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The mechanical and chemical properties of soft solids are crucial to many applications in biology and
surface science. Recent studies use wetting by liquid drops to probe the surface mechanics of reticulated
polymer networks, leading to controversial interpretations. This controversy relates to the long-standing
paradox of Young’s law for the liquid contact angle, which invokes only a horizontal force balance. Recent
work shows that, for very soft materials, the solid’s surface tension plays a key role for the vertical force
balance, involving a singular ridgelike deformation exactly at the point where the droplet pulls on the
network. A hotly debated question is whether unexpected measurements on this singular deformation can
be attributed to nonlinear bulk elasticity or whether these provide evidence for an intricate surface elasticity,
known as the Shuttleworth effect. Here, we theoretically reveal the nature of the elastocapillary singularity
on a hyperelastic substrate with various constitutive relations for the interfacial energy. First, we finely
resolve the vicinity of the singularity using goal-adaptive finite-element simulations. This simulation
confirms that bulk elasticity cannot affect the force balance at the contact line. Subsequently, we derive
exact solutions of nonlinear elasticity that describe the singularity analytically. These solutions are in
perfect agreement with numerics and show that both the angles and stretch at the contact line, as previously
measured experimentally, consistently point to a strong Shuttleworth effect. Finally, using Noether’s
theorem, we reveal the quantitative link between Young’s law, hysteresis, and the nature of the
elastocapillary singularity. Our contribution closes the issue of the missing normal force at the contact

line and opens up the development of modern techniques in polymer surface science.

DOI: 10.1103/PhysRevX.10.031067

I. INTRODUCTION

The wetting and adhesion of soft materials have recently
become a quickly expanding domain, finding applications
in the design of innovative materials (adhesives [1],
slippery surfaces [2], and highly stretchable electronics
[3]), to analyze the mechanics of cells and biological tissues
[4,5], and in between, in the field of bioengineering
(reversible adhesives [6], e-skin [7], etc.). Reticulated
polymers, composed of long molecular chains forming a
network, are model soft materials with versatile properties.
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At small length and timescales, their structure is liquidlike
and highly deformable. At large scales, however, the
presence of cross-links gives the polymer networks a finite
shear modulus G such that they behave like elastic solids
[8-11]. The elasticity is of entropic origin, and, as a
consequence, the elastic moduli of polymer networks
can be exceedingly small compared to those of (poly)
crystalline materials, whose elasticity is of enthalpic origin.
Rubbers and edible hydrogels such as gelatin desserts are
everyday examples of soft solid materials that exhibit
entropic elasticity.

The dual liquid-and-solid character plays a central role
when the polymeric solid is wetted by liquid drops. The
overall shape of the wetting liquid remains spherical,
similar to drops on a (stiff) glass window. In the field of
wetting, it is common to infer the surface energies of the
system by measuring the contact angle: The liquid-vapor
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FIG. 1. Symmetric wetting ridges under large deformation induced by a localized contact line force, with and without the Shuttleworth
effect. (a) Typical numerical solution using a finite-element method, where successive magnifications show the adaptive resolution of
the elastocapillary ridge. The example is a case without the Shuttleworth effect, with equal liquid and solid surface energies y (giving a
solid angle 83 = 120°). The scales are expressed in the corresponding elastocapillary length y/G. (b) The solid angle € versus the ratio
of liquid-vapor surface tension y;y and solid surface tension Y. Symbols are numerical results with the Shuttleworth effect (open
symbols, Yy measured at the contact line) and without the Shuttleworth effect (closed symbols). We vary both y;y (circles) and the
amount of prestretch of the substrate from A, = 1 to 2 (squares). The solid line corresponds to Neumann’s law (15), with Y g based on its

value at the contact line.

interface reaches the edge of the drop at an angle 8, with
respect to the solid. The droplet’s edge represents a three-
phase contact line, where, respectively, the liquid-vapor
(LV), solid-liquid (SL), and solid-vapor (SV) interfaces
meet. On stiff solids, the resulting liquid angle is given by
Young’s law [12]:

yLv cosOp +ysL —rsv =0, (1)
where y,; denote the surface free energies of the three
interfaces. Classically, Young’s law can be interpreted as a
horizontal force balance in the vicinity of the three-phase
contact line. On a soft substrate, however, the vertical force
balance becomes nontrivial and involves a singular elastic
deformation near the contact line. Indeed, intermolecular
forces are able to deform the soft solid over a scale set by
the balance between capillarity and elasticity (quantified by

the static shear modulus G), known as the elastocapillary
length [13-19]:

7LV
‘= G- (2)
Below this length scale, the soft substrate takes the shape of
a sharp ridge, culminating at the contact line—Fig. 1(a)
shows a typical example of such an elastocapillary ridge,
introduced by a localized force. Thus, this sessile-droplet
experiment of soft wetting gives rise to many features
which have no counterpart in the wetting of rigid solids
and, naturally, raises a number of fundamental questions: Is
the liquid contact angle with respect to the undeformed
substrate still selected by the Young’s law? Which forces
are acting on this contact line, manifesting themselves in

the solid opening angle 6 [see Fig. 1(a)]? Is the local
structure of the interfaces at the contact line selected by a
simple force balance, leading to a generalized Neumann’s
law? Is the contact lined pinned to a material point of the
solid, or can it freely move despite the singular deformation
underneath it?

Soft wetting, in particular, the questions raised above,
has recently led to a strong controversy on the nature of the
forces that counteract localized surface perturbations.
Experiments demonstrate that the solid angle (f5) and
local stretch at the ridge tip can be manipulated by a global
stretching of the substrate [20]. Two different explanations
are presented to interpret these surprising experimental
results. On the one hand, it is proposed that bulk elasticity
may present singular contributions at a contact line [21,22].
These are known as Eshelby forces, which are classically
used to describe defects in crystalline solids [23]. On the
other hand, these experiments are interpreted by introduc-
ing a pure surface-elastic contribution: the so-called
Shuttleworth effect [24-27], which makes the capillary
forces at an elastic interface different from a simple fluid
interface. In principle, the surface energy y of a solid can
depend on the surface stretch A. In this case, surface energy
y and surface tension Y are no longer equal but obey the
Shuttleworth relation [24]:

dy

T = A—. 3
r+a (3)
This result offers an exciting perspective analogous to the
surface rheology of soap films, where surface tension T
depends on the state 1 of the system—potentially leading to
stiffening or even softening of the interface. However,
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given that interfacial properties are determined at the
nanoscale, where soft polymeric networks behave very
much like simple fluids, the emergence of a Shuttleworth
effect for these materials is debated [20-22,27-35]. To a
large extent, the discussion is due to a lack of a consistent
analytical theory to interpret macroscopic experiments.

The controversies on the existence, or not, of the
Shuttleworth effect or Eshelby forces in soft solids revolve
around these questions, but a consistent theory relating
forces and geometry is missing to date [36]. Thus, the
interpretation of recent experimental [20,30,31] and
numerical [21,22,33] work diverges. Before trying to
analyze the microscopic origin of potential Eshelby or
Shuttleworth effects, there is an urgent need to clarify the
mechanical consequences of the existence of such effects.
In particular, numerical simulations ultimately rely on a
mechanical description which must be totally self-
consistent, including the possibility of singularities.

In this paper, we numerically resolve the problem of soft
wetting, using an adaptive numerical technique that allows
us to resolve the elastocapillary wetting ridge on all scales
[Fig. 1(a)]. The approach is based on minimization of
elastocapillary energy for a substrate subjected to a
perfectly localized contact line force. The method includes
the possibility of singularities, large elastic deformations,
and the Shuttleworth effect. It is found that the elastic
singularity at the wetting ridge is not sufficiently strong to
interfere with the balance of surface tensions at the contact
line, so that Neumann’s law is valid in all circumstances—
irrespective of the presence of large deformations, the
Shuttleworth effect, or pinning. Subsequently, we provide
the exact asymptotic solution that describes the nonlinear
elastic deformation near the ridge tip. Based on the
numerical and analytical results, we offer a novel route
to interpret experiments, via the surface stretch measured at
the contact line, which provides further independent
evidence for a strong Shuttleworth effect in elastomers.

