η → ±∞ yields

−s(ur − u`) + {f(ur)− f(u`)} = 0.

4



This leads to the Rankine-Hugoniot (RH) condition:

(2.4) s = s(ur, u`) =
f(ur)− f(u`)

ur − u`
.

Furthermore, integrating (2.2) over (η, +∞) and using the condition at η = +∞, we obtain

(2.5) s(u− ur)− {f(u)− f(ur)} = −H(u)(u′ − τsu′′),

or

(2.6) sτu′′ − u′ − g(u; ur, u`) = 0,

where

(2.7) g(u; ur, u`) =
1

H(u)
{s(ur, u`)(u− ur)− [f(u)− f(ur)]} .

With s defined in (2.4), we seek a solution u of the problem

(2.8) (TW1)

{
sτu′′ − u′ − g(u; ur, u`) = 0, η ∈ R,

u(−∞) = u`, u(+∞) = ur.

With

(2.9) ξ = − 1√
sτ

η, u(η) = u(ξ) and c =
1√
sτ

,

Problem (TW1) becomes:

(2.10) (TW2)

{
u′′ + cu′ − g(u; ur, u`) = 0, ξ ∈ R,

u(−∞) = ur, u(+∞) = u`.

We have the following:

Lemma 2.1 A necessary condition for the existence of a travelling wave solution of Prob-
lem (TW1,2) is

(2.11)
∫ u`

ur

g(u; ur, u`) du > 0.

Proof Multiplying the differential equation in (2.10) by u′ and integrating over R yields

c

∫

R
(u′)2dξ −

∫ u`

ur

g(u; ur, u`) du = 0.

Since c = 1/
√

sτ > 0, the assertion follows. ¤
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In the standard case, when τ = 0, an elementary analysis shows that Problem (TW1) has
a solution if and only if f and two states u` and ur satisfy (i) the RH condition (2.4), and
(ii) the Oleinik entropy condition:

(E)
f(u`)− f(u)

u` − u
≥ f(u`)− f(ur)

u` − ur
for u between u` and ur.

So it is natural to define α(ur) > ur as the unique value of u such that

(2.12) f ′(α) =
f(α)− f(ur)

α− ur
.

To investigate the non-standard case τ > 0, we start by introducing

(2.13) β(ur) = sup
{

α < u < 1 :
∫ u

ur

g(t; ur, u) dt > 0
}

.

Remark 2.2 Recalling Lemma 2.1, solutions are possible only for left states u` for which
∫ u`

ur

g(u; ur, u`) du > 0.

These left states are bounded from above by β(ur).

In view of (1.7), the regularization terms are vanishing whenever u = 0 or u = 1,
where the equation becomes degenerate. We start by discussing the non-degenerate case.
Specifically, in the remaining of this section we consider:

0 < ur < u` < 1.

For ur > 0, α < u` < β and s = s(ur, u`), the function g(u; ur, u`) (as shown in Figure 2)
has three positive zeros:

u = ur, u = um and u = u`,

where
g′(ur;ur, u`) > 0, g′(um; ur, u`) < 0, and g′(u`; ur, u`) > 0.

Here primes denote differentiation with respect to u. We have the following:

Lemma 2.2 Let λw(u) and λo(u) be given in (1.5) and ur > 0. If q ≥ 1, then β < 1.

Proof Suppose that β = 1, then

(2.14)
∫ 1

ur

g(t; ur, 1) dt ≥ 0.

However, as t → 1, g behaves asymptotically as −(1 − t)−q. Therefore we can find two
constants C1 > C2 > 0 and a t0 < 1 such that

−C1(1− t)−q ≤ g(t; ur, 1) ≤ −C2(1− t)−q for all t ∈ [t0, 1),

6
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Figure 2: The function g for p = q = 0.5, M = 2.5, s = 1.125, ur = 0.1 and u` = 0.95

Since q ≥ 1, ∫ 1

t0

−(1− t)−qdt = −∞.

Here and below the equalities should be understood in the sense that

lim
µ→0

∫ 1−µ

t0

−(1− t)−q = −∞.

Therefore
∫ 1

ur

g(t;ur, 1)dt =
∫ t0

ur

g(t; ur, 1)dt +
∫ 1

t0

g(t;ur, 1)dt = C −∞ = −∞,

contradicting (2.14). This means that β < 1. ¤

Remark 2.3 The same result holds in a degenerate context. Specifically, if ur = 0 and
q ≥ 1, then β < 1. This means that the left state u` can not be 1, so degeneracy may only
occur at u = 0.

Whenever β < 1, the following existence result can be obtained. Its proof goes along the
lines of Lemma 4.1 in [10]. We omit the details here.

Theorem 2.1 Given ur > 0, p, q > 0 and with α, β introduced in (2.12) and (2.13), for
every u` ∈ (α, β) there exists a unique value of τ > 0 such that Problem (TW1) admits
a solution. This solution is unique, decreasing and travels with speed s(u`, ur) given in
(2.4).

Remark 2.4 For fixed ur > 0, p, q > 0, given u` ∈ (α, β), Theorem 2.1 provides a unique
τ = τ(ul). In this way, we define the function

τ : (α, β) → R+.

7



Lemma 2.3 The function τ is continuous and strictly increasing on (α, β).

Proof We follow the proof of Lemma 4.2 in [10] and show first the monotonicity of τ .
Taking two left states α < u`,1 < u`,2 < β, define

si =
f(u`,i)− f(ur)

u`,i − ur
, and gi(u) =

1
H(u)

{si(u− ur)− [f(u)− f(ur)]}, i = 1, 2.

Observe that
d

du

(
f(u)− f(ur)

u− ur

)
< 0 for α < u < β,

therefore

s1 > s2 and g1(u) > g2(u) for all u ∈ (ur, u`,1).

Rewriting Problem (TW2) as the first order system

(2.15)

{
u′ = w,

w′ = −ciw + gi(u),

we denote by Γi (i = 1, 2) the orbits emerging from the saddle (ur, 0). They do so under
an angle θi given by

θi =
1
2

(√
c2
i + 4g′i(ur)− ci

)
.

Plainly,

g′i(ur) =
1

H(ur)
{si − f ′(ur)}.

Define the function
θ(c, s) def=

1
2

(√
c2 + 4g′(ur)− c

)
.

Then
∂θ

∂c
< 0, and

∂θ

∂s
> 0.

and we conclude that c1 > c2 as in [10]. This gives

τ2s2 > τ1s1, therefore τ2 >
s1

s2
τ1 > τ1,

as asserted. For the continuity of τ , one can follow the ideas in Lemma 4.3 in [10]. ¤

3 Smooth travelling waves for degenerate case

In this section, we seek standard, smooth TW solutions for the degenerate case ur = 0,
where H vanishes, whereas g becomes unbounded. We start with a non-existence result.

Theorem 3.1 If p ≥ 1 and ur = 0, then no TW solutions are possible.

