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Condition number analysis and preconditioning of the finite cell
method

F. de Prenter®*, C.V. Verhoosel?®, G.J. van Zwieten®, E.H. van Brummelen?®

“Department of Mechanical Engineering, Findhoven University of Technology, The Netherlands

Abstract

The (Isogeometric) Finite Cell Method — in which a domain is immersed in a structured back-
ground mesh — suffers from conditioning problems when cells with small volume fractions occur.
In this contribution, we establish a rigorous scaling relation between the condition number of
(I)FCM system matrices and the smallest cell volume fraction. Ill-conditioning stems either from
basis functions being small on cells with small volume fractions, or from basis functions being
nearly linearly dependent on such cells. Based on these two sources of ill-conditioning, an al-
gebraic preconditioning technique is developed, which is referred to as Symmetric Incomplete
Permuted Inverse Cholesky (SIPIC). A detailed numerical investigation of the effectivity of the
SIPIC preconditioner in improving (I)FCM condition numbers and in improving the convergence
speed and accuracy of iterative solvers is presented for the Poisson problem and for two- and
three-dimensional problems in linear elasticity, in which Nitche’s method is applied in either the
normal or tangential direction. The accuracy of the preconditioned iterative solver enables mesh
convergence studies of the finite cell method.

Keywords: Finite Cell Method, Isogeometric Analysis, Condition number, Preconditioning,
Immersed/fictitious domain methods, Iterative solvers

1. Introduction

The Isogeometric Finite Cell Method (IFCM, e.g., [1-3]) combines Isogeometric Analysis (IGA,
[4, 5]) with the Finite Cell Method (FCM, [6, 7]). This combination enables application of IGA
to trimmed, coupled and overlapping domains in Computer Aided Design (CAD) [8-10], topo-
logically complex structures such as porous materials, composites and scanned data [11, 12], and
problems with moving boundaries such as Fluid Structure Interactions [13-15], without laborious
(re-)meshing procedures.

While FCM was initially introduced as a p-FEM method [6], it is nowadays commonly used in
combination with IGA. The main advantage of FCM over standard finite element methods is that
the mesh does not need to match the boundaries of the physical domain. Instead, the physical
domain is immersed in a topologically and geometrically simpler encapsulating mesh, on which a
myriad of approximation spaces — including Non-Uniform Rational B-splines (NURBS) — can be
formed. In (I)FCM, the complexity of the physical domain is captured by an advanced integration
procedure for the cells that intersect the domain boundary. Dirichlet boundary conditions on the
immersed boundaries are weakly imposed using Nitsche’s method [16].

When the encapsulating mesh contains cells that only intersect the physical domain on a small
fraction of their volume, FCM has been found to be prone to conditioning problems. These con-
ditioning problems impede solving the resulting system of equations. Due to this ill-conditioning,
in various contributions use was made of direct solvers, e.g., [1-3, 7, 9, 10]. The required memory
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and number of floating point operations for direct solvers scales different with the system size
than for iterative solvers, making direct solvers unsuitable for large problems [17]. To phrase the
recent review article by Schillinger and Ruess [3]: “... the development of suitable precondition-
ing techniques that open the door for efficient iterative solution methods in the finite cell method
seems very desirable ...”. As a matter of fact, various conditioning strategies have already been
proposed. The most prominent of these are:

o Fictitious domain stiffness: In order to increase the contribution of basis functions of which
only a small fraction of their support intersects the physical domain, many authors have used
a virtual stiffness, e.g., [3]. This implies that volumetric operators are not only integrated
over the physical domain but also — multiplied by a small parameter — over the fictitious
domain. See [18] for a mathematical analysis of this approach.

e Basis function manipulation: The adverse effect of basis functions with small supports
within the physical domain can be ameliorated by eliminating them from the system. This
can either be done by constraining them to geometrically nearby functions [19, 20] (as is also
done in Web-splines [21, 22]) or by simply excluding them from the approximation space,
e.q., [12, 23, 24].

e Ghost penalty: The contribution of basis function with small supports within the physical
domain can also be increased by adding an extra term to the variational formulation. An
example of such a modification of the formulation is the addition of the Ghost penalty
[25-27].

e Basis function scaling: Diagonal scaling of the system matrix has been demonstrated to
resolve conditioning problems in specific cases in the context of linear basis functions and
the extended finite element method (XFEM) [28], and in the context of weak coupling
strategies in nonconforming finite element methods for diffusion-reaction problems [29].

Although these methods (and combinations thereof) can be effective in improving the conditioning
of finite cell systems, they generally manipulate the weak formulation and /or approximation space,
which inevitably affects the solution and may compromise stability properties of the employed
approximation spaces. The exception to this is the basis function scaling approach applied in the
context of XFEM, which, in fact, can be interpreted as a diagonal preconditioning technique. It
is the primary objective of this work to extend this approach to be effective in the context of
the (I)FCM, yielding a fully automated and robust algebraic preconditioning technique (i.e., a
preconditioner constructed exclusively with information from the system matrix).

In this work, we perform a detailed analysis of the conditioning problems associated with
()FCM. An important novel contribution of this work is the derivation of an explicit scaling
relation between the condition number and the smallest cell volume fraction for the discretization
of elliptic second order partial differential equations using polynomial bases on uniform meshes.
This relation reveals a strong dependence of the condition number on the order of the employed
discretization, which corroborates the need to develop a strategy to improve the conditioning
of (HFCM. Motivated by the aforementioned relation, in this work an algebraic preconditioning
technique called SIPIC (Symmetric Incomplete Permuted Inverse Cholesky) is developed, based
on basis function scaling in combination with local orthonormalization on cells with very small
volume fractions. This local orthonormalization approach is similar to the manipulation of basis
functions in the Stable Generalized Finite Element Method [30]. We present the algorithm for
the construction of an algebraic preconditioner, which generally preserves the sparsity pattern
of the system or yields negligible fill-in. The construction of this preconditioner does not add
any significant computational cost. The analysis and application in this work mainly focus on
(I)FCM. We expect the SIPIC preconditioning technique to be applicable to a much broader
range of numerical methods however, as the indicated sources of ill-conditioning in (I)FCM can
also occur in other immersed, fictitious domain or enriched finite element methods such as XFEM
and weak coupling strategies, e.g., [29, 31, 32].



