213 research outputs found

    Marginal Damage of Methane Emissions: Ozone Impacts on Agriculture

    Get PDF
    Methane directly contributes to air pollution, as an ozone precursor, and to climate change, generating physical and economic damages to different systems, namely agriculture, vegetation, energy, human health, or biodiversity. The methane-related damages to climate, measured as the Social Cost of Methane, and to human health have been analyzed by different studies and considered by government rulemaking in the last decades, but the ozone-related damages to crop revenues associated to methane emissions have not been incorporated to policy agenda. Using a combination of the Global Change Analysis Model and the TM5-FASST Scenario Screening Tool, we estimate that global marginal agricultural damages range from ~ 423 to 556 2010/tβˆ’CH4,ofwhich982010/t-CH4, of which 98 2010/t-CH4 occur in the USA, which is the most affected region due to its role as a major crop producer, followed by China, EU-15, and India. These damages would represent 39–59% of the climate damages and 28–64% of the human health damages associated with methane emissions by previous studies. The marginal damages to crop revenues calculated in this study complement the damages from methane to climate and human health, and provides valuable information to be considered in future cost-benefits analyses. Β© 2023, The Author(s).JS and SW were supported by the U.S. Environmental Protection Agency, under Interagency Agreement DW-089-92459801. The views expressed in this article are purely those of the authors and do not, under any circumstances, represent the views or policies of the U.S. Environmental Protection Agency or the European Commission. JS and SW were supported by the U.S. Environmental Protection Agency, under Interagency Agreement DW-089-92459801. The views expressed in this article are purely those of the authors and do not, under any circumstances, represent the views or policies of the U.S. Environmental Protection Agency or the European Commission

    Physical aerosol properties and their relation to air mass origin at Monte Cimone (Italy) during the first MINATROC campaign

    Get PDF
    Aerosol physical properties were measured at the Monte Cimone Observatory (Italy) from 1 June till 6 July 2000. The measurement site is located in the transition zone between the continental boundary layer and the free troposphere (FT), at the border between the Mediterranean area and Central Europe, and is exposed to a variety of air masses. Sub-&mu;m number size distributions, aerosol hygroscopicity near 90% RH, refractory size distribution at 270&deg;C and equivalent black carbon mass were continuously measured. Number size distributions and hygroscopic properties indicate that the site is exposed to aged continental air masses, however during daytime it is also affected by upslope winds. The mixing of this transported polluted boundary layer air masses with relatively clean FT air leads to frequent nucleation events around local noon. <P style='line-height: 20px;'> Night-time size distributions, including fine and coarse fractions for each air mass episode, have been parameterized by a 3-modal lognormal distribution. Number and volume concentrations in the sub-&mu;m modes are strongly affected by the air mass origin, with highest levels in NW-European air masses, versus very clean, free tropospheric air coming from the N-European sector. During a brief but distinct dust episode, the coarse mode is clearly enhanced. <P style='line-height: 20px;'> The observed hygroscopic behavior of the aerosol is consistent with the chemical composition described by Putaud et al.&nbsp;(2004), but no closure between known chemical composition and measured hygroscopicity could be made because the hygroscopic properties of the water-soluble organic matter (WSOM) are not known. The data suggest that WSOM is slightly-to-moderately hygroscopic (hygroscopic growth factor GF at 90% relative humidity between 1.05 and 1.51), and that this property may well depend on the air mass origin and history. <P style='line-height: 20px;'> External mixing of aerosol particles is observed in all air masses through the occurrence of two hygroscopicity modes (average GF of 1.22 and 1.37, respectively). However, the presence of 'less' hygroscopic particles has mostly such a low occurrence rate that the average growth factor distribution for each air mass sector actually appears as a single mode. This is not the case for the dust episode, where the external mixing between less hygroscopic and more hygroscopic particles is very prominent, and indicating clearly the occurrence of a dust accumulation mode, extending down to 50 nm particles, along with an anthropogenic pollution mode. <P style='line-height: 20px;'> The presented physical measurements finally allow us to provide a partitioning of the sub-&mu;m aerosol in four non-overlapping fractions (soluble/volatile, non-soluble/volatile, refractory/non-black carbon, black carbon) which can be associated with separate groups of chemical compounds determined with chemical-analytical techniques (ions, non-water soluble organic matter, dust, elemental carbon). All air masses except the free-tropospheric N-European and Dust episodes show a similar composition within the uncertainty of the data (53%, 37%, 5% and 5% respectively for the four defined fractions). Compared to these sectors, the dust episode shows a clearly enhanced refractory-non-BC fraction (17%), attributed to dust in the accumulation mode, whereas for the very clean N-EUR sector, the total refractory fraction is 25%, of which 13% non-BC and 12% BC

    LC-MS analysis of aerosol particles from the oxidation of ?-pinene by ozone and OH-radicals