8



Proof As in Lemma 2.2, if p ≥ 1 we have
∫ u`

0
g(t; 0, u`)dt = −∞, for u` > 0.

According to Lemma 2.1, no TW solutions exist. ¤

Remark 3.1 In a similar fashion, no TW solutions exist for u` = 1 whenever q ≥ 1.

In view of the above, no TW solutions exist for p ≥ 1 and ur = 0, or q ≥ 1 and u` = 1.
Therefore in this section we restrict to the cases 0 < p < 1 and 0 < q < 1.

Since ul > ur is assumed, we seek monotone decreasing TW solutions of Problem
(TW1). If such solutions exist, a bijection η → u, where η ∈ R and u ∈ (ur, u`), can
be defined. Therefore the functions η : (ur, u`) → R, as well as w : (ur, u`) −→ R,
w(u) = −u′(η(u)) can be defined. Further, since u is decreasing, we have w > 0 on
(ur, u`). Nevertheless, w(ur) and w(u`) still have to fixed. To do so we recall that the waves
sought in this section are smooth, monotone, and approaching u` and ur asymptotically.
Therefore we have lim

η→±∞u′(η) = 0 yielding w(ur) = w(ul) = 0. In terms of w, Problem

(TW1) introduced in (2.8) becomes

(3.1)

{
τsww′ + w = g(u), for u ∈ (ur, u`),
w(ur) = 0, w(u`) = 0.

Notice that this first order problem has two boundary conditions, which will be fixed by
the parameter τ . When seeking monotone TW solutions to Problem (TW1) we in fact
seek a pair (w, τ) ∈ C1(ur, u`)× (0,∞) for which (3.1) holds. Once w is known, u can be
obtained by integration in η:

(3.2) η(u) =
∫ u`+ur

2

u

dz

w(z)
,

defining a TW satisfying u(0) = u`+ur

2 . This choice of u(0) is a possible normalization of
the TW , any value in (ur, u`) is possible.

3.1 Existence results

Theorem 3.2 Let 0 < p < 1, ur = 0 and α < u` < β. Then there exists a unique τ for
which Problem (TW1) admits a solution.

Proof . The proof is divided into two steps:
Step 1: Existence. We prove that there exists a unique pair (τ, w) such that (3.1) is
satisfied. By (3.2), this also provides a solution to Problem (TW1).

First observe that, since ur = 0 and u` < 1, we have g(u) → +∞ as u → 0 and
g(um) = g(u`) = 0 for some um ∈ (0, u`). Clearly, for any w̃ > 0, there exists a unique
ũ ∈ (0, um) such that g(ũ) = w̃. For proving the theorem, we consider two cases u > ũ,
and u < ũ.

9



Consider the initial value problem

(3.3)

{
τsww′ + w = g(u), for u > ũ,

w(ũ) = w̃.

Notice that (3.3) is defined only for non-negative values of w. Furthermore, we are inter-
ested in values of w for u ≤ u`, and in particular in w(u`).

We start by proving that for any w̃, there exists a τ = τ(ũ) such that the solution of
(3.3) also satisfies w(u`) = 0. To this end, define ν(τ) = sup{u ≤ u` | w(u) > 0} and
notice that τ → ∞ implies w′ = 0 uniformly on (ũ, ν). Therefore if τ is large enough we
have w(u`) > 0 and ν(τ) = u`. On the other hand, τ → 0 gives w → g, thus ν(τ) < u` for
τ small enough. Due to continuous dependence on the data, there exists a τ = τ(ũ) such
that w(u`) = 0.

Further, taking C =
∫ u`

um
g(u)du, from (3.3) we have

C <

∫ u`

ũ
g(u)du = −sτ(ũ)

2
w̃2 +

∫ u`

ũ
w(u)du < −sτ(ũ)

2
w̃2 + (u` − ũ)w̃,

since w is decreasing if u > ũ. As ũ → 0 implies w̃ → +∞, we also conclude that τ(ũ) → 0.
Next, from (3.3) we obtain w′ = g(u)−w

sτ(ũ)w and therefore

w′′ =
g′w − gw′

sτ(ũ)w2
.

Clearly, g is negative and has a minimum on (um, u`). Let ue be the minimum point
attained. On (um, ue) we have g′ < 0, w > 0 and w′ < 0, giving w′′ < 0. At u = um,
by (3.3) we have w′(um) = − 1

sτ(ũ) . Since w′′ ≤ 0 on (um, ue), we have 0 < w(ue) <

w(um)− 1
sτ(ũ)(ue − um) giving

(3.4) w(um) >
1

sτ(ũ)
(ue − um).

As seen before, τ(ũ) → 0 as ũ → 0 showing that w(um) → +∞ in this case.
Once these are known, we seek for ũ ∈ (0, um) s.t. w solving (3.3) for τ = τ(ũ)

obtained above and for u < ũ also satisfies w(0) = 0. We do this by employing similar
ideas, namely by showing that w > 0 everywhere on (0, ũ) for ũ small enough, and that
w(u) = 0 for some u > 0 for larger values of ũ.

Consider (3.3) for τ = τ(ũ), but with u < ũ and define µ(ũ) = inf{0 < u ≤ ũ | w(u) >
0}. Below we prove that µ(ũ) = 0 and w(0) = 0 for some ũ ∈ (0, um), yielding a τ = τ(ũ)
and a w solving (3.1). To this end we integrate (3.3) from µ(ũ) to u` and obtain

τ(ũ)s
2

(w2(u`)− w2(µ(ũ))) +
∫ u`

µ(ũ)
w(u)du =

∫ u`

µ(ũ)
g(u)du.

If µ(ũ) > 0, then w(µ(ũ)) = 0, leading to
∫ u`

µ(ũ)
g(u)du =

∫ u`

µ(ũ)
w(u)du >

∫ um

ũ
w(u)du > (um − ũ)w(um).

10



As ũ → 0, w(um) → +∞ and the term on the right side in the above becomes unbounded.
However,

∫ u`

µ(ũ) g(u)du is bounded, showing that µ(ũ) = 0 whenever ũ is small enough.
It remains to rule out the possibility of having µ(ũ) = 0 and w(0) > 0 for all ũ ∈ (0, um).

Then a ũ exists s.t. µ(ũ) = 0 and w(0) = 0. To prove this assertion above, we assume
that for all pairs (ũ, τ(ũ)), the corresponding w satisfies w(0) > 0. Integrating (3.3) from
0 to u` gives

−1
2
sτ(ũ)w2(0) +

∫ u`

0
w(u)du =

∫ u`

0
g(u)du =: B > 0.

Notice that w ≤ w̃ for all u ∈ (0, u`), therefore

0 < B ≤ −1
2
sτ(ũ)w2(0) + u`w̃ < −1

2
sτ(ũ)w2(0) + w̃.

Choosing ũ s.t. w̃ < B we have 0 < B− w̃ < −1
2sτ(ũ)w2(0) < 0, which is a contradiction.