Section 2 of this paper presents the variational formulation of the finite cell method. In Sec-
tion 3, the explicit relation between the condition number and the smallest cell volume fraction for
uniform meshes is derived and numerically verified. The construction of the algebraic precondi-
tioner is described in Section 4. In Section 5, the numerical implementation is demonstrated and
the effect of the proposed preconditioner is shown for numerical examples. A novel contribution
in this section is the weak imposition of Dirichlet boundary conditions in either only the normal
or only the tangential direction. Furthermore, it is demonstrated that preconditioning enables
detailed mesh convergence analysis of FCM. Conclusions are finally drawn in Section 6. A special
conditioning technique for the local eigenvalue problem is described in Appendix A.

2. The finite cell method

Consider an elliptic second order partial differential equation over an open bounded Lipschitz
domain Q C R? (d € {2,3}), supplemented with Dirichlet and Neumann conditions on comple-
mentary parts of the boundary 0€:

—div(DVu) = f in Q,
n-DVu = gV on 'V, (2.1)
u=gP onI'P.

In this expression, n denotes the outward pointing normal vector and D is a bounded, self-adjoint
and elliptic linear operator, i.e.,

el¢)? <E€ODESCpllEl]Z and (@DE=E@D( VEC, (2.2)

for some 0 < ¢ < Cp, with | - || denoting the Euclidean norm and ® denoting a general contrac-
tion'. For the Dirichlet (I'”) and Neumann (I'V) boundaries it holds that T'P # (), TP? NIV = ()
and TN UTP =T = 99Q. Equation (2.1) can e.g., represent Poisson’s problem with a scalar field
u and D equal to identity. When u in (2.1) is vector valued, the equation can e.g., be interpreted
as a problem of linear elasticity.

Classical Galerkin methods for solving problems as (2.1) (such as the Finite Element Method
(FEM), e.g., [33, 34]) employ boundary fitted meshes on which essential boundary conditions
can be imposed in a strong manner — i.e., encoded into the approximation space. The Finite
Cell Method (FCM) is an unfitted Galerkin method, and uses a geometrically simple mesh that
encapsulates 2 such as a rectilinear discretization of Q U Qg as shown in Figure 2.1. The
variational problem equivalent to (2.1) considered in the finite cell method is of the form [16]

find up € V() such that: (2.3)
f(vh, uh) = E(vh) Yoy, € Vh(Q) ’
with
.F(’Uh, uh) = .7'—1(’[};“ Uh) + .7'—2(1};“ u;,) + .7'—3(1}}“ uh), (24&)
l(vp) = / v, © fAV + / v, © gNVdS + / —gPn © DV, + o, © ¢gPdS, (2.4b)
Q I ro
and
Fllop,up) = / Vo, ® DVuy,dV, (2.5a)
Q
.7:2(vh,uh) = / — (v;m@DVuh +uhn®DVvh) dS, (25b)
D
F3(on,up) = Bun, © updS. (2.5¢)
D

1By general contraction we indicate a contraction over all tensor dimensions, i.e., a multiplication of scalar
values, an inner product between vectors, a double inner product for second order tensors, etc.
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Figure 2.1: A geometrically complex domain €2 that is encapsulated by the geometrically simple, rectilinear domain
QU Qfies-

In these formulations V,(Q) € H'(Q2) denotes the finite dimensional approximation space and
B > 0 is a mesh-dependent (or V,(€)-dependent) parameter to ensure coercivity of F(-,-), as
is shown in Appendix A. Because F(-,-) is coercive on finite dimensional function spaces with
respect to the H*(£2) norm, it defines the equivalent norm

onll% = F(vn, vn), (2.6)

referred to as the finite cell norm (or FCM norm).

The value of 3 can be chosen globally or locally (i.e., one constant for the whole boundary I'”
or a separate constant for every cell that is intersected by I'). The global approach is presented
in [23], and is identical to the local approach when the whole domain is treated as one cell. A
standard discrete trace inequality (e.g., [35]) conveys that with the local approach, the lower
bound for 5; on cell ; is of the order of magnitude of 1 /E, with h; the typical length scale of
QF = Q,NQ (Figure 2.1). With the global approach, the lower bound for 3 is of the same order of
magnitude as max; 3;. Consequently, one cell that is intersected by I'P such that its Q! is small,
will cause a large value of 3 on the entire boundary I'?. As a result, global stabilization negatively
affects the conditioning of FCM (Appendix B). Moreover, it can degenerate FCM to a penalty
method [9, 10]. Local stabilization — as employed herein — is not prone to these deficiencies. For
F(,-) to be coercive, on every cell it must hold that 8; > C;, with [23]

||n . DCU}LHiz(FD

)
Ci _ 2 27
vhérlli%)(%)i) J il (Uha Uh) ( )

where V;,(€2;) denotes the restriction of the approximation space V,((2) to Q;, TP = Q, NTP is
the part of the boundary I'P contained in cell Q; (Figure 2.1), and

.Fil (vh, uh) = / Vo, ©@ DVu,dV. (2.8)
Qtr

A robust and well-conditioned method to compute C; is described in Appendix A. In this work,
Bi = 2C; is applied for all examples and test cases. This choice is essentially arbitrary and does
not affect the strategy to construct a preconditioner.

