158 research outputs found

    Condition number analysis and preconditioning of the finite cell method

    Get PDF
    The (Isogeometric) Finite Cell Method - in which a domain is immersed in a structured background mesh - suffers from conditioning problems when cells with small volume fractions occur. In this contribution, we establish a rigorous scaling relation between the condition number of (I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from basis functions being small on cells with small volume fractions, or from basis functions being nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an algebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and three-dimensional problems in linear elasticity, in which Nitche's method is applied in either the normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh convergence studies of the finite cell method

    Discontinuities without discontinuity: The Weakly-enforced Slip Method

    Full text link
    Tectonic faults are commonly modelled as Volterra or Somigliana dislocations in an elastic medium. Various solution methods exist for this problem. However, the methods used in practice are often limiting, motivated by reasons of computational efficiency rather than geophysical accuracy. A typical geophysical application involves inverse problems for which many different fault configurations need to be examined, each adding to the computational load. In practice, this precludes conventional finite-element methods, which suffer a large computational overhead on account of geometric changes. This paper presents a new non-conforming finite-element method based on weak imposition of the displacement discontinuity. The weak imposition of the discontinuity enables the application of approximation spaces that are independent of the dislocation geometry, thus enabling optimal reuse of computational components. Such reuse of computational components renders finite-element modeling a viable option for inverse problems in geophysical applications. A detailed analysis of the approximation properties of the new formulation is provided. The analysis is supported by numerical experiments in 2D and 3D.Comment: Submitted for publication in CMAM

    Duality-based two-level error estimation for time-dependent PDEs: application to linear and nonlinear parabolic equations

    Get PDF
    We introduce a duality-based two-level error estimator for linear and nonlinear time-dependent problems. The error measure can be a space-time norm, energy norm, final-time error or other error related functional. The general methodology is developed for an abstract nonlinear parabolic PDE and subsequently applied to linear heat and nonlinear Cahn-Hilliard equations. The error due to finite element approximations is estimated with a residual weighted approximate-dual solution which is computed with two primal approximations at nested levels. We prove that the exact error is estimated by our estimator up to higher-order remainder terms. Numerical experiments confirm the theory regarding consistency of the dual-based two-level estimator. We also present a novel space-time adaptive strategy to control errors based on the new estimator

    Inverting elastic dislocations using the Weakly-enforced Slip Method

    Get PDF
    Earthquakes cause lasting changes in static equilibrium, resulting in global deformation fields that can be observed. Consequently, deformation measurements such as those provided by satellite based InSAR monitoring can be used to infer an earthquake's faulting mechanism. This inverse problem requires a numerical forward model that is both accurate and fast, as typical inverse procedures require many evaluations. The Weakly-enforced Slip Method (WSM) was developed to meet these needs, but it was not before applied in an inverse problem setting. Consequently, it was unknown what effect particular properties of the WSM, notably its inherent continuity, have on the inversion process. Here we show that the WSM is able to accurately recover slip distributions in a Bayesian-inference setting, provided that data points in the vicinity of the fault are removed. In a representative scenario, an element size of 2 km was found to be sufficiently fine to generate a posterior probability distribution that is close to the theoretical optimum. For rupturing faults a masking zone of 20 km sufficed to avoid numerical disturbances that would otherwise be induced by the discretization error. These results demonstrate that the WSM is a viable forward method for earthquake inversion problems. While our synthesized scenario is basic for reasons of validation, our results are expected to generalize to the wider gamut of scenarios that finite element methods are able to capture. This has the potential to bring modeling flexibility to a field that if often forced to impose model restrictions in a concession to computability.Comment: The associated software implementation is openly available in zenodo at https://doi.org/10.5281/zenodo.507179

    A-posteriori error estimation and adaptivity for nonlinear parabolic equations using IMEX-Galerkin discretization of primal and dual equations

    Get PDF
    While many methods exist to discretize nonlinear time-dependent partial differential equations (PDEs), the rigorous estimation and adaptive control of their discretization errors remains challenging. In this paper, we present a methodology for duality-based a posteriori error estimation for nonlinear parabolic PDEs, where the full discretization of the PDE relies on the use of an implicit-explicit (IMEX) time-stepping scheme and the finite element method in space. The main result in our work is a decomposition of the error estimate that allows to separate the effects of spatial and temporal discretization error, and which can be used to drive adaptive mesh refinement and adaptive time-step selection. The decomposition hinges on a specially-tailored IMEX discretization of the dual problem. The performance of the error estimates and the proposed adaptive algorithm is demonstrated on two canonical applications: the elementary heat equation and the nonlinear Allen-Cahn phase-field model

    Connecting species’ geographical distributions to environmental variables: range maps versus observed points of occurrence