    No full text
    International audienceThe time resolved chemical composition of aerosol particles, formed by the oxidation of alpha-pinene has been investigated by liquid chromatography/mass spectrometry (LC-MS) using negative and positive ionisation methods (ESI(-) and APCI(+)). The experiments were performed at the EUPHORE facility in Valencia (Spain) under various experimental conditions, including dark ozone reactions, photosmog experiments with low NOx mixing ratios and reaction with OH radicals in the absence of NOx (H2O2-photolysis). Particles were sampled on PTFE f ilters at different stages of the reaction and extracted with methanol. The predominant products from alpha-pinene in the particulate phase are cis-pinic acid, cis-pinonic acid and hydroxy-pinonic acid isomers. Another major compound with molecular weight 172 was detected, possibly a hydroxy-carboxylic acid. These major compounds account for 50% to 80% of the identified aerosol products, depending on the time of sampling and type of experiment. In addition, more than 20 different products have been detected and structures have been tentatively assigned based on their molecular weight and responses to the different ionisation modes. The different experiments performed showed that the aerosol formation is mainly caused by the ozonolysis reaction. The highest aerosol yields were observed in the dark ozone experiments, for which also the highest ratios of mass of identified products to the formed aerosol mass were found (30% to 50%, assuming a density of 1 g cm-3)

    Lidar and in situ observations of continental and Saharan aerosol: closure analysis of particles optical and physical properties

    Get PDF
    Single wavelength polarization lidar observations collected at Mt. Cimone (44.2ΒΊ N, 10.7ΒΊ E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the &quot;best&quot; refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations

    Quantifying the reductions in mortality from air-pollution by cancelling new coal power plants

    Get PDF
    Deep decarbonization paths to the 1.5 Β°C or 2 Β°C temperature stabilization futures require a rapid reduction in coal-fired power plants, but many countries are continuing to build new ones. Coal-fired plants are also a major contributor to air pollution related health impacts. Here, we couple an integrated human-earth system model (GCAM) with an air quality model (TM5-FASST) to examine regional health co-benefits from cancelling new coal-fired plants worldwide. Our analysis considers the evolution of pollutants control based on coal plants vintage and regional policies. We find that cancelling all new proposed projects would decrease air pollution related premature mortality between 101,388–213,205 deaths (2–5%) in 2030, and 213,414–373,054 (5–8%) in 2050, globally, but heavily concentrated in developing Asia. These health co-benefits are comparable in magnitude to the values obtained by implementing the Nationally Determined Contributions (NDCs). Furthermore, we estimate that strengthening the climate target from 2 Β°C to 1.5 Β°C would avoid 326,351 additional mortalities in 2030, of which 251,011 (75%) are attributable to the incremental coal plant shutdown.The authors acknowledge funding support from Bloomberg Philanthropies. This research is also supported by Basque Government through the BERC 2018-2021 and the Spanish Government through MarΓ­a de Maeztu excellence accreditation MDM-2017-0714. Jon Sampedro and Ignacio Cazcarro acknowledge financial support from the Ministry of the Economy and Competitiveness of Spain (RTI2018-099858-A-100 and RTI2018-093352-B-I00). Jon Sampedro acknowledge financial support from the Basque Government (PRE_2017_2_0139). The authors thank Patrick O’Rourke and Brinda Yarlagadda for their support with data processing. The authors declare no competing interests

    Size-segregated aerosol mass closure and chemical composition in Monte Cimone (I) during MINATROC

    Get PDF
    International audiencePhysical and chemical characterizations of the atmospheric aerosol were carried out at Mt. Cimone (Italy) during the 4 June-4 July 2000 period. Particle size distributions in the size range 6nm-10Β΅m were measured with a differential mobility analyzer (DMA) and an optical particle counter (OPC). Size-segregated aerosol was sampled using a 6-stage low pressure impactor. Aerosol samples were submitted to gravimetric and chemical analyses. Ionic, carbonaceous and refractory components of the aerosol were quantified. We compared the sub- and superΒ΅m aerosol mass concentrations determined by gravimetric measurements (mGM), chemical analyses (mmCA), and by converting particle size distribution to aerosol mass concentrations (mmSD). Mean random uncertainties associated with the determination of mmGM, mmCA, and mmSD were assessed. The three estimates of the sub-Β΅m aerosol mass concentration agreed, which shows that within experimental uncertainty, the sub-Β΅m aerosol was composed of the quantified components. The three estimates of the super-Β΅m aerosol mass concentration did not agree, which indicates that random uncertainties and/or possible systematic errors in aerosol sampling, sizing or analyses were not adequately accounted for. Aerosol chemical composition in air masses from different origins showed differences, which were significant in regard to experimental uncertainties. During the Saharan dust advection period, coarse dust and fine anthropogenic particles were externally mixed. No anthropogenic sulfate could be found in the super-Β΅m dust particles. In contrast, nitrate was shifted towards the aerosol super-Β΅m fraction in presence of desert dust

    Organic aerosol and global climate modelling: a review

    Get PDF
    The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies
    • …
    corecore