3. Condition number analysis

The condition number of an invertible matrix A is defined as

ro(A) = Al A7 |2 > 1, (3.1)



with || - ||2 the (induced) Euclidean norm:

A
Al = mex 12Xl
I

(3.2)

When solving a linear system of the form Ax = b, the condition number x9(A) is of major
importance. Well-conditioned systems (condition numbers close to 1) have a smaller propagation
of errors in A or b, converge faster when solved iteratively, and have a smaller uncertainty when
the error is estimated using the residual. For example, when A is symmetric positive definite —
such as system matrices originating from most FCM approximations — the Conjugate Gradient
method has a convergence bound that depends on the condition number as

|m—xmAs2<vgﬁ3;1)nx—xmm (33)

where x; is the approximation after i iterations and ||-||a denotes the energy norm ||x||% = x Ax
[17]. Hence, the guaranteed reduction in the error per iteration is much larger for x3(A) ~ 1 than
for k2(A) > 1. The estimate of ||x — x;||a in terms of the residual ||b — Ax;||2 also depends on
the condition number:

b — Ax;|3
A2

b — Axi|[3

< ||X - Xl”zA < HQ(A) ||A||2

(3.4)

Equation (3.4) conveys that, in the case of ill-conditioning, reduction of the residual to a value
below a specified tolerance does not guarantee convergence by the same amount of the (unknown)
error in the solution (e.g., the error in the energy norm).

Because the bilinear operator in (2.4) is symmetric and coercive, system matrices originating
from this FCM formulation are Symmetric Positive Definite (SPD). In Section 3.1 we derive an
equivalent definition of the norm for SPD matrices, which enables the application to FCM system
matrices in Section 3.2. In Section 3.3 we verify the obtained theoretical estimate of the condition
number with an example.

3.1. Equivalent norms for SPD matrices

Because symmetric matrices have orthogonal eigenvectors, definition (3.2) implies

1

)
|)\‘min

A2 = Almax  and AT 2= (3.5)

in which |A|max and |A|min denote the absolute maximal and minimal eigenvalues of A, respec-
tively. Furthermore, for symmetric matrices the largest and smallest eigenvalues correspond to
the maximal and minimal Rayleigh quotients

TA TA
y and Amin = min y Y

Amax = mMax .
e vy yTy y yly

(3.6)

If A is positive definite as well (i.e., A is SPD), all eigenvalues are positive such that Apax = |Almax
and Amin = |A|min- Combination of (3.5) and (3.6) yields

T
_ y'y
d A7l =
an I Il max JTAy'

| A{l2 = max (3.7)

yTy

which shows that the norm and inverse norm of SPD matrices are determined by the maximal
and minimal quotient of the energy norm and the Euclidean norm of a vector.



3.2. Condition numbers in FCM

To apply (3.7) to system matrices originating from FCM formulations similar to (2.4), we
consider a function v, = ®Ty € V,(Q) for some unique y € R™, with & denoting the vector
containing all basis functions. The FCM system matrix is defined as

A=F(® o7, (3.8)
and the following is noted:
Iyla =y Ay = F(y" @, @"y) = F(vn,vn) = |loal %, (3.9)

showing that the FCM norm of a function v, is equal to the energy norm of the corresponding
vector y with system matrix A. Therefore the || - |2 norm of A and its inverse according to (3.7)
can be interpreted as the quotient of the FCM norm of a function and the Euclidean norm of the
corresponding vector:

lon|% 1 [y I3
[Af2 = max ==, AT 2 = max ;=5 (3.10)
vy Iy ]13 vy [lon|%

When a function vy, exists for which the FCM norm ||v,|| 7 is very small in relation to the corre-
sponding norm ||y||2 of the coefficients vector, ill-conditioning can occur on account of the norm
|[A=t|2 being very large. This is a situation typically encountered in FCM. Since in FCM the
relative position of the mesh to the physical domain §2 is arbitrary, the volume of a trimmed cell
QF = Q,; NQ (Figure 2.1) can be arbitrarily small. When a function is only supported on Q!
its support?~ and as a result also its FCM norm — can therefore be arbitrarily small as well.
The vector that corresponds to this function does not depend on the volume of Qf*, however. As
a result, the inverse norm ||A~!||z in (3.10) can become arbitrarily large. In contrast, the norm
[|A ]2 in itself is not sensitive to the relative position of the mesh. Consequently, FCM can yield
arbitrarily large condition numbers, in case the mesh is positioned such that a, or multiple, small
trimmed cells occur.

To provide a quantitative estimate of the condition number, we restrict ourselves to situations
where:

e The number of dimensions d, is larger than one.

e A local stabilization parameter 3;, is used, as described in Section 2.

e A piecewise polynomial basis is applied (e.g., B-splines, Lagrange, or spectral bases).
e A uniform mesh with mesh size h is used.

The restriction to uniform meshes is made to simplify the derivation, but is not necessary for the
final estimate. The volume fraction n; is defined as the fraction of cell £2; that intersects physical

domain 2,
_ Q) o |9

;= = =Ll 3.11
K 1€2;] €] hd (311
The index of the smallest volume fraction is denoted by

¢ = argmin 7, (3.12)

such that the smallest volume fraction is n = 7,. Furthermore, we make three assumptions on the
shape of the trimmed cells:

2In the remainder of this manuscript, the term support refers to the support in the physical domain.