Step 2: Uniqueness. We assume the existence of (τ1, w1) and (τ2, w2) satisfying (3.1),
where τ1 > τ2 > 0. Integrating (3.1) over (0, u) yields

(3.5)
sτ1

2
w1(u)2 +

∫ u

0
w1(t)dt =

∫ u

0
g(t)dt =

sτ2

2
w2(u)2 +

∫ u

0
w2(t)dt.

Since τ1 > τ2, this gives w1 < w2 for u small enough (see the left picture of Figure 3).
If w1 and w2 do not intersect inside (0, u`), then w1 > w2 everywhere. Taking u = u` in
(3.5) gives ∫ u`

0
w1(u)du =

∫ u`

0
g(u)du =

∫ u`

0
w2(u)du

which contradicts the ordering in the w′s.
Thus w1 and w2 must have at least one intersection point inside (0, u`), where w1 and

w2 are both positive. No intersection can occur at points where w1 or w2 is increasing. To
see this we let u0 ∈ (0, u`) be the first intersection point, so w1(u0−) < w2(u0−) implying
that w′1(u0) ≥ w′2(u0). However, since

w′1(u0) =
g(u0)− w1(u0)

sτ1w1(u0)
, and w′2(u0) =

g(u0)− w2(u0)
sτ2w2(u0)

,

if w1(u0) < g(u0), then

w′2(u0) =
g(u0)− w2(u0)

sτ2w2(u0)
=

g(u0)− w1(u0)
sτ2w1(u0)

>
g(u0)− w1(u0)

sτ1w1(u0)
= w′1(u0).

which contradicts the above. Next, if w1(u0) = g(u0), then w′1(u0) = w′2(u0) = 0 and
there exists δ > 0 small enough such that

w′1(u0 − δ) > w′2(u0 − δ) > 0, and w2(u0 − δ) > w1(u0 − δ) > 0,

Hence

(w′1 − w′2)|u=u0−δ =
[

1
sτ1

(
g

w1
− 1

)
− 1

sτ2

(
g

w2
− 1

)] ∣∣∣
u=u0−δ

> 0,
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therefore
τ2

τ1
>

g
w2
− 1

g
w1
− 1

∣∣∣
u=u0−δ

.

As δ → 0, l’Hôpital’s rule gives

lim
δ→0

g
w2
− 1

g
w1
− 1

∣∣∣
u=u0−δ

= lim
δ→0

g′w2−gw′2
w2

2

g′w1−gw′1
w2

1

∣∣∣
u=u0−δ

= 1,

thus
τ2

τ1
≥ 1,

contradicting with τ1 > τ2. Thus w1(u0) > g(u0), implying w′1(u0) < 0 and w′2(u0) < 0.

0 

 

w
2

w
1

w

u
0  

 

w
1

w
2

w

u

lu

Figure 3: Sketched solutions of (3.1) for τ1 > τ2: behavior close to u = 0 (left), and global
behavior assuming a unique intersection point inside (0, ul)

We assume now there exist at least two intersection points inside (0, u`), and let u0

and u1 be the first two of them. We have 0 > w′1(u0) ≥ w′2(u0) and w′1(u1) ≤ w′2(u1) < 0.
However

w′1(u1) =
g(u1)− w1(u1)

sτ1w1(u1)
=

g(u1)− w2(u1)
sτ1w2(u1)

>
g(u1)− w2(u1)

sτ2w2(u1)
= w′2(u1),

contradicting the above.
It only remains to rule out the possibility of having exactly one intersection point

u0 ∈ (0, u`) (see the right picture of Figure 3). Then w1 > w2 for u ∈ (u0, u`). Since
w1(u`) = w2(u`) there exists u2 close to u` such that w′1(u2) < w′2(u2). However, since
τ1 > τ2, w1(u2) > w2(u2) and g(u2) < 0,

w′1(u2) =
g(u2)

sτ1w1(u2)
− 1

sτ1
>

g(u2)
sτ2w2(u2)

− 1
sτ2

= w′2(u2),

which is a contradiction and shows the uniqueness. ¤
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Remark 3.2 The dependence of τ on u` is monotone. Specifically, with ur = 0 and given
two pairs (τi, u`,i), i = 1, 2, satisfying 0 < τ1 < τ2, then u`,1 < u`,2. To see this we first
notice that the functions g appearing on the right of (3.1) are ordered: g1(u) < g2(u)
for u > 0. Then by Theorem 3.2, the solutions wi of (3.1) are uniquely defined, and that
u`,1 6= u`,2. Clearly, w1 > w2 close to the origin. Assuming u`,1 > u`,2, then w1 > w2 close
to u`,2 as well. The arguments in the second step of the proof above rule out the possibility
of having two intersection points of w1 and w2 at strictly positive u. This implies that
w1 > w2 everywhere. Integrating (3.1) on (0, uell,i) gives

∫ u`,i

0
wi(u)du =

∫ u`,i

0
gi(u)du.

This contradicts the ordering in wi and gi, namely w1 > w2 and g1 < g2 on (0, u`,2).

Remark 3.3 The proof of Theorem 3.2 also provides bounds for τ . First notice that the
maximum of w satisfies

w̃ = max
u∈[0,u`]

w(u) >
1
u`

∫ u`

0
g(u)du =: A.

This immediately gives an upper bound for τ :

τ <
2

sw̃2

∫ ũ

0
g(u)du <

2
s A2

∫ um

0
g(u)du.

To obtain a lower bound we start with
∫ u`

0
g(u)du =

∫ u`

0
w(u)du >

∫ um

ũ
w(u)du > (um − ũ)w(um).

Taking u3 ∈ (0, um) s.t. g(u3) = A we notice that A < w̃ = g(ũ), so ũ < u3. From the
above we get

∫ u`

0 g(u)du > (um − u3)w(um). This, together with (3.4) gives

τ >
ue − um

sw(um)
>

(ue − um)(um − u3)
s
∫ u`

0 g(u)du
.

For the non-degenerate case, we can proceed in the same manner to get similar bounds.

The proof of Theorem 3.2 can be extended without major differences to the case u` = 1,
giving the following result:

Theorem 3.3 Let ur ≥ 0, u` = 1 and assume
∫ 1
ur

g(t; ur, 1) dt > 0 (thus β = 1). Then
there exists a unique pair (τ, w) solving (3.1).

3.2 Non-existence results

We focus on ur = 0, the case ur > 0 being similar. We carry out the phase plane analysis
of (2.10) by taking ϕ = u, ψ = ϕ′:

(3.6) (Pc)

{
ϕ′ = ψ,

ψ′ = −cψ + g(ϕ;ur, u`).

13



Theorem 3.4 Suppose β = 1, and assume
∫ 1
0 g(t; 0, 1) dt > 0. For τ > 0 large enough,

there exists no heteroclinic orbit connecting (0, 0) and (1, 0).

Proof . We give the proof for the generic case mentioned in (1.5), λw(u) = up+1 and
λo(u) = (1− u)q+1. In the general situation one can proceed as in Lemma 2.2.