The paper is organized as follows. The theoretical
framework and the adaptive numerical method are
described in Sec. II, and the numerical results are presented
in detail in Sec. III. Subsequently, in Sec. IV, we derive
exact solutions to nonlinear elasticity that analytically
resolve the ridge singularity in the presence of large
deformations. These asymptotic solutions, valid near the
singularity, are fully confirmed by the numerical results.
Finally, we show in Sec. V how Eshelby-like forces can
emerge when the substrate has true defects that represent
pinning sites on the substrate and reveal their effect on the
contact angles. The paper closes with a critical overview of
the state of the art in Sec. VI and by a discussion of the
broader implications of our findings in Sec. VII.

II. FREE ENERGY FORMULATION

In experiments, the drop size is usually large compared
to the elastocapillary length y/G, where y is a typical

surface energy (of the solid or the liquid) while G is the
shear modulus of the substrate. In this regime, the curvature
of the contact line is negligible compared to the size of the
wetting ridge, and the geometry is quasi-two-dimensional.
Below, we therefore formulate the problem in a plane strain
description and, subsequently, explain the numerical
method that is used to adaptatively resolve the singular
nature of the elastocapillary ridge. The results of the
simulations are presented in Sec. III.

A. Minimizing the elastocapillary energy

The statics of wetting amounts to finding the state of
minimal elastocapillary energy. The substrate deformation
is described by a mapping from the reference state prior to
deformation to a current state after deformation. Following
standard notation, the mapping is written as

x = x(X), (4)

where X is the position of a material point on the reference
domain, mapped onto its current position Xx. We consider
the geometry to be invariant along the contact line, so that
the problem is two-dimensional (plane strain elasticity).
Hyperelastic solids are described by an elastic energy
density W(F), which depends on the deformation gradient
tensor F = 9x/0X. We now turn to the interface, which in
the (plane strain) two-dimensional description is one-
dimensional. We define the arc-length material coordinate
at the interface as S, and the current surface position
X,(S) = ¥[X(S)]. The surface stretch, accounting for the
change of length of surface elements, follows as

ox. OX,
2 s s
IS 0SS’ )

which is a scalar in this plane strain description. Now we
can express capillarity, usually defined by the excess
energy y per unit area of the deformed state, as a free
energy Ay per unit area in the reference state.

Crucially, elastic media can exhibit a nontrivial capil-
larity where the surface energy y(4) is itself a function of
the stretch A—the Shuttleworth effect [24-27]. With this
result, the elastocapillary energy (per unit length along the
contact line) takes the form

£ly] = / LXW(F) + }z{ dsiy(h), ()

respectively giving the total (bulk) elastic energy and the
(surface) capillary energy. F and A are the corresponding
bulk and surface stretches, respectively, and are both
defined by the map y(X). We anticipate that we will
consider incompressible substrates, in which case the
constraint of incompressibility is included in W(F).
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Equilibrium configurations of the elastocapillary sub-
strate are found by minimizing the functional £ with respect
to y(X). Considering variations 6x = §y(X), we find

oW d(2y)
_ 2 .
56 = /d X<8F .6F) +]{ds 0

= /dzx[s:Grad(éx)] +?{dS<Tt~agi;>- (7)

Here, we introduce the nominal (or first Piola-Kirchhoff)
stress tensor s and the surface tension Y:

oW d(2y) dy
s=%r '~ a4 'Ta ®
where for the latter we indeed recognize the Shuttleworth
relation (3). In addition, we use that 54 = t - 956x/0S along
the boundary, where t is the surface-tangent unit vector in
the current configuration.

To study the elastocapillary ridge, we still need to
include the pull of the contact line, induced by the liquid
drop that is wetting the solid. This inclusion can be
achieved by making explicit the capillary energy of the
drop, via its liquid-vapor surface energy y;y. The subtlety
here is that one needs to impose a constraint at the contact
line [32,37]: The position x of the liquid-vapor interface
must (by definition) coincide with that of the solid inter-
face. The effect of this constraint, imposed by a Lagrange
multiplier, provides a localized traction on the substrate,
pulling with a strength y; y along the direction of the liquid-
vapor interface t;y [38]. The representation by a local
force is indeed commonly used in modeling approaches
[21,22,39-41]. Here, we therefore treat the contact line as a
perfectly localized external traction, with the associated
work functional R = ypytiy - x(X), where X is the
solid’s material point at which the contact line is acting.
During the variation, this traction corresponds to a work

OR = rrvtLy - 0x(Xq)- )

The virtual work principle 6 = dR then gives the equi-
librium condition

/de[s :Grad(6x)] + 7{ ds (Tt : %)
= ruvtiy - 6x(Xa), (10)

which should be satisfied for arbitrary ox.

Equation (10) defines the elastocapillary equilibrium in
the weak formulation. This equilibrium is indeed highly
singular. Namely, the forcing on the right-hand side appears
as a point force, pulling at X, while the elastocapillary
energies on the left contain only surface and bulk con-
tributions. The debate in the literature precisely revolves
around the following question: Do singularities appear in

the surface (capillarity) or in the bulk (elasticity), in order to
balance the point force at the contact line?

B. Numerical method

Our interest pertains to finding equilibrium configura-
tions of the elastocapillary problem, i.e., to minimizers of
the energy functional in Eq. (6) extended with the work
functional R representing the contact line, subject to
appropriate boundary conditions. Specifically, we consider
substrates that are flat in the reference configuration, with
complete fixation at the bottom boundary and guided
fixation (slip) at the lateral boundaries. We allow for the
possibility to impose a prestretch A, referring to the
uniaxial stretch far away from the contact line. Besides
the work associated to the point forcing at the contact line,
the top surface is free of traction, as is made explicit in the
weak formulation (10) of the minimization problem. The
constitutive relations for the strain-energy density and the
surface energy are specified in Sec. III below. In all
simulations, the shear modulus G and the relevant surface
energies are chosen such that the wetting ridge is much
smaller than the width of the domain, with a typical
example given in Fig. 1(a). In that example, the domain
width and height, respectively, are 8y;y/G and %yw/ G,
which are representative for all presented results.

Here, we numerically approximate the minimizer of
&€ — R by means of a goal-adaptive finite-element method
[42,43]. In goal-adaptive methods, the finite-element
approximation is locally refined on the basis of an
a posteriori error estimate, in such a manner that an
optimal approximation to a predefined quantity of interest
(the goal/) is obtained. Goal-adaptive finite-element meth-
ods generally proceed according to the solve — estimate —
mark — refine (SEMR) process [44,45]. The SEMR proc-
ess starts by solving a finite-element approximation on a
coarse mesh. Next, the contribution of each element to the
error in the goal quantity is estimated, based on a so-called
dual problem [42,43,45]. The elements that yield the largest
contribution to the error are marked according to a refine-
ment strategy. These marked elements are subsequently
refined by subdivision. This process is repeated until a
certain threshold for the error estimate is satisfied or a
preset number of refinement iterations is executed. In
accordance with our interest in minimizers of £ — R, we
take the energy itself as the goal functional. The optimality
conditions are resolved by means of the Newton-Raphson
method. The goal-adaptive finite-element method for the
present problem is implemented in the open-source soft-
ware framework Nutils [46]. The optimality conditions (10)
are, in fact, directly derived from an implementation of the
energy functional £ — R via the automatic-differentiation
functionality in Nutils.