1. 9Q, N Q, the intersection between the (untrimmed) boundary of the cell with the smallest
volume fraction and the physical domain €2, contains parts of at most one of two opposing
cell faces. For example, if 2, = (0,1)¢, then

{zefz; =0} #0 = {2eQl|z;=1}=0, (3.13)

for all indices j < d.
2. There exists a positive constant Cr such that for every cell ;, the radius R; of the smallest
ball enclosing Q" is bounded by
R; < CrlQ¥|4. (3.14)

1
It follows from (3.11) that R; < Crhn?.
3. There exists a positive constant Cr such that for every cell €2; that is trimmed by T', the
surface measure of I'; = I' N Q; (Figure 2.1) is bounded by

- d—1
ITy| < CplQ T = Crhd='n. T (3.15)

The first assumption implies that there exists a function in the approximation space that is only
supported on 2,. For  small enough, this first assumption is automatically satisfied if assumption
2 or 3 holds. The second assumption guarantees shape regularity of trimmed cells, e.g., [13, 36].
This assumption underlies the FCM method, and serves to keep the penalty parameter bounded.
This excludes pathological cases, such as trimmed cells with highly distorted aspect ratios. The
third assumption bounds the size of the intersection between I' and a cell by the size of the
trimmed cell. Under assumptions 2 and 3 and using the bound on D from (2.2), it can be shown
that 3Cg > 0 such that the local stabilization parameter satisfies

Bi < CaCpl|Ql |74 = CaCph ™1y 7, (3.16)
see e.g., [35]. The restrictions and assumptions mentioned above, are only required to prove
an estimate of the condition number of the FCM system matrix. The strategy to construct a
preconditioner (proposed in Section 4) does not depend on these restrictions and assumptions.

From the literature (e.g., [37]) we know that the condition number of system matrices orig-
inating from classical FEM approximations of second order elliptic differential equations with
quasi-uniform meshes, scales with h=2. The norm and largest eigenvalue of such matrices scale
with h?=2 and the corresponding eigenvector represents the function with the highest frequency
that can be represented on the mesh. The smallest eigenvalue of such a matrices scales with h¢
and the corresponding eigenvector represents the function with the lowest frequency. Note that
this function approximates the analytical lowest eigenmode of the operator, which is independent
of the mesh size h. However, the norm of the corresponding coefficient vector does depend on h by
virtue of the fact that the dimension of the approximation space is altered under mesh refinement.
Because F!(-,-) coincides with the standard FEM bilinear form, the lower bound of the norm
| Al|2 scales with at least h?~2. Under assumptions 2 and 3, it can be verified that for a local
stabilization parameter (see Appendix B for details)3

]:'2 , f3
G o)) (”Th ol < opa=2 and 7(”7’}’”") < Cht2. (3.17)
y'y y'y
Therefore the steepest lower bound for the largest eigenvalue of A indeed scales with
A2 > cxh?2, (3.18)

for some ¢z > 0. We emphasize that (3.17) only holds for locally stabilized systems. A derivation
of (3.17) and an elaboration of the effect of global stabilization is given in Appendix B.

3In the remainder of this manuscript, the variables ¢ and C, without subscript or superscript, denote general
positive constants that may attain different values in different statements or equations.



To estimate ||A~!|| using (3.10), we need to evaluate the smallest eigenvalue. As mentioned
before, for matrices originating from classical FEM formulations, the eigenvector that corresponds
to the smallest eigenvalue represents the function with the lowest frequency. This is generally
not the case for matrices originating from FCM formulations. In most FCM cases, the smallest
eigenvalue corresponds to a function which is only supported on a cell with a very small volume
fraction. Under assumption 1, there exists a function v, with a corresponding coefficient vector
of order one, |ly|2 ~ 1, that is only supported on Qt*:

d A\ P
xj — &
onlay =] (7h]) ) (3.19)
j=1

In (3.19), p is the order of the discretization and j is the index of the dimension. In case vy, is vector
valued £ is some vector with Euclidean norm ||£]|. = 1, if v, is a scalar then £ = 1. Furthermore
& € 09, N Bg,(QF) — d.e., & lies in the intersection between the (untrimmed) boundary of 2,
and the smallest ball enclosing Q. For example, if there is a vertex in 9Q, N Bg, () (under
assumption 1 there can be at most one), then & coincides with this vertex. Under assumption 2,
we can show that for the function vy, according to (3.19), it holds that

2R, \"" /20 \"*
||Uh||L°°((z§r) < <\/Zih> < <\/§> n?, (3.20)

and

h \Vdh Vd h
where || || L~ denotes the supremum of the Euclidean norm. Recalling assumption 3 and the upper
bound for 3, given in (3.16), the following bounds hold

d [ 2R, pd—1 ) pd—1 p_1/d
N%[w@ﬂgmf('3> Sm@<(%> 1 (3.21)

Fl (Uh, vp) = Vo, © DVu,rdV < |Q£r‘C’D||V/Uh||%oo(Qtr) (3.22&)
Qtr ‘
2CRr

2pd—2
S CDp2d ( \/8 ) hd_27’]2p+1_2/d,

]:2(vh7vh) < /D 2||vhHeCDHV11hH8dS (3.22b)
F’L
< 2|FzD|||vh||L°°(SZ§f)CD||VUh||Loo(Q:r)

QCR 2pd—1
S ZOFCDP\/g < \/a > hd72n2p+172/d’

.7‘-3(vh7vh) = /D Byvp © vpdS < |FZD|BZ||UhH%oo(Q§r) (3.22¢)
F'L

2CR 2pd
e b

which enables us to give an upper bound for the complete FCM norm of the function specified in
(3.19):
lon]|% < Cxh®=2pPPH1=2/4, (3.23)

with Cx according to

20 2pd—2 20 2pd—1 20 2pd
Cr = Cpp2d (\5) +2CrCppVd (\5) + CrCsCp (\/Z];) . (3.24)

Because ||y|l2 ~ 1 for the function specified in (3.19), there exists a constant cx-1 ~ 1/Cx such
that
—(2p+1-2/d)

||A_1H 2> CF-1 hd—2

(3.25)



Combining (3.18) and (3.25), we obtain the following lower bound for the FCM condition number:
Ko(A) > crepm~ (PFHL=2/d), (3.26)

The condition number of matrices originating from FCM formulations is therefore bounded from
below by a constant scaling with n~(?7t1=2/d) The dependence of the scaling rate on the order of
the approximation space conveys that the combination of FCM with higher-order methods, such
as p-FEM and IGA, makes it particularly susceptible to conditioning problems.