Suppose that exists a heteroclinic orbit (ϕ,ψ) connecting (0, 0) to (1, 0), then u` = 1
and s(1) = 1. Hence τ = 1/(sc2) = 1/c2. Assume c = 0. Then we have

(3.7) ϕ′′ = g(ϕ; 0, 1), on ξ ∈ R.

Note that
g(t; 0, 1) =

1
tp(1− t)q

{−tp + M(1− t)q}.

Because of the singularity at t = 0, 1 and the continuity of ϕ, we conclude that for some
a ∈ R and b > a,

ϕ(ξ) = 0, for ξ ≤ a, and ϕ(ξ) = 1, for ξ ≥ b,

and
ϕ(ξ) ∈ (0, 1), for a < ξ < b.

In addition, since ϕ′ is continuous, we conclude

(3.8) ϕ′(a) = 0, and ϕ′(b) = 0.

Without loss of generality we take a = 0.
We multiply (3.7) by 2ϕ′ and integrate over (0, ξ), where ξ ∈ (0, b). Using the condi-

tions at ξ = 0 we obtain

(ϕ′)2(ξ) = 2
∫ ξ

0
g(ϕ; 0, 1)ϕ′(t) dt = 2

∫ ϕ(ξ)

0
g(t; 0, 1) dt.

As ξ → b, we have ϕ(ξ) → 1 yielding

(ϕ′)2(b) = 2
∫ 1

0
g(t; 0, 1) dt > 0,

contradicting (3.8). Therefore, for c = 0, the orbit emerging from (0, 0) will intersect the
half line {(ϕ,ψ) : ϕ = 1, ψ > 0} for some positive value of ψ. By continuous dependence
on the data, the same holds whenever c is sufficiently small. Since τ = 1/c2, we conclude
that there exists no heteroclinic orbit if τ is large enough. ¤

Remark 3.4 A similar result can be obtained for ur > 0. Specifically, if
∫ 1
ur

g(u; ur, 1) > 0
there exists no heteroclinic orbit connecting (ur, 0) and (1, 0) whenever τ > 0 is large
enough for ur > 0. This allows defining the following

τ∗ = {τ > 0 : there exists a homoclinic orbit of (Pc) connecting (ur, 0) and (1, 0)}.

In view of the above, one has τ∗ < ∞. Notice that the maximal value τ∗ depends on ur,
so we denote it by τ∗(ur).

14



4 Non-smooth travelling waves

The results proven yet are obtained for smooth C2 travelling wave solutions to (1.6).
Following Theorem 3.3 (see also Remarks 3.4), whenever β = 1 such solutions are only
possible for finite values of τ . Specifically, given a ur ≥ 0 and a τ < τ∗(ur), a unique u` < 1
exists allowing for smooth travelling waves connecting the two states u` and ur. The limit
situation is for τ = τ∗(ur), when u` = 1. The following question appears naturally: what
does it happen whenever τ > τ∗(ur)?

Before answering this question we notice that given a right state ur, Theorem 2.1
shows the monotone dependence of τ on the the related left state u`. Therefore the case
τ > τ∗(ur) can only lead to travelling waves with u` ≥ 1. However, the case u` > 1 is
ruled out by the degeneracy H(1) = 0, therefore one has to find waves connecting u` = 1
to ur.

The existence of smooth and monotone TW to (2.2) is obtained by involving the func-
tion w(u) = −u′(η(u)). Given two states u` = 1 and ur, Theorem 3.3 provides a unique
pair (w, τ) ∈ C1(ur, u`) × (0,∞) for which (3.1) is valid. For the construction of u, we
refer to (3.2).

To deal with the case τ > τ∗(ur), we proceed in a similar manner and seek positive
solution to

(4.1)

{
τsww′ + w =g(u), u ∈ (ur, 1],

w(ur) =0.

Since τ > τ∗(ur), we give up the condition w(u`) = 0. As follows from the uniqueness
result in Theorem 3.3, a positive solution to (4.1) can never end up in 0 for some u ∈ (ur, 1),
yielding w(1) > 0. This means that u has a strictly negative slope when approaching 1, so
this value is attained for some finite η = η1. Clearly, one can extend u by 1 at the left of
η1, by giving up the continuity of u′. In this way, we extend the concept of TW solutions
to cover the case τ > τ∗(ur), where classical waves are ruled out.

In view of the above, any τ > τ∗(ur) cannot provide smooth travelling waves, and this
requires interpreting this concept in a broader sense that allows for discontinuities in the
derivatives. The generalized TW concept used here have much in common with the sharp
waves in [32]. To define such travelling waves we rewrite (2.2) as a system involving three
unknown quantities: the saturation u, the total flux F and the capillary pressure p. With
s given in (2.4), a sharp TW solution to (1.6) is a triple (u, F, p) satisfying

(4.2)





su′ =F ′,
H(u)p′ =f(u)− F,

p =u− τsu′,

almost everywhere in R. This system is complemented by (2.3):

u(−∞) = u`, and u(+∞) = ur,

describing the behavior at infinity. Clearly, any smooth solution to (2.2) provides a smooth
solution triple to (4.2) and reciprocally. The difference between the two cases appears
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whenever a smooth TW solution to (2.2) fails to exist, which can happen in the degenerate
case, i. e. if u` = 1 or ur = 0.

We start by investigating the case involving a single value of degeneracy u` = 1,
whereas ur > 0. Then we consider the doubly degenerate case, u` = 1 and ur = 0. In this
case, the TW solutions are constructed as the limit δ ↘ 0 of the case u` = 1 and ur = δ.
Notice that only the physically relevant cases u`, ur ∈ [0, 1] are considered. As shown in
[24], weak solutions to (1.6) are essentially bounded by 0 and 1, the degeneracy values.
This property is inherited by TW solutions.

4.1 The case ur > 0 and u` = 1

Here we take ur > 0 and τ > τ∗(ur). As mentioned above, this yields u` = 1. We seek for
solutions to (4.2) where u and F are continuous:

Definition 4.1 Let η1 ∈ R be a fixed coordinate. A triple (u, F, p) is a sharp travelling
wave solution to (2.8) if

(4.3)





su′ =F ′,
H(u)p′ =f(u)− F,

p =u− τsu′,

for all η > η1, whereas u(η) = 1, F (η) = s, and p(η) = 1 for all η < η1.

Clearly, such solutions are determined up to a translation. One can normalize the TW by
taking e. g. η1 = 0, or by assuming that u(0) = (ur + 1)/2.

Remark 4.1 Whenever u ∈ (0, 1) in some interval N ⊂ R, one has H(u) > 0 there.
Since u and F are continuous, by (4.32) we obtain a continuous p′. Then (4.33) yields
u ∈ C2(N), implying the same regularity for F . In this way we conclude the smoothness
of the solution triple for arguments η where u remains between 0 and 1. Moreover, if
H ∈ C1 - as in the case investigated in [10], where H ≡ 1 - the argument can be continued
to provide higher regularity for p, u, and F .