An illustration of a goal-adaptive finite-element approxi-
mation is provided in Fig. 1(a). The approximation is based
on 16 refinement iterations. Accordingly, the smallest
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elements in the adaptive approximation are 2'¢ times
smaller than the initial element size. The initial mesh
comprises 24 x 8 uniform quadrilateral elements, and,
correspondingly, the smallest elements are 5-6 orders of
magnitude smaller than the elastocapillary length.
Importantly, the adaptive procedure automatically introdu-
ces the local refinements in the vicinity of the contact line.
This refinement pattern is in agreement with the singularity
of the pressure toward the contact line, and we extensively
verify the numerical convergence of the result. For the
result shown in Fig. 1(a), the relative numerical error in the
computed value of the solid opening angle 6g is less
than 1079,

III. ELASTOCAPILLARY RIDGES, WITH AND
WITHOUT A SHUTTLEWORTH EFFECT

We now present the adaptively resolved numerical
results for the elastocapillary ridge. We consider cases
with constant surface energy and with variable surface
energy, i.e., without and with a Shuttleworth effect. For the
bulk elasticity, we consider materials with a neo-Hookean
strain-energy density (using plane strain):

W(F) — %G(F:F—Z) _p(etF—1),  (11)

where we introduce the pressure p to impose the constraint
of incompressibility. In contrast to bulk elasticity, there
are no standard constitutive relations for the surface
energy of soft solids. Here, we propose a surface energy
of the form

rs(4) = roll —cologd +c (A —1)]. (12)

We from now on add the subscript “S” to indicate that we
refer to the solid interface (to distinguish from the liquid-
vapor surface energy ypv). Expanding Eq. (12) around
A =1 up to quadratic order, one recovers the ansatz for
surface elasticity as proposed in Ref. [35], while if, in
addition, ¢y = ¢y, one finds a linear surface elasticity as
proposed in Ref. [30]. An advantage of the constitutive
relation (12) is that the logarithm conveniently keeps the
system away from A — 0. The parameters c(; must satisfy
an admissibility condition such that the surface energy
remains convex and that both the energy yg and the surface
tension Y remain positive definite. According to the
Shuttleworth relation of Eq. (8), the above surface energy
gives a surface tension

Ts(4) = roll + c1 —co—cologd +2¢, (A= 1), (13)

and one verifies that ensuring Yy > 0 is sufficient for the
constants ¢(; to be admissible. Below, we present results
for the case where ¢ ; = 0 (no Shuttleworth effect) and for
co,1 = 1 (strong Shuttleworth effect), which are indeed in

the admissible regime. For later reference, we also define
the associated “chemical potential”

Hs(4) EAZ%ZYO(CMZ—CO@, (14)
which is relevant in Sec. V.

In general, the solid-liquid and solid-vapor interfaces, of
course, exhibit a different surface constitutive relation,
respectively, which we write yg; (4) and ygy(4). For most
of the paper, we focus on cases where the solid-liquid and
solid-vapor energies are identical and simply denote yg(4).
This focus renders the problem symmetric around the
contact line, so that the equilibrium contact angle of the
liquid is 90° and the associated forcing is vertical. Also, this
symmetry replaces the “second boundary condition” dis-
cussed in Refs. [27,32]. Asymmetric surface energies are
considered in Sec. V, where we address the relation
between pinning, the contact angle, and the second boun-
dary condition.

A. Universality of Neumann’s law

We first consider the solid angle 6, as measured at the
tip of the wetting ridge in FEM. Figure 1(b) shows 6
plotted against y; v/, with the value of Y taken at the
tip. Clearly, 05 follows a universal curve for all cases
considered. The parameters that are varied in our simu-
lations are the contact line force yy y [compared to the value
of yo in Eq. (12)], while solid surface tensions are with or
without a Shuttleworth effect (co; =0 and ¢p; =1,
respectively). We also consider different amounts of pre-
stretch of the substrate, ranging from A, =1 (no pre-
stretch) to 4, = 2 (extending the length by 100%). The
universal curve for f5 indeed follows Neumann’s law,
which for the specific case of identical solid-liquid and
solid-vapor energies reads

2Ty sin B (- es)} - (15)

Here, we emphasize that, owing to the Shuttleworth effect,
the surface tension Yg(4) depends on the strain. Since the
Neumann balance is to be interpreted as a boundary
condition at the contact line, we consider Eq. (15) with
values of the stretch A taken at the contact line. The result
of Eq. (15) is superimposed as the solid line in Fig. 1(b),
providing a perfect description of the FEM results.

We thus reach a first major conclusion: Neumann’s law
(based on the local values of the surface tension) robustly
applies to elastocapillary wetting ridges, irrespective of the
large elastic deformations at the contact line. This con-
clusion rejects the recent hypothesis that strong elastic
nonlinearity, as encountered for narrow 65 and large
prestretch, leads to a failure of Neumann’s law [22].
This general validity of Neumann’s law has an immediate
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consequence for measurements of the surface-constitutive
relation based on 6y, since we safely conclude that 6¢ gives
direct access to the values of Y. Phrased differently, the
experimental observation for Polydimethylsiloxane
(PDMS) substrates that € increases with 1., [20] can, in
a macroscopic theory based on hyperelasticity, be
explained only via a strong Shuttleworth effect.

To further illustrate this consequence, we closely follow
the experimental protocol of Ref. [20] in our simulations
and consider how the geometry of the ridge evolves when
stretching the substrate by an increasing amount A.
Figure 2(a) shows 6y versus the stretch at the contact
line 1,. The open circles are FEM results with a
Shuttleworth effect (cq; =1 and yy = yLy), showing an
increase of the solid opening angle 5. Indeed, the
dependence of 6 is perfectly predicted by Neumann’s
law (15), as is indicated by the solid line. In experiments,
one, of course, does not control the stretch at the contact
line A, but rather the global stretch of the substrate 1.
In Fig. 2(b), we therefore plot these two stretches against
one another. While A, is not exactly identical to the
imposed stretched A, the differences turn out to be
minor—consistently with experiments [20]. As a guide
to the eye, the dashed line in Fig. 2(b) indicates 1 = A,.
We expect this near homogeneity of A’s to arise only for
nearly symmetric yq; and ygy, as asymmetry, in general,
leads to stronger gradients of stretch (cf. Sec V).

The scenario changes dramatically when the substrate
does not exhibit a Shuttleworth effect (i.e., ¢y ; = 0). In that
case, both 8¢ and A take on a constant value that is totally
independent of the imposed A,,. This result is indicated in
Fig. 2(a) by the closed circle—which, in fact, corresponds
to various simulations with A ranging from 1 to 2. This
invariance of fg with respect to 4, is easily understood
from the Neumann balance. Namely, surface tensions are
constant when ¢ ; = 0, and, since we consider yy = yry,

(a) 160
150 |
140

130

120

110

)\cl

1 1.2 1.4 1.6 1.8 2

we find that 85 = 120°. By contrast, the invariance of the
stretch at the tip comes as a surprise, and its explanation
calls for a better understanding of the nature of the elastic
singularity. Below, we derive analytically that, without the

Shuttleworth effect, A, = +/7/6y, irrespective of the exter-
nally imposed prestretch 4., of the substrate.

Measurements of the stretch at the contact line,
thus, provide important additional information on the
Shuttleworth effect, that to date has not yet been explored.
Namely, experiments by Ref. [20] reveal an increase of
stretch at the contact line upon a global stretching of the
substrate. From the above, it is clear that such a dependence
can, in a macroscopic theory based on hyperelasticity, not
occur when there is no Shuttleworth effect.

B. Stress singularity and the elastic Marangoni effect

To further analyze the vicinity of the tip, we now turn
to the elastic stress measured along the free surface. In
Figs. 3(a) and 3(b), we plot the pressure p as a function of
the distance to the contact line x, on a semilogarithmic
scale. In all cases, the FEM simulations exhibit a weak
singularity of the pressure, diverging logarithmically with
the distance to the tip.

Figure 3(a) corresponds to a case without a Shuttleworth
effect (co; = 0), for different ratios yy v /yo. With this case,
we cover a broad range of 85 down to very narrow angles
with 20°. The prefactor of the logarithmic pressure singu-
larity is larger for narrow 6. The pressure plotted in
Fig. 3(a) is scaled by G x [(z/05) — (05/x)], which indeed
captures the ¢ dependence of the prefactor of the singu-
larity. We remark that for very narrow angles the loga-
rithmic asymptotic emerges only at distances much below
the elastocapillary length y,/G; this result illustrates the
challenge of accurate numerical resolutions for small 6.
Figure 3(b) corresponds to the case with a strong

(b) 2F

1.8+ o)

1.6
5 10 -0
< .l <
B 5

FIG. 2. Geometry of the elastocapillary ridge upon stretching the substrate. (a) Solid angle 0 as a function of the stretch at the contact
line 4. Open circles correspond to FEM in the presence of a strong Shuttleworth effect (¢ = ¢; = 1, with yy = y1y). The solid line is
the analytical prediction by Neumann’s law (15). The closed circles (several measurements superimposed) correspond to FEM without
a Shuttleworth effect (¢ = ¢; = 0, with yq = yLv). (b) Relation between the stretch at the contact line A, and the globally imposed
stretch A, . In the presence of a strong Shuttleworth effect, the two stretches takes on very similar values (the red dashed line, 1,; = 4, is
a guide to the eye). Without a Shuttleworth effect, 1, = /z/6 takes on a constant value (dash-dotted line).
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FIG. 3. Elastic stress along the free surface near the ridge singularity (symmetric ridges). (a) Pressure p versus distance to the contact

line X, scaled as indicated on the axes. Data correspond to the situation without a Shuttleworth (¢, ; = 0) with different 85 obtained by
varying the ratio yyv/yq. (b) Pressure p versus distance to the contact line x, scaled as indicated on the axes. Data correspond to the
situation with a Shuttleworth (¢, ; = 1) with different amounts of prestretch 4. (c) Shear stress ¢,,, versus distance to the contact line x,

scaled as indicated on the axes. Data correspond to the same cases as in (b).

