14 research outputs found

    Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize - Setosphaeria turcica pathosystem

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies on host-pathogen interactions in a range of pathosystems have revealed an array of mechanisms by which plants reduce the efficiency of pathogenesis. While R-gene mediated resistance confers highly effective defense responses against pathogen invasion, quantitative resistance is associated with intermediate levels of resistance that reduces disease progress. To test the hypothesis that specific loci affect distinct stages of fungal pathogenesis, a set of maize introgression lines was used for mapping and characterization of quantitative trait loci (QTL) conditioning resistance to <it>Setosphaeria turcica</it>, the causal agent of northern leaf blight (NLB). To better understand the nature of quantitative resistance, the identified QTL were further tested for three secondary hypotheses: (1) that disease QTL differ by host developmental stage; (2) that their performance changes across environments; and (3) that they condition broad-spectrum resistance.</p> <p>Results</p> <p>Among a set of 82 introgression lines, seven lines were confirmed as more resistant or susceptible than B73. Two NLB QTL were validated in BC<sub>4</sub>F<sub>2 </sub>segregating populations and advanced introgression lines. These loci, designated <it>qNLB1.02 </it>and <it>qNLB1.06</it>, were investigated in detail by comparing the introgression lines with B73 for a series of macroscopic and microscopic disease components targeting different stages of NLB development. Repeated greenhouse and field trials revealed that <it>qNLB1.06<sub>Tx303 </sub></it>(the Tx303 allele at bin 1.06) reduces the efficiency of fungal penetration, while <it>qNLB1.02<sub>B73 </sub></it>(the B73 allele at bin 1.02) enhances the accumulation of callose and phenolics surrounding infection sites, reduces hyphal growth into the vascular bundle and impairs the subsequent necrotrophic colonization in the leaves. The QTL were equally effective in both juvenile and adult plants; <it>qNLB1.06<sub>Tx303 </sub></it>showed greater effectiveness in the field than in the greenhouse. In addition to NLB resistance, <it>qNLB1.02<sub>B73 </sub></it>was associated with resistance to Stewart's wilt and common rust, while <it>qNLB1.06<sub>Tx303 </sub></it>conferred resistance to Stewart's wilt. The non-specific resistance may be attributed to pleiotropy or linkage.</p> <p>Conclusions</p> <p>Our research has led to successful identification of two reliably-expressed QTL that can potentially be utilized to protect maize from <it>S. turcica </it>in different environments. This approach to identifying and dissecting quantitative resistance in plants will facilitate the application of quantitative resistance in crop protection.</p

    Crop Physiology

    No full text
    In this chapter, we review the physiology of switchgrass from seed dormancy till the effects of water and nutrients stress on grown plants. These characteristics are presented and discussed mainly at the canopy and whole-plant level with emphasis on the agro-physiology of the species in view of the possible contribution of crop physiology to agricultural development. Switchgrass is noted for the variable degrees of seed dormancy regulated by endogenous and exogenous factors that determine the successful seedling establishment. Plant growth rates are determined by temperature while the reproductive phase is controlled mainly by photoperiod. There is also evidence that some physiological attributes, such as photosynthesis, transpiration, and water use efficiency differ between tetraploid, hexaploid and octaploid ecotypes. But despite these differences, in general switchgrass combines important attributes of efficient use of nutrients and water with high yields thanks to its ability to acquire resources from extended soil volumes, especially at deep layers. Moreover at canopy level, resources capture and conservation are determined by morpho-physiological characteristics (C{sub 4} photosynthetic pathway, stomatal control of transpiration, high leaf area index, low light extinction coefficient) that enhance radiation use efficiency and reduce carbon losses. However, specific information on switchgrass physiology is still missing, in particular deeper understanding of physiological principles controlling the water and nutrients acquisition mechanisms and allocation under suboptimal growing conditions. The physiology of tillering and root respiration are also factors that need further investigation

    Crop Physiology

    Get PDF
    In this chapter, we review the physiology of switchgrass from seed dormancy till the effects of water and nutrients stress on grown plants. These characteristics are presented and discussed mainly at the canopy and whole-plant level with emphasis on the agro-physiology of the species in view of the possible contribution of crop physiology to agricultural development
    corecore