Therefore, if ur, u` ∈ (0, 1), or if H is globally smooth, the existence of a solution
triple (u, F, p) would also provide a classical TW solution to (2.8). However, classical
TW solutions are ruled out in the present situation by the choice τ > τ∗(ur).

Remark 4.2 In the above we have disregarded the case η1 = ±∞. The case η1 = ∞
implies u ≡ 1 and is trivially obtained for u` = ur = 1. If η1 = −∞, the solution triple
is continuous on the entire R. This means that u ∈ (0, 1) everywhere, thus H(u) > 0.
As above, this situation is equivalent to the case of a smooth TW and is only possible for
τ ≤ τ∗(ur).

Remark 4.3 The pressure component p in Definition 4.1 is discontinuous at η1, where
it only has left and right limits. To give a physical interpretation, we notice that the
saturation u becomes 1 at η1, meaning that only one phase (oil) is present. Since the
capillary pressure is defined as the pressure difference between the two phases (oil and
water), this pressure cannot be defined clearly in the absence of one phase. To extend p
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into regions where u = 1, one can follow (4.33) and end up with p = u = 1 if η < η1.
Moreover, this extension has no physical motivation, and does not take into account any
dunamic effect encountered for η > η1.

The argument in Remark 4.1 provides the smoothness of u, F and p for all η > η1. The
existence of a solution as introduced in Definition 4.1 is provided by (4.1). Specifically,
with w = −u′(η) solving (4.1), u ∈ (ur, 1) is defined by implicitly on (η1, +∞) by:

(4.4) η(u) = η1 +
∫ 1

u

dz

w(z)
.

Furthermore, we have u(η) = 1 for all η ≤ η1. The above can be summarized as follows:

Lemma 4.1 Let ur > 0 and τ > τ∗(ur), therefore u` = 1. Then Problem (TW1) admits
a sharp TW solution in the sense of Definition 4.1.

4.2 The case ur = 0 and u` = 1

In the previous section we have dealt with one degeneracy point, u` = 1. Here we extend
the results to the doubly degenerate case: ur = 0 and u` = 1. We focus on the case when
smooth TW solutions are not possible, i. e. if β = 1 (see (2.13)) and τ > τ∗(0). As
explained in Remark 4.1, u′ becomes discontinuous only at degeneracy points. Therefore
constructing the TW solutions for u` = 1 and ur > 0 is based on investigating w solving
(4.1), and starting at w(ur) = 0. This implies the smoothness of u′ whenever u < 1. If
a second degeneracy point ur = 0 is involved, there is no particular reason to start at
w(0) = 0. In fact, as will be seen below, for each non-negative value of w(0) a solution w
of (4.11) can be obtained. This solution satisfies w(1) > 0. Based on (4.4), each of the w′s
provide a non-smooth TW solution having possibly two discontinuities in u′, whenever
u = 0 or u = 1. At this point it is not clear how to select a relevant solution among
all these waves. Below we give a selection criterium providing the TW having a smooth
transition to ur = 0. To this aim we start with the following ordering result.

Lemma 4.2 Let ur = 0, τ > τ∗(0), while w and w̃ solve (4.1) with initial data w0 and
w̃0. If w̃0 > w0 ≥ 0, then w̃ > w for all u ∈ [0, 1].

Proof . Assume w and w̃ intersect. Let u be the smallest intersection point. Since
w̃0 > w0, we know u > 0. We distinguish two cases:

Case 1: u < 1, from

w′(u) =
g(u)− w(u)

τw(u)
, and w̃′(u) =

g(u)− w̃(u)
τw̃(u)

,

we obtain
w′(u) = w̃′(u).

(i) If w′(u) ≥ 0, then w′(u + δ) < w̃′(u + δ), w(u + δ) < w̃(u + δ) and g(u + δ) > 0 for
δ > 0 small enough. However,

w′(u + δ) =
g(u + δ)

τw(u + δ)
− 1

τ
>

g(u + δ)
τw̃(u + δ)

− 1
τ

= w̃′(u + δ),
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which is a contradiction.
(ii) If w′(u) < 0, then w′(u + δ) < w̃′(u + δ) and w(u + δ) < w̃(u + δ) for δ > 0 small
enough. If g(u) ≥ 0, then

w′(u + δ) =
g(u + δ)

τw(u + δ)
− 1

τ
≥ g(u + δ)

τw̃(u + δ)
− 1

τ
= w̃′(u + δ),

which is a contradiction again. If g(u) < 0, we know w′(u− δ) > w̃′(u− δ) and w(u− δ) <
w̃(u− δ) for δ > 0 small enough. However

w′(u− δ) =
g(u− δ)

τw(u− δ)
− 1

τ
<

g(u− δ)
τw̃(u− δ)

− 1
τ

= w̃′(u− δ),

contradicting the inequalities above.
Case 2: u = 1, there exists u0 < 1 close enough to 1 such that w(u0) < w̃(u0) and

w′(u0) > w̃′(u0). Notice that w′(u), w̃′(u) and g(u) are negative when u is close enough
to 1. But

w′(u0) =
g(u0)

τw(u0)
− 1

τ
<

g(u0)
τw̃(u0)

− 1
τ

= w̃′(u0),

meaning w̃ > w for all u ∈ [0, 1]. ¤

Since τ > τ∗(0), for w solving (4.1) with ur = 0 one has w(1) > 0. By Lemma 4.2,
starting with w(0) > 0 still gives w(1) > 0. This property is determining the selection
criterium for the TW solution connecting 1 to 0. This is based on regularization, a
commonly used approach in dealing with degenerate problems.

One possible regularization is to perturb the data such that the solution stays away
from the degeneracy values. For the analysis of the porous medium equation, this techinque
has been applied in [27]; a numerical scheme based on this approach is investigated in [29].
The solutions obtained stay away from the degeneracy values and therefore have better
regularity. As the regularization parameter approaches 0, the sequence of regularized
solutions converges to the relevant solution in the degenerate case. With δ > 0 being a
small regularization parameter, one has the following possibilities:
a) ur = δ and w solving (4.1), yielding w(1) > 0;
b) ur = 0 and w solving (4.1) on (0, 1− δ), but choosing w(0) s.t. w(1− δ) = 0.

Then the regularized solutions will be smooth whenever u < 1, respectively u > 0.
However, Lemma 4.2 rules out the second possibility. As follows from the ordering result
proven there, any solution w satisfying w(0) ≥ 0 cannot reach 0 within (0, 1], implying
w(1) > 0. Therefore u still lacks smoothness when approaching 1. This is why we only
consider the first possibility, ur = δ, u` = 1, and investigate the limit δ ↘ 0. We start
with an elementary result:

Proposition 4.1 Let ur = δ > 0, u` = 1, and define

sδ :=
1− f(δ)

1− δ
, gδ := g(u; δ, 1),

Then
sδ ↘ 1, and gδ ↗ g =

u− f(u)
H(u)

, as δ → 0,

the convergence for g is pointwise on (0, 1).
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Proposition 4.2 Let τ > τ∗(0), consider the following two initial value problems,

(4.5)

{
τww′ + w =g(u), u ∈ (0, 1],

w(0) =0,

and

(4.6)

{
τsδwδw

′
δ + wδ =gδ(u), u > δ,

wδ(δ) =0.

with ũ ∈ (0, 1) such that w(ũ) = g(ũ), we have:

(4.7) wδ(u) < w(u) for all u ∈ (δ, ũ).