Shuttleworth effect (¢y; = 1), for different amounts of
substrate prestretch A, (the corresponding €y are in Fig. 2).
Figure 3(b) again reveals a logarithmic singularity of
pressure, with a weak variation of the prefactor with A,.

Interestingly, the Shuttleworth effect allows for a new
phenomenon induced by gradients of surface tension. For
liquid interfaces, gradients in surface tension arise due to
gradients in composition or in temperature—this phenome-
non is known as the Marangoni effect and leads to
tangential interfacial stress. For the elastic interfaces
considered here, the gradients in surface tension are due
to gradients of 1 along the interface. Given this analogy, we
refer to this phenomenon as the elastic Marangoni effect.

Figure 3(c) indeed reveals the emergence of elastic
(Cauchy) shear stress o,, along the interface, which we
refer to as elastic Marangoni stress. Somewhat surprisingly,
the Marangoni stress is not singular but converges to a
constant value upon approaching the contact line. This
elastic Marangoni stress can be positive or negative,
depending on the prestretch that is imposed. Without
prestretch (4, = 1), the contact line region has the largest
surface tension, giving a Marangoni stress that is oriented
toward the contact line (5,, < 0). Conversely, when the
imposed A, is large, the contact line region has the
smallest surface tension, and the Marangoni stress is
directed away from the contact line (o,, > 0). This value
is further quantified in Fig. 4, where the change of
direction of the Marangoni effect is observed to be close
to A, =~ 1.2. Indeed, this result nearly coincides with the
point where 4;, & 1, [cf. Fig. 2(b)]. So the orientation of
the Marangoni stress depends on whether the stretch at
the tip is larger or smaller than the stretch imposed at a
large distance.

IV. EXACT NONLINEAR SOLUTIONS
A. Splitting off the singularity

We now pursue a fully analytical theory for the numeri-
cal observations above. We see that the elastic singularity is
weak, only logarithmic in the stress, so we first try to split

off the singularity. For this split, we perform an integration
by parts on Eq. (10) by writing

5E = /de[Div(s -6x) — (Div - s) - %]
+ de(%(Tt-&x) —a(a—i,t)-éx) (16)

The integral over the third term indeed gives pointlike
contributions:

j{ds%(rt %) == [TH]*-8x,.  (17)

disci

where the sum runs over all possible discontinuities along
the contour. The term Div(s - 5x) can be brought to the
surface using the divergence theorem. For a smooth domain
of integration, the divergence theorem holds for any vector
field which is in £' and whose spatial derivatives are in L'
[47]. This operation is allowed as long as the corresponding
singularity is weaker than 1/|X|. Hence, we can write

5 = —/dZXDiV(S) -5x+j{d5<s- —%) - 86X
=Y [rt]E - ox,

disc i

= —/dzxdiv(a) -5x+j{ds<a-n—%> - 5X
= [0t - ox;, (18)

disci

where in the last step we transform the result to the current
domain, using the definition of the true stress (or Cauchy
stress) according to ¢ = s - FT / det(F).

The condition of equilibrium, 6 = §R obtained from
Egs. (9) and (18), then splits into bulk, surface, and point
conditions:
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FIG. 4. Marangoni stress o,,/G at the contact line, as a function of the stretch at the contact line 1.. The Marangoni stress can be
positive or negative depending on whether the stretch at the tip is larger or smaller than 1,,. Open circles are obtained by FEM, the solid
line from similarity solutions described in Sec. IV in combination with Neumann’s law. The grids represent geometry of the ridge and
deformation within it for negative (A) and positive (B) Marangoni stresses, as obtained from the similarity solutions. The gray lines
denote the undeformed grid, and the arrows indicate the direction of the Marangoni stress.

div(e) =0, x €D, (19)
A(Tt)
.n— = D 2
o-n 8s 0, X € a ) ( 0)
[Tt]* + vty =0, X = X, (21)

where D denotes the current domain of the deformed
state. Besides the classical elastic stress equilibrium in bulk
[Eq. (19)], the interface condition [Eq. (20)] gives the
Marangoni effect where ¢,, =t - 6 - n balances gradients
in surface tension 0Y'/Js, while the normal component of
elastic stress ¢,,, = n - 6 - n balances the Laplace pressure.
Finally, the Neumann condition appears at the contact
line [Eq. (21)], expressed as a discontinuity of the surface
tangents. The only assumption made in the derivation
above is that the stress singularity is sufficiently weak
for the divergence theorem to be applicable, as is the case
for a logarithmic singularity.

B. Similarity solutions

We now analytically establish the nature of the elastic
singularity, through an asymptotic analysis near the contact
line. For this analysis, we express the mapping y(X) in
polar coordinates, (r, @) and (R, ®), respectively, for the
current and reference state. The contact line is located at
r = 0and R = 0, and without loss of generality the initially
flat free surface is chosen to be along the lines ® =0
and ® = z. We make use of the fact that the boundary
condition (21) forces the solid into an angle #g, which is
defined by the property

05 = }ei_f}(l)((ﬂqhn — Po—o)- (22)

As is common with singularities [48], we expect the
asymptotics to be scale invariant, so we propose a similarity
ansatz:

r(R,®) = R, (D),

9(R. @) = R\ g(®). (23)
Imposing Eq. (22), one finds that # = 0. A critical feature
of soft elastic solids is that these are basically incompress-
ible, i.e., det(F) = 1. Combined with =0, this result
then dictates @ = 1, which implies that the radial stretch
A, = dr/dR remains finite and is independent of R. In the
azimuthal direction, incompressibility implies a relation
between the functions g, ,, which can be accounted for by
writing

R
"R®) = @)
9(R.®) = / *auf().

0

(24)

so that the solid angle follows as 05 = [7 d®f(®P). The
deformation gradient tensor of this mapping reads

F F or 10r A 1
Fe ( "R r<D> B ( R Racb) I VAW
- N\ e row | T ’
For Foo ok Ro 0 VF

(25)

which indeed satisfies det(F) = 1 for arbitrary f(®). The
corresponding Finger tensor reads
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B=F F =

This tensor defines the most general scale-invariant incom-
pressible map that generates a corner.

For the special case where f' =0, one recovers the
classical solution by Singh and Pipkin [49]. However, that
solution is shear-free (i.e., F and B are diagonal) and,
therefore, cannot be universally valid. Here, we derive the
most general corner solution that satisfies mechanical
equilibrium, div(e) =0. We focus on a neo-Hookean
material defined by Eq. (11), which has a Cauchy stress
6 = GB — pl, so that Eq. (19) becomes

grad(p) = Gdiv(B). (27)

This equation implies that div(B) must be irrotational, i.e.,
curl[div(B)] = 0, which here takes the form

OB,
aq)"’ +B,, - B,, =K, (28)

where K is an integration constant. Inserting Eq. (26) and
bearing in mind that 9/9¢(---) = (---)'/f, we find

Y \? _
_<ﬁ) +1+<§> - f* =Kf. (29)

This equation is a nonlinear second-order ordinary differ-
ential equation for f(®). As boundary conditions, we
impose the stretch at each of the boundaries, which
subsequently gives the shear stress via the connections

_dr_ 1
" dR /(@)

_ Gf(@)
" T af(@)

=0

(30)

We note that 4, in the similarity solution is independent
of R and can, therefore, be identified to the stretch at the
contact line A, = 44. The constant K can be adjusted to
accommodate the desired #5. Explicit solutions are pre-
sented below and compared directly to FEM simulations.

FIG. 5.

Once a solution is found, one can explicitly integrate
Eq. (27) to obtain the pressure

p(r.@) = GKlog(r/b). (31)

which contains an integration constant b that is fixed by
matching to the outer large-scale solution. Thus the
analytical description of incompressible corner solutions
in the fully nonlinear regime is complete.