3.3. Numerical test case: Poisson’s problem on a unit square with circular exclusion

To verify the scaling relation (3.26), we consider the finite cell discretization of Poisson’s
problem with Dirichlet conditions on the entire boundary:

—Au = in
{ u=f inQ, (3.27)
u=gq on 01},
such that
.F(Uh, uh) = / Vuy, - Vup,dV + / - (vhn - Vup +upn - V’Uh) + BopupdS. (328)
Q rp

Note that the data f and gp in (3.27) do not appear in the system matrix and hence are not
required for the computation of the condition number. The results presented in this section
pertain to finite cell systems with a local stabilization parameter 8; = 2C; (see Section 2). Results
for global stabilization — although not presented here — demonstrate the validity of scaling relation
(B.8).

The domain  is the unit square (L = 1) with a centered circular exclusion of radius R, i.e.,
Q={ze(—3,%): |z|le > R}. We partition the embedding domain (U Q) with a Cartesian
mesh with mesh size h = é, with the center of the exclusion positioned at a vertex of the mesh.
This is illustrated in Figure 3.1, where the cells in white do not intersect the physical domain and
hence do not contribute to the system matrix. Note that for graphical clarity the figure is not to

scale. The radius R is taken equal to R = \/1/8 — \/ng/2h &~ /2, such that a volume fraction

of approximately ng = 5- 1072 occurs at the boundary of the circular exclusion. We consider
uniform bivariate B-spline bases [4] of order p € {1,2, 3,4} and Lagrange bases of order p € {1,2}.
The bisection-based tessellation scheme proposed in [12] with a maximal refinement depth of two
is employed to accurately approximate the geometry of the domain. The number of Gauss points
is selected such that exact integration of all operators is achieved over the tessellated domain.
Figure 3.1 shows the interior (blue circles) and boundary (red squares) integration points for the
linear bases.

To construct scenarios with different volume fractions, the domain is gradually rotated about
the origin while the background mesh remains unmodified. Starting from a domain in which
the outer boundaries are aligned with the mesh, it is rotated in 100 steps over an angle of 45°.
Because elements with a volume fraction of 7; = ng = 51072 occur at the boundary of the
circular exclusion regardless of the angle over which the domain is rotated, the minimal volume
fraction 7, is bounded from above by approximately ng.

A power algorithm is used to compute the smallest and largest eigenvalues of the system matrix,
and thereby the condition number for every configuration. The power algorithm is terminated
when the Rayleigh quotient of two subsequent vectors has a relative difference of less than 1076,
The inverse power method used to compute the smallest eigenvalue, relies on the inversion of
the ill-conditioned finite cell system matrix. The preconditioner developed in this manuscript is
used to reliably execute this inverse power iteration. As we will elaborate in the next section,
the underlying mechanism leading to ill-conditioning is generally different for B-spline bases and
Lagrange bases. As a result of this difference, the condition numbers for B-spline discretizations
can be computed accurately over the full range of data shown in Figure 3.2, while machine precision
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Figure 3.1: Schematic representation of a unit square domain with circular exclusion. Cells that intersect the
physical domain are depicted in yellow. Volumetric (Gauss) integration points are indicated in blue and boundary
integration points in red.

hinders the computation of condition numbers for Lagrange bases of third and fourth order (see
Appendix C). Therefore, we do not present results for the Lagrange bases for p € {3,4}.

Figure 3.2 shows the resulting condition numbers plotted against the volume fractions. The
upper bound of the volume fraction ng = 5 - 1072 is observed from these plots. The predicted
scaling rates of the condition number according to (3.26) are depicted in black. Evidently, the
numerical results for all considered basis functions closely resemble these scaling rates. Also in
agreement with the above derivations is the observation that the condition numbers obtained for
Lagrange bases are very similar to those obtained for B-splines of equal order.

4. Algebraic preconditioning for FCM

Motivated by the condition number analysis presented above, in this section we develop an
FCM preconditioner. The fundamental observation on which our developments are based, is that
ill-conditioning of finite cell systems is caused by the occurrence of small eigenvalues in the system
matrix A due to small trimmed cell volume fractions (see (3.25)). Recall that from equations (3.5)
and (3.10), it follows that the smallest eigenvalue for finite cell systems can be expressed as

L 4 - (742

P E =
AT Ty I3 ey I3

(4.1)

where the function v;, € V;,(§2) corresponds to a vector y € R™ by the relation v, = &7y, with ®
denoting the vector containing all functions in the basis of V,(€2). Hence, ill-conditioning occurs
when the basis allows functions v, and corresponding vectors y for which ||vn||z < |ly]l2. To
improve the conditioning, we construct an alternative basis, ® = S®, which precludes these
large differences between the norm of functions and the norm of the coefficient vectors. For
nonsingular preconditioning matrices S, both ® and its preconditioned counterpart ® span the
same approximation space Vp, ().

For every function vy, € V, (), there are unique coefficient vectors y and y such that v, =
3Ty = & 3 = ®7STy, from which it follows that y = ST§. The preconditioned solution
X, is obtained by solving the symmetrically preconditioned linear system AX = b, where the

10
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Figure 3.2: Condition number vs. the smallest volume fraction for the unit square with circular exclusion for (a)
B-splines of order p € {1,2,3,4}, and (b) Lagrange polynomials of order p € {1,2}.

preconditioned system matrix A and right hand side vector b are given by

A=F(®®) =F(se e’s”) =srF@ &")sT =SAS",

s (4.2)

o
Il

(
£ = ((S®) = SU(®) = Sb.