Proof . Assume there exist u∗ such that wδ(u∗) = w(u∗), and u∗ is the first one. Clearly,
we have wδ(u∗−) < w(u∗−), therefore we have w′δ(u

∗) ≥ w′(u∗). From

τw(u∗)w′(u∗) + w(u∗) = g(u∗) > gδ(u∗) = τsδwδ(u∗)w′δ(u
∗) + wδ(u∗),

we obtain w′(u∗) > sδw
′
δ(u

∗). However, since u∗ ∈ (δ, ũ), we have w′(u∗) ≥ 0 and
w′δ(u

∗) ≥ w′(u∗) ≥ 0. As sδ > 1, this implies w′(u∗) ≤ sδw
′
δ(u

∗), contradicting the
previous inequality. ¤

The function w in (4.5) is defined on [0, 1], whereas wδ is only defined on [δ, c(δ)] for
some c(δ) defined by

c(δ) = sup{ũ < u < 1 | wδ(u) > 0}.
For practical reasons we extend wδ by 0 on [0, δ], and on [c(δ), 1] if c(δ) < 1, and investigate
its behavior as δ ↘ 0. We do so by considering two intervals, [0, ũ] and [ũ, 1].

Proposition 4.3 Let w and wδ solve (4.5) and (4.6). Along any sequence δ → 0, wδ

converges pointwise to w on [0, ũ].

Proof . Integrating the equations in (4.5) and (4.6), we obtain

τ

2
w2(u) +

∫ u

0
w(z)dz =

∫ u

0
g(z)dz,

and
sδτ

2
w2

δ (u) +
∫ u

δ
wδ(z)dz =

∫ u

δ
gδ(z)dz.

By (4.7) we have wδ(u) < w(u). From the above we obtain

0 ≤ τ

2
(w2(u)− w2

δ (u)) =
τ

2
(sδ − 1)w2

δ (u)−
∫ δ

0
wδ(z)dz

+
∫ δ

0
g(z)dz −

∫ u

δ
(w(z)− wδ(z))dz +

∫ u

δ
(g(z)− gδ(z))dz.
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This leads to

0 ≤ τ

2
(w2(u)− w2

δ (u)) ≤ τ

2
(sδ − 1)w2

δ (u) +
∫ δ

0
g(z)dz +

∫ u

δ
(g(z)− gδ(z))dz,

Notice that the two integrals in the above are vanishing, since
∫ δ

0
g(z)dz =

∫ δ

0
(Mz−p − (1− z)−q)dz =

M

1− p
δ1−p +

1
1− p

((1− δ)1−p − 1) −→ 0,

∫ u

δ
(g(z)− gδ(z))dz ≤ Cδ1−p −→ 0,

with a positive constant C. Furthermore, according to Proposition 4.1, sδ ↘ 1 giving
w2

δ (u) ↗ w2(u) as δ → 0. Since w and wδ are non-negative, this gives the pointwise
convergence of wδ towards w on the compact interval [0, ũ]. ¤

Now we consider the interval [ũ, 1], where the following holds

Proposition 4.4 Along any sequence δ → 0, wδ converges pointwise to w on [ũ, 1].

Proof . Let δ > 0 and u < c(δ). Integrating (4.5) and (4.6) from ũ to u, we have

(4.8)
τ

2
(w2(u)− w(ũ)2) +

∫ u

ũ
w(z)dz =

∫ u

ũ
g(z)dz,

(4.9)
sδτ

2
(w2

δ (u)− wδ(ũ)2) +
∫ u

ũ
wδ(z)dz =

∫ u

ũ
gδ(z)dz.

Subtracting (4.9) by (4.8), we have

(4.10)

sδτ
2 (w2

δ (u)− w2(u))

=
∫ u
ũ (gδ(z)− g(z))dz − ∫ u

ũ (wδ(z)− w(z))dz + τ
2 (sδwδ(ũ)2 − w(ũ)2)

− τ
2 (sδ − 1)w2(u) =: T1 − T2 + T3 − T4.

By Proposition 4.1, T1 vanishes as δ approaches 0. Furthermore, Proposition 4.3 gives the
convergence of wδ(ũ) to w(ũ). Using Proposition 4.1 again, since w is bounded we obtain

(4.11) T4 =
τ

2
w2(u)(sδ − 1) −→ 0,

as well as

(4.12) T3 =
τ

2
(
(sδ − 1)wδ(ũ)2 + (wδ(ũ)2 − w(ũ)2)

) −→ 0.

Next, with M := max
z∈[ũ,u]

|wδ(z)− w(z)| one has

(4.13) |T2| =
∣∣∣∣
∫ u

ũ
(wδ(z)− w(z))dz

∣∣∣∣ ≤ (u− ũ)M.
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Further, since w is decreasing on [ũ, 1] we have

max
z∈[ũ,u]

|w2
δ (z)− w2(z)| ≥ w(1)M.

Since sδ ≥ 1, by (4.10) – (4.13)

(4.14)
τ

2
w(1)M ≤ sδτ

2
(w2

δ (u)− w2(u)) ≤ |T1|+ (u− ũ)M + |T3|+ |T4|,

Taking u = c(δ) and with δ small enough, from (4.14) we get

c(δ) > ũ +
τ

4
w(1).

Further, (4.14) also gives

(4.15)
(τ

2
w(1)− (u− ũ)

)
M ≤ |T1|+ |T3|+ |T4|,

whenever δ is small enough. As δ → 0, all limits on the right side in (4.15) go to 0, which
gives wδ(u) → w(u) pointwisely for u ∈ [ũ, ũ + τ

4w(1)]. Let ∆u = τ
4w(1). If ũ + ∆u ≥ 1,

then the conclusion is shown. Otherwise, if ũ+∆u < 1, notice that ∆u does not dependent
on δ, therefore we can continue the same procedure for u ∈ [ũ + ∆u, ũ + 2∆u] and further
until reaching 1. ¤

Combining Proposition 4.3 and 4.4, we have the following theorem:

Theorem 4.1 Let τ > τ∗(0), for any δ > 0, wδ solves (4.1) with ur = δ. Along any
sequence δ ↘ 0, the sequence {wδ} approaches w solving (4.5). In particular, the limit w
satisfies w(1) > 0.

Remark 4.4 Theorem 4.1 provides a selection criterium for the TW solution to (1.6),
in the doubly degenerate case. Specifically, each wδ solving (4.1) provides a TW solution
to (1.6) with ur = δ and u` = 1. Passing δ ↘ 0, the limit w provides a TW solution to
(1.6) connecting ul = 1 to ur = 0, as limit of regularized travelling waves.