C. Theory compared to FEM

The similarity solutions derived above capture all FEM
results of Sec. III, in the vicinity of the contact line. First,
we consider the stress, which for a neo-Hookean solid is
given by 6 = GB — pl. Our theory explains the FEM
result that the normal stress diverges logarithmically,
following the singularity of pressure (31), and offers a
way to compute the prefactor K. Furthermore, the corner
solution shows that B as given in Eq. (26) remains finite at
the contact line. This result explains why the Marangoni
stress ¢, = 0, remains finite at the contact line.

We now turn to a fully quantitative analysis, by solving
Eq. (29) for various boundary conditions. Typical (sym-
metric) similarity solutions are represented graphically in
Fig. 5, denoting the Lagrangian grid in both undeformed
(gray) and deformed (black) configurations. The three
panels each correspond to O¢ = 120°, with different
amounts of stretch imposed on the free surfaces. In
Fig. 5(a), we report the solution without shear stress, for
which f' =0 for all ¢. In this case, Eq. (24) reduces to
the classical solution by Singh and Pipkin [49], with the
constant f = 6¢/x. In the context of elastocapillary ridges,
the absence of shear corresponds to a substrate without a
Shuttleworth effect. This correspondence explains why, in
the absence of a Shuttleworth effect, the stretch at the
contact line A, is found to be independent of A, in our
FEM simulations: In a shear-free corner, the stretch takes
on a specific value that depends only on the solid angle,

as A, = Aq = \/7/0s. The stretch at the contact line is,
therefore, locally determined by 6, irrespective of the
conditions imposed at a large distance. Furthermore, in this
specific case without shear stress, we find an analytical
expression for the strength of the pressure singularity, the

";///l/ll\\\\\g#..

i

Y

N
s

Similarity solutions for symmetric corners obtained from Egs. (24) and (29), all with g = 120°. (a) Without the Shuttleworth

effect, the shear stress vanishes at the interface, and one recovers the Singh-Pipkin solution [49]. (b),(c) The Shuttleworth effect induces
Marangoni stresses, giving positive (b) or negative (c) elastic shear stress at the interface, the direction indicated by the arrows.
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constant K in Eq. (31). Inserting f = 6¢/x in Eq. (29) gives
K = (n/05) — (05/7). Indeed, this expression is exactly
the scaling used in Fig. 3(a), necessary to account for the €
dependence, which renders the asymptotes of the curves
parallel. Note that the integration constant b in Eq. (31) is
not universal, which is why the asymptotes in Fig. 3(a)
appear with a horizontal shift. This result demonstrates that
the corner solutions are fully quantitative and provide the
correct asymptotics observed in FEM, valid in the strongly
nonlinear regime.

The Shuttleworth effect dramatically changes the physi-
cal picture. Now, a variety of surface stretches A, is
possible, as shown in Figs. 5(b) and 5(c). Each of these
solutions comes with its own value of the elastic Marangoni
stress. Figure 4 illustrates this point, where the prediction of
the similarity solutions is shown as a solid line and
compared directly to the Marangoni stress in FEM. For
the symmetric surface tensions considered in our simu-
lations, the corresponding similarity solution is naturally
symmetric and can be found without any adjustable
parameters: It follows directly from the surface constitutive
relation (12), which in combination with Neumann’s law
determines the appropriate combination of #g and A. The
perfect prediction of the elastic Marangoni stress in Fig. 4
confirms that the corner solutions indeed offer the correct
asymptotic description of the singularity—also in the
presence of the Shuttleworth effect.

As a concluding remark, we emphasize again that the
observation in PDMS that A, increases upon varying A,
[20] cannot be explained in a hyperelastic theory without a
Shuttleworth effect.

V. LIQUID CONTACT ANGLE, PINNING, AND
ESHELBY FORCES

A. Hysteresis via a process zone

So far, we consider an isolated contact line, at some
prescribed position X, pulling vertically with perfectly
symmetric wetting conditions. In a real wetting problem,
however, a droplet spreads dynamically until it reaches its
equilibrium liquid angle—simultaneously, the contact line
reaches an equilibrium material position X, which is
not known a priori but which needs to be found self-
consistently. Hence, the full equilibration involves a free
exploration of the contact line over the substrate.
Technically, such an equilibrium without pinning implies
that the change of material coordinate is energetically
neutral. Naturally, this equilibration is the case when the
substrate is perfectly homogeneous in its reference state.
Indeed, in contrast to the rigid case, there are various
examples where well-prepared soft polymeric substrates
are basically free from pinning and contact angle hysteresis
[20,31,32,50].

Here, we take the opposite perspective and consider the
possibility that the presence of the contact line itself

induces heterogeneity in the material—in its reference
state. Even when the originally prepared soft polymeric
substrate does not exhibit permanent defects that provide a
frozen surface energy landscape, the substrate can develop
heterogeneities dynamically, due to the presence of the
contact line. Indeed, a large-stress region builds up at a
small scale, which can lead to irreversible plastic flow, like
in the “fracture process zone” that forms at a crack tip.
Although wetting-induced damaging processes are evi-
denced in experiments where a soft gel exhibits fracture
by wetting [51], we focus here on nondamaging plastic
deformations in the near-surface region—so that the bulk
reference is not affected. Plasticity typically occurs in
situations where there is multistability, where multiple
stable configurations coexist, which can lead to a hysteretic
response upon contact displacement [52]. The large strain
may indeed provide a configurational plasticity, without
damaging the material. When chains between cross-linkers
are long enough to produce entanglement, strain may
trigger changes of glassy chain conformation. As an
alternative mechanism, the contact line may lead to a local
strengthening associated with the elongation of polymeric
chains, producing a highly dissipative zone when the
contact line explores its environment. Below, we derive
the consequences of a nondamaging, plastic process zone
induced by the presence of the contact line. By analogy
with fracture mechanics, or with defects in crystalline
solids, such a plastic process zone can be described by a
defect singularity in the theory of elasticity. The singularity
then represents the effect of the plastic process zone on the
elastic “outer” region. We reveal how the strength of such a
defect directly relates to contact angle hysteresis.

B. Displacing an elastocapillary defect

The consequence of a defect, representing the effect of a
process zone on the outer region, can be computed from the
change in energy associated to a global displacement of the
solution. This consequence is illustrated in Fig. 6, showing
such a displacement 06X = 6UT on the reference domain
[Fig. 6(a)] and on the current domain [Fig. 6(b)]. The
change in elastic energy associated to the displacement of a
defect is known as the Eshelby force [23]:

0y

=— =T- ¢ dSII- N, 32
fen === f (32)
where the integral encloses the defect and we define the
Eshelby’s energy-momentum tensor

ow
Im=WwWI-F.——. 33
OF (33)
The Eshelby force reduces to the J integral in small
deformation (linear) elasticity, where it finds an interpre-
tation as the energy release rate in fracture mechanics [53].
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FIG. 6. Determining the liquid contact angle 6; upon global
displacement of the solution. (a) Lagrangian point of view: On
the domain of material coordinates, the shift is achieved by a
change of material point 6X = 6UT, where the contact line
applies. Without pinning, the displacement is energetically
neutral, while, in the presence of a pinning defect, an energy
—I'6U is dissipated at the contact line. (b) Eulerian point of view:
The displacement 6U leads to a variation of the entire solution as
given in Eq. (34). At a large distance from the contact line, the
change of the surface energies reads (ysp. — 7sv)4e0U.

To derive the capillary energy released by moving a defect,
it is instructive to follow the derivation of the classical
result (32), which is based on the application of Noether’s
theorem in the space of material coordinates [23].

On the reference domain, the displacement simply
amounts to a translation 6X, = 6UT of the contact line
force, as in Fig. 6(a). The corresponding translation on the
current domain is sketched in Fig. 6(b). The idea of
deriving the elastic energy released by displacing a defect
is to interpret the translation U as a variation 6x, which
can be expressed as

)
6x = 7(X = 6UT) = 7(X) = — =2 - T6U = ~5UT - F'.