    Get PDF
    Connecting the geographical occurrence of a species with underlying environmental variables is fundamental for many analyses of life history evolution and for modeling species distributions for both basic and practical ends. However, raw distributional information comes principally in two forms: points of occurrence (specific geographical coordinates where a species has been observed), and expert-prepared range maps. Each form has potential short-comings: range maps tend to overestimate the true occurrence of a species, whereas occurrence points (because of their frequent non-random spatial distribution) tend to underestimate it. Whereas previous comparisons of the two forms have focused on how they may differ when estimating species richness, less attention has been paid to the extent to which the two forms actually differ in their representation of a species’ environmental associations. We assess such differences using the globally distributed avian order Galliformes (294 species). For each species we overlaid range maps obtained from IUCN and point-of-occurrence data obtained from GBIF on global maps of four climate variables and elevation. Over all species, the median difference in distribution centroids was 234 km, and median values of all five environmental variables were highly correlated, although there were a few species outliers for each variable. We also acquired species’ elevational distribution mid-points (mid-point between minimum and maximum elevational extent) from the literature; median elevations from point occurrences and ranges were consistently lower (median −420 m) than mid-points. We concluded that in most cases occurrence points were likely to produce better estimates of underlying environmental variables than range maps, although differences were often slight. We also concluded that elevational range mid-points were biased high, and that elevation distributions based on either points or range maps provided better estimates

    On the singular nature of the elastocapillary ridge

    Get PDF
    The functionality of soft interfaces is crucial to many applications in biology and surface science. Recent studies have used liquid drops to probe the surface mechanics of elastomeric networks. Experiments suggest an intricate surface elasticity, also known as the Shuttleworth effect, where surface tension is not constant but depends on substrate deformation. However, interpretations have remained controversial due to singular elastic deformations, induced exactly at the point where the droplet pulls the network. Here we reveal the nature of the elastocapillary singularity on a hyperelastic substrate with various constitutive relations for the interfacial energy. First, we finely resolve the vicinity of the singularity using goal-adaptive finite element simulations. This confirms the universal validity, also at large elastic deformations, of the previously disputed Neumann's law for the contact angles. Subsequently, we derive exact solutions of nonlinear elasticity that describe the singularity analytically. These solutions are in perfect agreement with numerics, and show that the stretch at the contact line, as previously measured experimentally, consistently points to a strong Shuttleworth effect. Finally, using Noether's theorem we provide a quantitative link between wetting hysteresis and Eshelby-like forces, and thereby offer a complete framework for soft wetting in the presence of the Shuttleworth effect.Comment: 17 Pages, 7 figure

    A-posteriori error estimation and adaptivity for nonlinear parabolic equations using IMEX-Galerkin discretization of primal and dual equations

    Get PDF
    While many methods exist to discretize nonlinear time-dependent partial differential equations (PDEs), the rigorous estimation and adaptive control of their discretization errors remains challenging. In this paper, we present a methodology for duality-based a posteriori error estimation for nonlinear parabolic PDEs, where the full discretization of the PDE relies on the use of an implicit-explicit (IMEX) time-stepping scheme and the finite element method in space. The main result in our work is a decomposition of the error estimate that allows to separate the effects of spatial and temporal discretization error, and which can be used to drive adaptive mesh refinement and adaptive time-step selection. The decomposition hinges on a specially-tailored IMEX discretization of the dual problem. The performance of the error estimates and the proposed adaptive algorithm is demonstrated on two canonical applications: the elementary heat equation and the nonlinear Allen-Cahn phase-field model

    Critical time-step size analysis and mass scaling by ghost-penalty for immersogeometric explicit dynamics

    Get PDF
    In this article, we study the effect of small-cut elements on the critical time-step size in an immersogeometric context. We analyze different formulations for second-order (membrane) and fourth-order (shell-type) equations, and derive scaling relations between the critical time-step size and the cut-element size for various types of cuts. In particular, we focus on different approaches for the weak imposition of Dirichlet conditions: by penalty enforcement and with Nitsche's method. The stability requirement for Nitsche's method necessitates either a cut-size dependent penalty parameter, or an additional ghost-penalty stabilization term is necessary. Our findings show that both techniques suffer from cut-size dependent critical time-step sizes, but the addition of a ghost-penalty term to the mass matrix serves to mitigate this issue. We confirm that this form of `mass-scaling' does not adversely affect error and convergence characteristics for a transient membrane example, and has the potential to increase the critical time-step size by orders of magnitude. Finally, for a prototypical simulation of a Kirchhoff-Love shell, our stabilized Nitsche formulation reduces the solution error by well over an order of magnitude compared to a penalty formulation at equal time-step size
    • …
    corecore