Recalling the connection between the TW solution u and the solution w of (4.1) and since
w(1) > 0, u has a discontinuous derivative (a kink) at the transition u = 1 to u < 1. This
point separates a fully saturated region, when only one phase is present, from a partially
saturated one, when both phases are present. Since the capillary pressure is defined as
p = u + τu′, it becomes discontinuous there as well. Specifically, in the fully saturated
region where u = 1, one has p = 1, implying the same value for its limit from this side to
the point where the partially saturated regime starts. At the same time, in the unsaturated
region we have p = u + τu′ bounded below from 1, therefore its limit from this side stays
below 1. However, this does not contradict the concept of the capillary pressure, defined
as a difference between the pressures inside the two phases. Its limit from the partially
saturated region is defined by continuity as the difference of the phase pressures. In the
fully saturated region such a definition does not make sense since only one phase is present.
In the latter case p does not include any dynamic effects, and can therefore not be seen
as a continuous extension of the dynamic capillary pressure from the former case.

As seen above, u has a kink at the transition from u = 1 to u < 1. In what follows we
study the transition to the other degenerate value, u = 0.
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Theorem 4.2 Let ur = 0 and u` = 1. If τ > τ∗(0), then the travelling wave selected by
Theorem 4.1 becomes 0 at a finite η0 ∈ R, and has a smooth derivative there.

Proof . By Theorem 4.1, u is provided by w = lim
δ↘0

wδ. Integrating (4.6) from δ to u > δ

gives
sδτ

2
wδ(u)2 +

∫ u

δ
wδ(v)dv =

∫ u

δ
gδ(v)dv ≤

∫ u

δ
g(v)dv ≤

∫ u

0
g(v)dv.

Recalling the asymptotic behavior of g as u ↘ 0, we have

wδ(u)2 ≤ 2
sδτ

∫ u

0
g(v)dv ≤ 2

τ

∫ u

0
g(v)dv ≤ 2

τ
C1u

1−p,

for some C1 > 0 not dependent on δ. Therefore, with C2 =
√

2C1
τ , we get wδ(u) ≤ C2u

1−p
2 ,

yielding
−u′(η) = w(u) ≤ C2u

1−p
2 .

Integrating from 0 to η and u(0) gives

2
p + 1

(u(η)
p+1
2 − u(0)

p+1
2 ) ≥ −C2η,

yielding

(4.16) u(η) ≥ {u(0)
p+1
2 − (p + 1)C2

2
η} 2

1+p .

Notice that u(0) can be taken arbitrarily small by choosing η1 conveniently. To be more
precise, since w is known, one can use it in (4.4) to define η1 = − ∫ 1

u(0)
dz

w(z) leading to
η(u(0)) = 0.
Similarly, if ur = 0,

τ

2
w(u)2 +

∫ u

0
w(v)dv =

∫ u

0
g(v)dv,

With u small enough, we have g(u) ≥ C3u
−p for some C3 > 0, giving

τ

2
w(u)2 +

∫ u

0
w(v)dv ≥ C3

1− p
u1−p.

Since w(u) ≤ C2u
1−p
2 , we obtain

τ

2
w(u)2 +

2C2

3− p
u

3−p
2 ≥ C3

1− p
u1−p.

For u(0) small enough, one has

2C2

3− p
u

3−p
2 <

C3

2(1− p)
u1−p, for all u ∈ (0, u(0)],

implying
τ

2
w(u)2 ≥ C3

2(1− p)
u1−p, or w(u) ≥

√
C3

τ(1− p)
u

1−p
2 .
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This gives

−u′(η) ≥ C4u
1−p
2 , where C4 =

√
C3

τ(1− p)
.

Similarly, we obtain

(4.17) u(η) ≤ {u(0)
p+1
2 − (p + 1)C4

2
η} 2

1+p .

By (4.16) and (4.17), we obtain that u is bounded from above and below by two
curves behaving like (A −Dη)

2
1+p , where A = u(0)

p+1
2 and D = (p+1)Ci

2 with i = 2 or 4.
Moreover, as u(0) ↘ 0, C2 and C4 can be chosen arbitrarily close to each other, showing
that u behaves asymptotically like (A−Dη)

2
1+p close to the coordinate η where it becomes

0. In particular, there exists an η0 such that u(η) > 0 whenever η < η0 and u(η ≥ η0) ≡ 0,
as well as u′ is continuous at η0 and u′(η0) = 0. ¤

5 Numerical results

In this section, we provide some numerical experiments. We solve the full problem (1.6),
using a semi-implicit Euler finite volume scheme. This scheme is similar to the ones
investigated in [4], [7], or [16]. There a particular attention is paid to heterogeneities and
the conditions at the interface between two homogeneous sub-domains. We also mention
[28] for a review of different numerical methods for pseudo-parabolic equations.

We consider the problem (1.6) in the domain S = R×R+:

(5.1)
∂u

∂t
+

∂f(u)
∂x

= ε
∂

∂x

{
H(u)(

∂u

∂x
+ ετ

∂2u

∂x∂t
)
}

,

with initial value

(5.2) u(x, 0) = (uB − ur) ∗ H̃(−x) + ur,

where ur is the right state, uB is the inflow value and H̃(x) is a smooth monotone ap-
proximation of the Heaviside function H. By using H̃ instead of H we avoid unnecessary
technical difficulties due to discontinuities in the initial conditions. As shown in [6], if the
initial data has jumps, these will persist for all t > 0, at the same location. This would
require an adapted and more complicated numerical approach for ensuring the continuity
in flux and pressure (see for example [4], Chapter 3, or [7]).

Remark 5.1 We emphasize that uB is an inflow value, which in general is not equal to
the value associated to τ , u` = ū(τ). This value will be an outcome of the calculations.

Since the scaling

(5.3) x → x

ε
, t → t

ε
,

removes the parameter ε from (5.1), we fix ε = 1 here. In the absence of analytic solutions,
for verifying the numerical solution we recall the transformation w(u) = −u′(η(u)), based
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on which a relation between τ and an admissible left state u` can be established. As shown
in Section 3, given ur ≥ 0, a value τ∗ ∈ (0,∞] exists such that to any τ < τ∗ a unique left
state u` = u`(τ) ≤ 1 can be associated. This left state can be connected to ur through a
smooth TW solution to (5.1). Whenever τ∗ < ∞, if τ > τ∗ no smooth travelling waves are
possible, but sharp ones connecting u` = 1 to ur, and having a kink at the point when u
becomes less than 1. Figure 4 below presents the diagrams u` - τ for p = q = 0.5, M = 2.5,
and for two values of ur: ur = 0.1 (non-degenerate), and ur = 0 (degenerate). To obtain
these diagrams we have solved (3.1) numerically with fixed ur, but for several left states u`,
providing different the pairs (w, τ) such that w(u`) = 0. We start with u` = α, a minimal
value of that corresponds to the point where the line through (ur, f(ur)) becomes tangent
to the graph of the water fractional flow function f . In terms of hyperbolic conservation
laws, the shock {α, ur} is an admissible entropy solution to the non-viscous (BL) equation
(obtained for ε = 0). We have α = 0.926 if ur = 0.1, respectively α ≈ 0.936 if ur = 0.
Starting with u` = α, for which a lower value τ = τ∗ is obtained, we increase u` by a small
∆u` (in this case 5 ∗ 10−4) and determine the corresponding τ value either until u` = 1
(yielding a finite upper limit τ∗ to τ), or up to a maximal value less than one, which is
attained asymptotically as τ ↗∞. The pairs (u`, τ) obtained in this way are included in
the diagram.