(34)

The associated change in elastic energy can be computed
from this variation, as

0&q = /d2X6x~ <55e1> = -6UT ~/d2X <FT %>
6X 6X

= -§UT - / d2XDiv(II). (35)

Importantly, in the last step, one uses that the (reference)
substrate is homogeneous everywhere except at the
defect [23]. When in the vicinity of the singularity
IT~ 1/|X — X, the integral is finite and can be expressed

as Eq. (32). When the material is homogeneous every-
where, i.e., no defects, the Eshelby force uniformly
vanishes as a consequence of translational invariance.

We now follow the same scheme for the capillary energy,
upon replacing W by Ay, and the deformation gradient
tensor F by its vectorial surface analog F; = 0x,/0S.
Subsequently, we define the surface equivalent of the
Eshelby tensor (33), which now is a scalar, and which
takes the form

Jy —FT. @%7)) =l =Y == =—u (36

which is the chemical potential anticipated in Eq. (14).
Indeed, the associated change in capillary energy reads

o6&,
5gcap = _5U/ das (FZ . p)
1.4

- 5U/d5% = U], (37)

where the integral runs over an infinitesimal domain across
the singularity. It is clear that a finite capillary defect energy
appears only when u exhibits a discontinuity at the contact
line, i.e., [u]f # 0.

We thus conclude that the total energy release rate I,
liberated upon displacing the elastocapillary defect at the
contact line, takes the form

o€

F:——_
ou

[t +T- j'{dSH N =—[ul* + fen-
(38)

Given that the defect represents a process zone, this result
indicates a loss of energy —I'0U, dissipated inside the
process zone during the translation. For the special case
where there is no pinning defect and the contact line is free
to move, the variation of the contact line position should be
energetically neutral, so that I' = 0.

The notion of the (elastic) Eshelby force in wetting was
recently proposed in Ref. [22], where it is argued that the
formation of a ridge would already be sufficient to induce
an elastic Eshelby force. However, from the above, it is
clear that this situation is not the case when the substrate is
perfectly homogeneous in its reference state, so that there
is a translational invariance of the space of reference
coordinates: Applying Noether’s theorem to this transla-
tional invariance [23], one finds OEy/OU = 0. This van-
ishing of the Eshelby force is indeed confirmed by our
FEM results and analytical solutions: The stress is only
logarithmically singular, so that for an infinitesimal inte-
gration volume around the contact line Eq. (32) gives
SfEsh = 0. Therefore, for homogenous substrates, the con-
dition I' =0 reduces to [u]= = 0. The continuity of p
across the contact line can be interpreted as an “‘equality of
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chemical potential,” necessary for a free exchange of
material points across the contact line. This condition of
no pinning was previously derived within the strong
restrictions of linear elasticity [32]—but it turns out to
be valid also when deformations are large.

For a nondamaging process zone, i.e., the reference state
remains intact, we expect the Eshelby force to vanish owing
to translational invariance. Nonetheless, a capillary defect I
could still emerge, associated with the interfacial microstate
of the polymer.

C. The liquid contact angle

Up to here, we consider properties of the solid and do not
discuss explicitly the liquid. Yet, the liquid contact angle 6;
is the prime feature that characterizes the wetting of a liquid
drop. To complete the theory, we now show how the
equilibration determines €; on homogeneous substrates—
and how the maximum strength of a contact line defect can
be related to contact angle hysteresis on elastic substrates.

We restrict ourselves to the case of a sufficiently large
drop, so that far away from the contact line one encounters
a flat substrate (Fig. 6). At a large distance from the contact
line, the substrate, respectively, has a solid-liquid energy
¥si.(Ae) and a solid-vapor energy ygy(4s). The usual
argument leading to Young’s law for the contact angle
amounts to the global horizontal displacement [12]. In
the present case, the (Eulerian) displacement reads 1.,,6U,
so that the solid -capillary energy increases by
(ysL — 7sv)Ae0U, the value of which has to be taken far
away from the contact line. This result balances the work
—y1v cos 0 1., 6U performed by the liquid-vapor interface,
which together gives Young’s law. The situation is modified
by the presence of a defect: As described above, such a

displacement also involves a dissipation inside the process
zone, indicating a loss of energy —['6U. By consequence,
we find a modification of Young’s law:

Aoo(¥sL = 7sv)s, T = —AeorLv cos Oy
= yrv(cosd, —cosby; ) = A Y (39)

where in the second line we anticipate that fgy, = 0 (owing
to the weak logarithmic elastic singularity). For homo-
geneous substrates, I = 0, and we recover Young’s law for
the liquid contact angle. We remark that 8y is based on the
surface energies corresponding to A.

The analysis above, in particular, Eq. (39), can be
verified by the FEM simulations. In the numerics, we
fix a priori the material position X of the pulling force, so
that we effectively work with a pinned contact line. For
symmetric surface tensions and pulling vertically, this case
is equivalent to the unpinned case, but we can consider
any liquid angle #;, by changing the pulling direction
tiy = (—cos;,sinf;) in Eq. (10). We then measure the
jump [u]= = [u]3Y across the contact line obtained for the
corresponding solution, as a function of 8;. We consider
two cases: (i) symmetric surface energies yg; = ysy (so that
0y = 90°) and (ii) asymmetric surface energies yg; # 7sv
(here, with 8y = 113.6°).

The result is presented in Fig. 7(a). It is clear that both
cases, symmetric and asymmetric, are in perfect agreement
with Eq. (39) with I" = —[u]3. This agreement implies that
SfEsh = 0, consistent with the weak logarithmic singularity.
Hence, 0; can be different from its equilibrium value 8y by
the presence of a nondamaging process zone, represented
by a capillary defect. In that case, interfacial plasticity
could be associated with a contact angle hysteresis.

(a) 30
20

10

-1 -0.5 0 0.5

cos 0y,

FIG. 7.

(a) The strength of the surface defect, quantified by the discontinuity of chemical potential [u]*, plotted versus the liquid

contact angle 6;. Solid lines are from the theoretical prediction (39), open symbols from FEM with the Shuttleworth effect
(co = ¢y = 1). Blue data: Symmetric surface energies ygsv = 7os. = YLy» sO that the equilibrium angle 6y = 90°. Red data:
Asymmetric surface energies yosy = 4/5yLy and yosp. = 6/5yLy, so that based on 1, = 1 we find cos@y = —2/5. The numerics
confirm that [u]* provides the pinning force; when pulling at §; = 0y, there is no pinning and [u]* = 0. (b) The grid plot represents the
asymmetric ridge for symmetric surface energies, resulting from a contact angle 6; > 0. This ridge corresponds to the data point

marked by an arrow in the main panel.

031067-12



SINGULAR NATURE OF THE ELASTOCAPILLARY RIDGE

PHYS. REV. X 10, 031067 (2020)

A typical asymmetric similarity solution is shown via the
grid representation in Fig. 7(b), for which there is a jump in
stretch across the contact line. We remark that, in all cases,
Neumann’s law is still observed to be valid, irrespective of
the defect.

VI. DISCUSSION

In summary, we explore analytically and numerically the
macroscopic theory for elastocapillary ridges, based on the
minimization of a bulk elastic free energy and a surface
capillary free energy. This theory offers a fully nonlinear
description of soft wetting, including the possibility that
capillarity depends on strain (Shuttleworth effect), large
elastic deformation, and pinning. In this macroscopic
theory, there is a perfect separation of scales between
elastocapillary length y/G and the molecular scale a, since
effectively a — 0 in the continuum. This limit is relevant
for typical experiments, and it is of theoretical importance
in order to reveal the nature of the ridge singularity as
predicted from large deformation elasticity. We now dis-
cuss these new theoretical results in comparison to recent
literature on the Shuttleworth effect.

A. Theory
1. First boundary condition

In this macroscopic description, it is found that the stress
singularity associated with the contact line ridge is weak
(i.e., logarithmic) and, therefore, integrable, under all
conditions that are considered. Hence, the singularity does
not behave analogously to an elastic disclination defect,
and no qualitative difference emerges when the substrate is
globally stretched. As a consequence, in this limit where
y/Ga — oo, the Neumann tension balance at the contact
line is strictly valid. In the scheme of energy minimization,
Neumann’s law emerges as auxiliary condition (21) and as
such serves as a first boundary condition at the contact line.
We have no explanation for why previous continuum
simulations suggest a deviation from Neumann’s law
[21,22]. We emphasize, however, that the present numerics
are based on an adaptive method, which is necessary to
fully resolve the elastic singularity, and that we extensively
verify that the results are fully converged. Furthermore, we
derive new analytical solutions of nonlinear elasticity that
describe the singularity—these are indeed perfectly recov-
ered by the numerics.