In these expressions, A and b are the system matrix and right hand side vector corresponding
to the original basis ®. Given an original system Ax = b and preconditioning matrix S, the
resulting symmetrically preconditioned system is

SASTx = Sb,

x = STx. (4.3)
In the remainder of this section, we will discuss the development of an effective FCM pre-
conditioner. In Section 4.1, we first identify two sources for the occurrence of small eigenvalues.
Each source of ill-conditioning can be remedied by a modification of the basis through a pre-
conditioning matrix, which can be constructed algebraically (based solely on the original system
matrix). Because this preconditioner is not interwoven with the rest of the method, it is robust
and straightforward to automate and implement. Since this preconditioner does not manipulate
the weak form problem or approximation space, the obtained solution is unaffected, and stability
properties of the employed approximation space (e.g., the inf-sup condition for mixed methods) are
maintained. In Section 4.2, we will discuss how the developed preconditioner — which we refer to as
Symmetric Incomplete Permuted Inverse Cholesky (SIPIC) — is related to well-established precon-
ditioning strategies. Finally, we demonstrate the effectivity of the SIPIC preconditioner by means
of numerical simulations in Section 4.3 and by a comparison to commonly used preconditioning
techniques in Section 4.4. Various implementation aspects are discussed in Appendix C.

4.1. Small eigenvalues: sources and remedies

4.1.1. Diagonal scaling

A small eigenvalue can be caused by the occurrence of a (trimmed) basis function ¢, with a
small FCM norm relative to other (possibly untrimmed) basis functions. This can be inferred from
equation (4.1) by considering the standard unit vector y (||y|l2 = 1) corresponding to v, = ¢.
This situation is typical for B-spline basis functions whose support contains only a single trimmed
cell with a small volume fraction, since all the derivatives up to order p — 1 of such basis functions
vanish on the (original) boundaries of that cell. We illustrate this situation in Figure 4.1a, where
the basis function with a small norm (depicted in red) is similar to the function specified in (3.19).

11
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Figure 4.1: Second order B-spline basis functions over the domain 2 = (O,2i) created using the knot vector

[0,0,0,1,2,3,3,3]: (a) before scaling, and (b) after scaling. Note that the value and derivative of the rescaled
function still vanish at x = 2, and that hence the continuity of the basis is unaffected.

To remedy this source of small eigenvalues, all basis functions ¢ are normalized with respect
to the norm ||¢||, which yields the modified basis functions ¢* = ¢/||¢|| . This diagonal scaling
operation can be cast into the form of a preconditioning matrix D whose diagonal corresponds to
the reciprocal of the square root of the main diagonal of system matrix A:

1 1
VA 61l 7

D= - . (4.4)

1 1
VAnn H¢n”}'

In Figure 4.1b, we illustrate the effect of this diagonal scaling operation for the basis ® in Fig-
ure 4.1a, where the preconditioned basis follows from ®* = D®. This operation does not preserve
the partition of unity of the basis, but as the space itself is unaltered and remains polynomially
complete, this does not affect the solution. This also follows from the fact that the precondition-
ing matrix D is nonsingular. We note that diagonal preconditioning has also been demonstrated
to be effective in ameliorating similar ill-conditioning problems encountered in XFEM and weak
coupling strategies [28, 29].

4.1.2. Local orthonormalization

Even if basis functions are properly scaled, small eigenvalues can occur when the global linear
independence property of two (or more) basis functions is compromised by a trimming operation.
This results in the near linear dependence of rows and columns of A associated with the trimmed
cell basis functions and, accordingly, results in ill-conditioning of A. For example, consider two
(scaled) basis functions, ¢* and ¢, that are very similar with respect to the finite cell norm, i.e.,
HQSZ—QS};,H; < 1 (or H(bZ—i—gbZH}- < 1), where use is made of ||¢},[| # = [|¢}]| = 1. The difference (or
sum) of these functions corresponds to a coefficient vector y with ||y||2 = v/2. From Equation (4.1)
it then follows that the minimal eigenvalue is bounded from above by 1| ¢7 — (;52”3_— < 1 (or
%H(ﬁz + ¢Z||§- < 1). We refer to this source of ill-conditioning as quasi linear dependence of the
trimmed basis.

In Figure 4.2, we illustrate the problem of quasi linear dependence for a one dimensional
discretization of Poisson’s problem with second order Lagrange basis functions. We consider the
rightmost cell, Q" = (2, &+h) = (0, 15), of a discretization with mesh size h = 1 which is trimmed
by a natural boundary (i.e., no boundary terms). For functions that are only supported on this
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cell, the bilinear form is therefore simply F(vs,un) = [ Ozvn0zupdV. While the support of basis
function ¢, extends beyond the trimmed element, the basis functions ¢, and ¢3,

A AN 2
r—x r—x

~ AN 2
r—x r—T

are only supported on this cell. On the untrimmed cell, these basis functions are evidently linearly
independent. Hence, for h = h such that n = 1, the F-angle between ¢2 and ¢3 is

_ (2, 03)]
lealAloalr ~ VY™ (4.6)

(4.5)

| cos(65)|

which is (in absolute sense) significantly smaller than unity. However, when 7 = E/ h < 1, the
F-angle is

—1+43n—3n° 1
Jcos(br)| = ——1LEI STy L (47)