Both cases considered here give τ∗ < ∞: τ∗ ≈ 1.37 for ur = 0.1 and τ∗ ≈ 0.22 for
ur = 0. For the lower limits we get τ∗ ≈ 0.067, respectively τ∗ ≈ 0.054. Below we will
present numerical solutions to (5.1) for two values of τ : τ1 = 0.1, and τ2 = 2. For both
right states ur mentioned above they satisfy τ∗ < τ1 < τ∗ < τ2. As resulting from the
diagrams, τ1 = 0.1 is associated to the left state u` = 0.9475 if ur = 0.1, respectively to
u` = 0.977 if ur = 0.
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Figure 4: The diagrams u` - τ computed for p = q = 0.5, M = 2.5 and with ur = 0.1 (left)
respectively ur = 0. Numerically we obtain τ∗ ≈ 1.37, respectively τ∗ ≈ 0.22.

To discretize (5.1) we take a fixed time step ∆t = tn+1 − tn and apply a semi-implict
first order method:

un+1 − un

∆t
+

d

dx
Fn(u) = 0.
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Here Fn(u) is the time discrete flux function at t = tn,

Fn(u) := fn(u)−Hn(u)
(

∂xun+1 + τ
∂xun+1 − ∂xun

∆t

)
.

Similarly, the functions fn and Hn are time discrete variants of f and H. These are not
defined explicitly since we are interested here only in their fully discrete counterparts.
Notice that the scheme is explicit in the convective terms, and semi-implicit in the higher
order ones.

For the space discretization, we use a finite volume scheme on a dual mesh. Taking
a uniform grid with mesh size ∆x = xn − xn−1 and defining ui = 1

∆x

∫ i+1/2
i−1/2 u(x)dx, the

fully discretized equation becomes

(5.4)
un+1

i − un
i

∆t
+

Fn(ui, ui+1)− Fn(ui−1, ui)
∆x

= 0.

Here the numerical flux Fn(ui, ui+1) is defined by

Fn(ui, ui+1) = f(un
i )−Hn

i+1/2

un+1
i+1 − un+1

i

∆x
− τHn

i+1/2

un+1
i+1 − un+1

i − un
i+1 + un

i

∆x∆t
.

For the coefficient Hn
i+1/2, we use the upwind value:

Hn
i+1/2 = H(un

i ).

This approach is important when doing calculations with degenerate outflow value, ur = 0.
The numerical diffusion added in this way has regularizing effects, leading to a numerical
solution fulfilling the selection criterion in Remark 4.4.

In what follows we present the numerical solutions of (5.1) obtained on a spatial interval
(−1, 19) and at time T = 5. As mentioned above, we take p = q = 0.5,M = 2.5, and
consider two right states, ur = 0.1 and ur = 0, as well as two values for τ : τ1 = 0.1 and
τ2 = 2. The discretization parameters are ∆x = 5 ∗ 10−4 and ∆t = 10−4, providing stable
numerical results. On the endpoints of the interval we take value that are compatible with
the ones appearing in (5.2): uB at the inflow, and ur at the outflow. All calculations are
carried out for uB = 1, which is not necessary equal to the value u` related to τ . Therefore
the numerical solution of the degenerate pseudo-parabolic problem (5.1)–(5.2) does not
necessary have a TW profile, but instead will feature a ”plateau” region of constant value
ū corresponding to u` related to τ .

The solutions presented in Figure 5, computed for τ1 = 0.1 are clearly presenting this
situation: they both decay from 1 to the plateau value u = ū < 1. This value is taken
over an interval that is delimited on the right by a front going down from ū to ur. This
front travels with a constant speed provided by the RH condition in (2.4), written for the
states ū and ur. A similar situation is obtained in [10] for the non-degenerate case H = 1.
As in that paper, we associate the plateau value ū with the value u` = ū(τ). The plateau
value ū exhibited by the numerical solution is ū = 0.9467 for ur = 0.1, whereas ū = 0.979
for ur = 1. This agrees well with the value u` = ū(τ) predicted at τ = 0.1 by the u` -
τ diagrams discussed above. There we obtained u` = 0.9475 if ur = 0.1, respectively to
u` = 0.977 if ur = 0.
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Figure 5: Left: graph of u for ur = 0.1 and τ = 0.1 < τ∗, containing a plateau at
ū = 0.9467. Right: graph of u for ur = 0, and the plateau value ū = 0.979.

The next numerical results are obtained for τ2 = 2, exceeding τ∗ up to which smooth
travelling waves are possible. Therefore the u` - τ diagrams are not providing any informa-
tion that can be used for testing the numerical solutions. However, as discussed in Section
4, waves connecting the left state u` = 1 to ur are still possible, but these have a discon-
tinuous derivative (a kink) at the transition point from u = 1 to u < 1. Correspondingly,
the transformed w solving (4.1) on (ur, 1] will remain strictly positive at u = 1. The value
w(1) gives the slope of u at the right of the kink. In this case we compare this (numerical)
slope to w(1) = −u′(η1 + 0).

The left pictures in Figures 6 and 7 are presenting the numerical results for ur = 0.1,
respectively ur = 0. The kinks encountered at the transition from u = 1 to u < 1 are
estimated to −0.27, for ur = 0.1, and to −1.27 for ur = 0. For w we obtain w(1) = 0.266
in the first case, and w(1) = 1.266 in the second one. The two functions w are presented
in the right pictures of Figures 6 and 7.

Finally, we recall that in the doubly degenerate case u` = 1 and ur = 0 the sharp waves
are not unique. Theorem 4.1 provides a selection criterion. As follows from Theorem 3.7,
this particular sharp wave is smooth everywhere away from the transition from u = 1 to
u < 1. The smoothness includes the transition u > 0 to u = 0, which is achieved for a
finite η. The same is featured by the numerical solution: Figure 8 presents two zoomed
views of it. We clearly see a kink also in the left picture, whereas the transition to u = 0
is smooth, as displayed in the right picture.
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Figure 6: The graph of u for ur = 0.1, and τ = 2 > τ∗, presenting a kink at the transition
u = 1 to u < 1 (left); the slope at the right of the kink is u′ = −0.27. The corresponding
w (right), where w(1) = 0.266.
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