How can one understand the deviation from Neumann’s
law observed in molecular dynamics simulations of wetting
on cross-linked polymer networks [33]? This deviation
finds its origin in the lack of scale separation between y/G
and the molecular scale a, which is inevitable in molecular
simulations—the scale a there enters as a molecular cutoff
of the continuum and also gives a finite width of the
interface. As argued in Refs. [26,27], the elastic contribu-
tions near the contact line can be computed by integrating

the elastic stress over a small but finite region—in
molecular simulations, the smallest possible size for this
region would be a. In the present work, we demonstrate
that the stress singularity is always logarithmic:
o~ Glog[r/(y/G)]. Hence, the integral over stress gives
an elastic contribution

/ " dro ~ Galog(aG/y), (40)

a

which needs to be compared to the surface tensions. In
molecular simulations, where typically y/Ga is of the order
of 1-100, a measurable elastic correction to Neumann’s law
indeed appears. We refer to Ref. [27] for a quantitative test
of Eq. (40), as the elastic correction to Neumann’s law.
However, in typical experiments performed with polymeric
gel, where the y/G is well above the micron scale, the
scale-separation correction is 10™#, and one approaches the
macroscopic continuum limit. In such experiments, one
safely concludes that Neumann’s law holds.

2. Second boundary condition versus pinning

While much theoretical work focuses on the validity (or
not) of Neumann’s law, very little attention is given to the
implications of contact line pinning [27]. In many experi-
ments on soft polymer networks, contact line pinning is
virtually absent, as quantified by a very small hysteresis
[20,31,32,50]. This absence implies that the contact line
can freely move, exchanging the substrate’s material point
touching the liquid-vapor interface without any energetic
cost. Here, we demonstrate that such a free motion occurs
only under a very specific condition. Namely, the chemical
potential defined by u = A?dy/dA must be continuous
across the contact line. This continuity of chemical poten-
tials is the second boundary condition that needs to be
imposed when there is no contact line pinning. Such a
condition was previously derived under the restrictive
assumption of linear elasticity [32]—here, we demonstrate
this assumption to be valid also at large deformation and
explore its consequences in numerical simulations. In
particular, we confirm numerically that Young’s law is
recovered only when the second boundary condition pgy =
usr, 1s satisfied at the contact line. For asymmetric surface
energies, the second boundary condition, in general,
implies a jump in stretch across the contact line, so that
in the presence of a Shuttleworth effect one generically
expects large deformations.

The possibility of pinning is interesting in itself.
Depending on the material strength, large deformations
might lead to fracture, as observed in Ref. [51], or local
plasticity. We demonstrate how such a local “process zone”
can be accounted for by introducing a defect in the
elastocapillary continuum theory. With the defect, one
can accommodate a range of angles 8; by adjusting the
strength of the defect at the contact line. In our simulations,
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we encounter only a weak logarithmic singularity of elastic
stress, which implies that the strength of the defect received
no contribution from elasticity (i.e., the elastic Eshelby
force vanishes). The defect strength, in fact, is found to be
equal to the discontinuity in chemical potential at the
contact line, i.e., I' = —[u]T, giving rise to a modified
Young’s law (39). In practice, one expects the defect to
exhibit a “toughness,” just like in fracture, which is the
maximum value that can be sustained before depinning
occurs. Given Eq. (39), we immediately infer that this
argument implies a contact angle hysteresis, with advanc-
ing and receding angles cos, —cos8, = 2|[u]F | nax-
Future theoretical work should be dedicated to a more
detailed description of the interior of the process zone.

3. Beyond the incompressible neo-Hookean solid

The numerical simulations and the analysis above are
performed for an incompressible solid with a neo-Hookean
constitutive relation. However, reticulated polymer net-
works may exhibit an elasticity different from this ideali-
zation [32,54,55]. While the neo-Hookean solid brings out
all the kinematic nonlinearities associated with large
deformations, it is important to confirm to what extent
the results are robust with respect to different choices of the
solid’s constitutive relation.

A beautiful feature of the shear-free mapping by Singh
and Pipkin [49], Eq. (24) with a constant f, is that it is an
exact solution for an arbitrary incompressible hyperelastic
solid, regardless of its constitutive law. In fact, this feature
is what made the solution of particular interest to Ref. [49],
since it can be used for the purpose of material charac-
terization. We thus conclude that for the incompressible
corner without shear, i.e., without the Shuttleworth effect,
the corner solution applies to any hyperelastic solid. Hence,
the kinematics, in particular, the stretch at the contact line

A = 1/ 7/0s, is universal. The asymptotics for the pressure
(31) are also unaffected—only the relation between the
prefactor K and the solid angle f5 changes for different
constitutive relations.

For the case with a Shuttleworth effect, i.e., Eq. (24) with
f'#0 so that there is shear, the solution is no longer
independent of the solid’s constitutive relation. Importantly,
however, the kinematic structure that we identify, as
expressed by Eq. (26), is still valid for any hyperelastic
solid. This validity means that the stretches remain finite
and are independent of the radial distance r to the contact
line. One can show that the corresponding pressure is again
logarithmic, still following the asymptotics (31).

Hence, for incompressible solids, changing the solid’s
constitutive relation does not alter the kinematics nor the
nature of the stress singularity. Though elastomers are
typically incompressible, we numerically verify that the
stress singularity is still logarithmic for a compressible
solid at finite deformation (using a compressible neo-
Hookean model, with Poisson ratio 0.4). The central

conclusions of our paper, regarding the logarithmic stress
singularity at large deformations and its consequences for
the interpretation of experiments, are, thus, generally valid,
beyond the incompressible neo-Hookean solid.

B. Experiments and outlook

Experiments that probe the strain dependence of surface
tension are so far based on wetting experiments, with a key
role to the contact angles of the solid and of the liquid.
Having established the elastocapillary continuum framework
for soft wetting, for the first time consistently accounting for
large deformations and the Shuttleworth effect, we can now
critically assess the experimental situation.

Different series of experiments have been performed
with stretched PDMS gels, for static [20,30] and dynamical
wetting [32]. They consistently show a change of the solid
angle 6g under stretching. Similarly, the solid angle is
found to change in dynamical experiments on
Polyvinylsiloxane [35]. Our results consolidate these
experimental results: In the Appendix, we show at what
scale the “true” Neumann angle g is reached and confirm
that these lie within the experimental resolution. To date,
these experimental observations have not received any
other explanation than via a surface tension that depends
on the strain (or on the history of strain). Hence, they offer a
convincing case for a nontrivial surface constitutive relation
in soft polymer networks, at least for two different systems.

Another direct piece of evidence for the Shuttleworth
effect is that experiments in Ref. [20] reveal an increase of
stretch at the contact line upon a global stretching of the
substrate. This information was previously not used to
interpret results in the context of a Shuttleworth effect.
However, our numerical and analytical results show that
such a variation of the stretch at the contact line can occur
only in the presence of elastic Marangoni stresses, induced
by a Shuttleworth effect—if surface tension were constant,
the stretch at the contact line would take on a constant value.

This result evokes an important question that remains to
be resolved: What is the microscopic origin of the coupling
between surface energy and strain? The polymer is
expected to be liquidlike at a small scale, where surface
tension is exerted: What can produce the coupling between
the microscopic scale and the deformation of the network
of reticulation (or entanglement) points? A possible sce-
nario is that the coupling emerges from a superficial layer
where the mechanical and structural properties are different
from the bulk [25,31]. Related to this open question is the
experimental observation that, in contrast to solid angle 05,
the liquid contact angle 6; turns out not to depend on
stretching [31]—a property that is confirmed for six
different liquid-substrate systems in Ref. [31] and which
also holds for PDMS [20,32], for substrates stretched up
to 100%. This result is surprising, since Young’s law for
the liquid angle should be valid for sufficiently large drops,
but with surface energies ygy — 751, based on the externally
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imposed stretch A, [31]. This interpretation of Young’s law
is confirmed in Sec. V, in an analysis where the large
deformation elasticity and the Shuttleworth effect are
explicitly accounted for. The implication of the experimen-
tal invariance of 6; (within an experimental resolution of
+1°) is that, for all imposed A, the strain dependence
dy/dA must be nearly the same on both sides of the contact
line. While there is no understanding of the microscopic or
mesoscopic origin of the strain-dependent surface energy,
there is a fortiori no real understanding of this property,
observed to be valid for many different pairs of liquid and
reticulated polymers. However, it indicates that the con-
tribution to the surface energy which depends on strain,
and, therefore, on the deformation of the reticulation points
network, is the same with and without a liquid in contact.
The situation is very different for glassy polymers, for
which it is found that the polarity of the liquid affects dy/dA
[31]. We infer that, for elastomers, the strain dependence of
excess energy in the superficial layer must be associated
with an anomalous elastic property and not with the
interaction between the polymeric surface and the fluid.