\/1—6n+%nz—16n3+%n4 0

which reveals a quasi linear dependence. Similar observations can be made when considering linear
combinations of these functions. In the limit of 5 going to zero, the local coordinate (z—2)/h < 1,
which reduces both ¢ and ¢3 to linears on Q. Figure 4.2c shows the scaled basis functions for

n= i,
8 = P2 h(m—:ﬁ)_ h(a:—j:)Q
2 lgellr TV n U A n\ h )’
. b3 h(z—i h(z—2\°
= K — -\ — 2 —
%= Tosl7 V;(;z)+ n( h)’

where it is used that ||¢z2||7 ~ 4/n/h and ||¢s||7 ~ /n/h if n < 1. When these functions are
added, the linear term cancels and a function of the form (3.19) results:

N . hfo—3\>
%+%x¢n(h), (19

for which it can be shown that ||¢3 + ¢5[lx ~ 31* < 1. Hence, the scaled basis functions ¢3
and ¢3 are quasi linearly dependent for small volume fractions . In this case, diagonal scaling
is not effective in the sense that the upper bound of the minimal eigenvalue (4.1), and thereby
the condition number, remains dependent on the volume fraction 7, leading to ill-conditioning for
small volume fractions. It is noted, however, that the scaling rate is improved with respect to that
of the original system (see (3.26) and Section 4.3).

To remedy ill-conditioning due to quasi linear dependence, we propose to orthonormalize the
quasi linearly dependent functions by the Gram-Schmidt procedure (see [38] for details). To
illustrate how this Gram-Schmidt procedure can be used to construct a preconditioner, we again
consider two quasi linearly dependent scaled functions, ¢7, and ¢j. To improve conditioning, the
function ¢F is made orthogonal to ¢7, with respect to the finite cell inner product:

(4.8)

* (¢* ? (bZ)}_ * * * * *
05 = Oh — — s —a = O — (05 $5) £ i (4.10)
loall%
In terms of the scaled basis @, the orthonormalization procedure can be expressed as a matrix-
vector operation:
't =GP = GD®, (4.11)
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Figure 4.2: Second order Lagrange basis functions over the right-most cell of the discretization with h = 1 of a

trimmed one-dimensional domain. The volume fraction of this cell is equal to n = 11—6.
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where G equals the identity matrix except for the entry
Aga
VApsAaa

Since the norm of the basis functions is not preserved by the orthogonalization operation (4.11), in
order to avoid improperly scaled basis functions leading to ill-conditioning, the orthogonalization
procedure is followed by another normalization operation:

Gpo = (0}, ¢a)7 = ~[DAD" |50 = — (4.12)

® =D'G®* =D'GD®, (4.13)

where D+ is the scaling matrix corresponding to A+ = GA*GT = GDAD”GT. The result of
this orthonormalization procedure is the preconditioning matrix S = D+GD, which is algebraic
by virtue of the fact that the three matrices D+, G and D can all be constructed on the basis of
the original system matrix A. We note that similar procedures have been applied in the context of
SGFEM in order to orthonormalize the additional functions to the existing FEM approximation
space [30].

With higher-order methods or in more than one dimension, it can occur that more than two
functions are quasi linearly dependent, which requires multiple orthonormalization steps in the
Gram-Schmidt procedure. The above concept can be applied without fundamental modifications
in such cases, which is discussed in Appendix C. In the absence of boundary contributions to
the system matrix, quasi linear dependence predominantly occurs between functions with the
same support in the physical domain. The orthonormalization procedure outlined above does
not change the support of basis functions in that case, and preserves the sparsity pattern of the
system matrix. In the case of Dirichlet boundaries, it can incidentally occur that a cell is trimmed
in such a way that the penalty term dominates the bilinear form for all functions supported on
that cell, including functions that are also supported on other cells in the physical domain. In
these cases, the Gram-Schmidt procedure may increase the support of basis functions, causing
additional fill-in in the preconditioned system matrix. In our algorithm we limit this fill-in by
appropriately ordering the quasi linearly dependent basis functions (see Appendix C). The effect
of fill-in is studied numerically in Section 4.3.

To identify quasi linear dependencies, the F-angle is used as a measure for the linear dependence
between two basis functions and an orthonormalization threshold + is introduced. Two functions
with indices « and ( are identified as being quasi linearly dependent if

| F(dar65)]
16al76al7

Therefore all quasi linear dependencies are identified by searching the off-diagonal terms of the
scaled matrix DAD” for entries larger (in absolute sense) than 4. A more detailed description
of the identification of quasi linear dependencies is given in Appendix C. A value of v = 0.9 has
been found adequate for all our simulations. Larger values may omit some quasi linear dependen-
cies, resulting in a less effective preconditioner. Smaller values can tag functions with different
supports as being quasi linearly dependent, causing additional fill-in in the preconditioned sys-
tem, as discussed in the previous paragraph and numerically studied in Section 4.3. The observed
robustness and effectivity of v = 0.9 does not necessarily extend to other (non-polynomial) bases
or applications (such as XFEM or other immersed techniques) suffering from similar conditioning
problems. Hence, careful selection of v is required when applying the SIPIC preconditioner in
these situations.

| cos(0F(da; b))l = |F(¢5. ¢5)| = [DAD ]op] > 1. (4.14)

4.2. Preconditioner characterization and relation to alternative techniques

The preconditioner S developed herein approximates the inverse of the system matrix by:

SAST~1I or STS~A"L (4.15)
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Figure 4.3: Original, scaled and SIPIC-preconditioned condition number vs. the smallest volume fraction for the
unit square with circular exclusion with second order bases.

