124 research outputs found

    Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA

    Get PDF
    AbstractPythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300bp paired-end, 14 millions reads) and PacBio (10 Kb fragment library, 356,001 reads). The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6Mb contained in 8992 contigs, N50 of 13Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000

    Diagnostic Tests and their Application in the Management of Soil- and Water-borne Oomycete Pathogen Species

    Get PDF
    Oomycete diseases cause significant losses across a broad range of crop and aquaculture commodities worldwide. These losses can be greatly reduced by disease management practices steered by accurate and early diagnoses of pathogen presence. Determinations of disease potential can help guide optimal crop rotation regimes, varietal selections, targeted control measures, harvest timings and crop post-harvest handling. Pathogen detection prior to infection can also reduce the incidence of disease epidemics. Classical methods for the isolation of oomycete pathogens are normally deployed only after disease symptom appearance. These processes are often-time consuming, relying on culturing the putative pathogen(s) and the availability of expert taxonomic skills for accurate identification; a situation that frequently results in either delayed application, or routine ‘blanket’ over-application of control measures. Increasing concerns about pesticides in the environment and the food chain, removal or restriction of their usage combined with rising costs have focussed interest in the development and improvement of disease management systems. To be effective, these require timely, accurate and preferably quantitatve diagnoses. A wide range of rapid diagnostic tools, from point of care immunodiagnostic kits to next generation nucleotide sequencing have potential application in oomycete disease management. Here we review currently-available as well as promising new technologies in the context of commercial agricultural production systems, considering the impacts of specific biotic and abiotic and other important factors such as speed and ease of access to information and cost effectivenes

    Fifty years of oomycetes—from consolidation to evolutionary and genomic exploration

    Full text link

    Pythium myriotylum

    No full text

    First report of Pythium deliense

    No full text
    • 

    corecore