Another assessment of the Shuttleworth effect makes use
of an elastic Wilhelmy plate, where a polymeric wire is
partially immersed in a liquid reservoir—allowing one to
measure the stretch discontinuity across the contact line. In
Ref. [34], it is found that the strain remains very small and
no discontinuity is observed—implying once more that
dy/dA is equal on both sides. In the initial experiment in
Ref. [28], conversely, a strong discontinuity of strain is
observed at the contact line, implying a jump in dy/dA.
Given that strains remain very small in these experiments,
we can assume that the measured strain reflects the actual
strains close to the contact line. Therefore, one can interpret
these experiments using the no-pinning condition of Sec. V,
i.e., [u]* = 0, which at small strains implies the continuity
of dy/dA across the contact line—in perfect agreement with
the observation in Ref. [34]. It is argued in Ref. [34] that
discontinuous strains could be an artifact due to swelling.
As an alternative interpretation, we note that in Ref. [28] a
strong contact angle hysteresis is observed, which in the
Shuttleworth interpretation would also be consistent with a
breakdown of the no-pinning condition [u|f = 0.

This research opens the promising perspective of iden-
tifying different conditions or different preparation proto-
cols to get, or not, polymer networks with intricate surface
properties. The main open question is to understand the
microscopic origin of the Shuttleworth effect, which in the
present understanding is confirmed for at least two different
systems. We emphasize that, mechanically, none of the
experimental observations are in contradiction with the
presence of a Shuttleworth effect, in particular, since 8; and
the elastic Wilhelmy plate probe only the difference of
strain dependence on either side of the contact line. By
contrast, the independent measurements of both the solid
angle and the stretch at the contact line [20,30] cannot be

explained by a hyperelastic theory without explicitly
accounting for a strong Shuttleworth effect. Future experi-
ments on a broad class of soft materials should, therefore,
simultaneously explore both contact angles €; and g, as
well as the strains near the contact line. Special attention
should be paid on the influence of both the surface
functionalization and the surface architecture of the reticu-
lated polymer network on both surface tension and its
variation with respect to A. The development of molecular
dynamics simulations of reticulated polymers may help
understand in detail the relation between the Shuttleworth
effect and statistical effects in the surface. Combined
with the fully nonlinear numerics as presented here, this
understanding will offer a systematic quantification of
the capillarity of soft solids. A next step is to extend the
numerical method to wetting dynamics, for which the
solid angle (and, thus, the Shuttleworth effect) is a key
parameter. Indeed, a stretched substrate can exhibit an
enhanced wetting mobility [32]. A possible route is to
simulate contact lines that move at constant velocity. Such a
motion generically implies large deformations that excite
the substrate’s bulk viscoelasticity and possibly history-
dependent surface rheology [56].

VII. CONCLUSION

In this article, we have addressed some of the hotly
debated questions on soft wetting and its implications
for surface mechanics of polymeric networks. The cen-
tral issues pertained to the nature of the singularity of
the elastocapillary ridge, which appears in response to
the nanoscopic forcing at a three-phase contact line.
Specifically, there has been a controversy on the roles of
bulk (elasticity) and surface (capillarity) forces in this
singular force balance. Using a combination of asymptotic
methods and goal-adaptive finite-element simulations, we
revealed that the bulk elastic stress singularity is integrable,
irrespective of the solid’s constitutive relation. Thereby,
bulk elasticity cannot affect the force balance at the contact
line—by consequence, the mechanics at the ridge tip
involves only capillary forces. In addition, we explored
the consequences of plastic events near the highly strained
ridge and showed how these relate to the classical Young’s
law on soft substrates.

The resolution of the controversy allows us to interpret
recent measurements in a unified manner. The experimental
observations, that the solid ridge angle and its stretch at the
contact line vary with an externally applied global stretch,
consistently imply a strong Shuttleworth effect: The solid
interface represents a surface elasticity where capillary
forces depend on the local amount of stretch. Most
concretely, our results imply that solid surface tensions
can be determined by measuring ridge angles and the local
surface stretches. The experimental observation that the
liquid angles do not change with a global stretch implies
that this surface elasticity is insensitive to the presence of a
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liquid phase in contact with the reticulated polymer. A
complete technical review of the state of the art, in relation
to our findings, can be found in the discussion in Sec. VI.

More generally, this paper provides a rigorous theoretical
framework to characterize the surface elasticity of soft
solids—allowing for large deformations and even singu-
larities. It contributes to the promising domain of polymer
surface science by a macroscopic analysis of the coupling
between adhesion and elasticity. Technological applica-
tions in soft microtechnology, ranging from electronics to
focal adhesion of biological cells, will have to finely
control the chemical functionalization, the polymeric net-
work architecture, and the electronic properties at the
surface of reticulated polymer.
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APPENDIX: ASYMPTOTIC APPROACH
TO NEUMANN ANGLE AND
EXPERIMENTAL ACCURACY

The corner solutions described in Sec. IV are valid
asymptotically close to the tip. A question of experimental
relevance is how rapidly this asymptotic result is
approached, specifically, what spatial resolution is required
in order to accurately resolve the true, asymptotic ridge
angle 6. Here, we consolidate the experimental method by
considering the approach to symmetric corners, from the
FEM numerics and from a perturbative analysis based on
the corner solutions.

In Fig. 8, we plot the local angle of the interface ¢(r)
(measured with respect to the horizontal, defined as a
positive quantity), as it approaches its value at the contact
line ¢,. For symmetric corners, the solid angle
0 = m — 2¢. This ultimate angle is approached as

.
y/G’

as indicated by the red dashed line in Fig. 8. In this
expression, K is the same as in Eq. (31), while B depends
on the outer solution. The asymptotics (A1) can be obtained
from a perturbation analysis around the straight corner. For
this analysis, we balance the leading-order elastic stress
p ~ KGIn(r/b) with the Laplace pressure p ~ yOp/Or.
This balance indeed gives Eq. (A1) and perfectly describes
the asymptotics of the FEM data.

@(r) =~ @q + K¥ln (BF), with 7= (A1)
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FIG. 8. Typical example of the approach of the Neumann angle:

the interface angle ¢ with respect to the horizontal as a function of
the scaled distance to the contact line rG/y. Light gray symbols
correspond to FEM without a Shuttleworth effect (cy = ¢; =0,
with yo = yLv); large symbols represent a typical range acces-
sible to experiments. The red dashed line gives the asymptotics
(A1), while the solid black line (A2) gives an improved fit at the
scale r~y/G. The latter is fitted over the range typically
accessible in experiment (large symbols, appearing as a thick
gray line).

In the experiments of Xu et al. [20], the spatial resolution
of the interface profile is typically 1 um, with an elasto-
capillary length y/G of about 30 um. According to the
numerical result in Fig. 8, taking the value of ¢ at rG/y =
1/30 typically leads to an overestimation of &5 by about 10°
(the typical error is the same for all tested 4,). Such a value
is comparable to the error bar already given in Ref. [20], so
that our results consolidate the experimental characteriza-
tion of the ridge angle. Specifically, it consolidates that &g
exhibits a strong dependence on the imposed prestretch. We
suggest that the experimental resolution can be further
improved by fitting the profiles by the asymptotics. Rather
than Eq. (A1), which exhibits little overlap in the exper-
imentally accessible range, we propose the form

- BF L r
40(’)2(ﬂc1+K’”1n<1+;), with =G (A2)

This form is shown as the solid line in Fig. 8, fitted over a
typical experimental range 7 = 0.03...1 (large symbols).
This form has the correct asymptotics but also provides a
good fit at the scale r ~y/G.
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