These identities would be exact if the Gram-Schmidt procedure would be applied to all basis func-
tions. The developed preconditioner is incomplete in the sense that only quasi linearly dependent
basis functions are orthonormalized. By construction, there exists a permutation matrix P which
reorders the rows of S in such a way that a lower triangular matrix is obtained: L = PSP7.
Substitution in (4.15) yields

L'L~PA~'PT = [PAPT|' =CTC!, (4.16)

where use has been made of the property PP = I of permutation matrices and C corresponds
to the Cholesky decomposition of the permuted matrix, i.e., CCT = PAP?. Equation (4.16)
conveys that the lower triangular matrix L approximates the inverse Cholesky decomposition of the
permuted matrix, L &~ C~!, and that the preconditioner can be written as S = PTLP ~ PTC~'P.
Hence this preconditioner can be interpreted as the conjugate permutation of an incomplete inverse
Cholesky decomposition of a permutation of the system matrix. Note that this permutation is
done to reduce fill-in as described in the last paragraph of Section 4.1.2. Since we apply S
symmetrically (see Equation (4.2)) we refer to this technique as Symmetric Incomplete Permuted
Inverse Cholesky (SIPIC) preconditioning.

4.3. Numerical test case continued: Poisson’s problem on a unit square with circular exclusion

To test the effectivity of the SIPIC preconditioner, we again consider Poisson’s problem on the
rotating unit square with circular exclusion as introduced in Section 3.3. Besides the original and
the SIPIC-preconditioned condition numbers, also the condition number after diagonal scaling is
computed for second order (p = 2) B-spline and Lagrange bases. An orthonormalization threshold
of v = 0.9 is applied.

The results of all simulations are presented in Figure 4.3. It is observed that the SIPIC
preconditioner drastically improves the condition number for all cases and yields condition numbers
independent of the volume fraction (in the sense that there is no scaling relation). In the case of B-
splines, diagonal scaling is observed to be effective for most configurations. This is explained by the
fact that quasi linear dependencies in B-spline bases are uncommon, since on most of the trimmed
cells there is only a single B-spline basis function whose support is restricted to that trimmed cell
(see Section 4.1.1). This is in contrast to Lagrange bases, for which quasi linear dependencies are
combinatorially more frequent (see Section 4.1.2). As derived for the one-dimensional example in
Section 4.1.2, the condition number of the Lagrange discretizations after scaling still scales with 7,
but with a slope that is gentler than that of the original condition number. The difference in slope
is explained by the fact that all Lagrange basis functions have non-zero first order derivatives on
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the boundary of their untrimmed support. The basis functions that are only supported on the cell
with the smallest volume fraction therefore have a norm of order ||¢]|% ~ 13~2/4 = 5. Diagonal
scaling consequently increases the magnitude of these functions and the function corresponding
to the smallest eigenvalue by a factor n~!, which explains the observed slope difference of 72.
When a global stabilization parameter is applied, the preconditioner also drastically reduces the
condition number. It is observed that — although not presented here — the preconditioned condition
number still scales with n~/¢ however, which is exactly the difference in slope between the original
condition numbers of locally (see (3.26)) and globally (see (B.8)) stabilized systems. The origin
of this effect and methods to resolve this are beyond the scope of this work.

Figure 4.4b presents the system matrix fill-in caused by large boundary contributions (see
Section 4.1.2) for two orthonormalization thresholds: 77 = 0.9 and 75 = 0.93. Since no fill-
in was observed for second order B-spline bases, we present results for cubic B-splines. The
corresponding dependence of the condition number on the smallest volume fraction is shown in
Figure 4.4a. The additional relative fill-in is defined here as the number of additional nonzero
entries in the preconditioned system matrix (SAST) divided by the total number of nonzero
entries in the unpreconditioned matrix. For v; = 0.9, it is observed that fill-in remains limited to
approximately 1.5%, and that it does not scale with the smallest volume fraction 7. The fill-in can
be reduced further at the expense of performing fewer orthonormalization operations by increasing
the orthogonalization threshold (see Section 4.1.2). This is indeed observed from the results for
~vo = 0.93, where fill-in remains limited to approximately 0.5%. Although fewer orthonormalization
operations are performed, it is observed that the effectivity of SIPIC preconditioning remains
unaffected.

We note that the necessity to increase the threshold is debatable for two reasons:

e The fill-in is small and locally contained. An investigation of the functions whose support
increases because of the preconditioner conveys that these are all functions for which the
bilinear operator is governed by the penalty term on a small cell. Therefore, the effect is
confined to functions that are originally supported on that small cell, and cannot spread
through the system.

e The fill-in is expected to be a two-dimensional artifact. Under the assumption of mesh

regularity, it can be shown that the penalty parameter §; is of the order 8; ~ 7, Vp-1,
Subject to the same assumption, the measure of the edges in a two-dimensional problem is
of order |T;| ~ nz-l/dh, such that the total penalty term is of order j5;|T';| ~ 1. Therefore a
small cell (with a limited volumetric contribution) can still have a large penalty term. In
the three-dimensional case, the size of the edge is of order |T';| ~ n?/th, such that the total
penalty term is of order S;|T;| ~ 771-1 /4. Under the assumption of shape regularity, small
cells will therefore have small penalty terms as well, if the number of dimensions is larger
than two. As a result, it is unlikely that the penalty term on a cell with a small volume
fraction dominates the bilinear form for functions that are also supported on other cells in

more than two dimensions.

A detailed study of the sensitivity of the SIPIC preconditioning technique to the orthonormaliza-
tion threshold is a topic of further study.

4.4. Comparison with alternative preconditioning techniques

To assess the performance of the SIPIC preconditioner for the finite cell method we have
compared it with a selection of commonly used preconditioning techniques, viz. Jacobi precondi-
tioning, incomplete Cholesky preconditioning, and LU-preconditioning. Note that the considered
symmetrically-applied Jacobi preconditioner is equivalent to diagonal scaling, which is an intrinsic
part of the SIPIC preconditioner (see Section 4.1.1). Our performance comparison on one hand
focuses on the effectivity of the preconditioner, which we assess on the basis of the improvement
of the condition number of the system (which is again computed using a power algorithm). On
the other hand we assess the computational burden of the considered preconditioners based on
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Figure 4.4: Condition number and relative matrix fill-in vs.
circular exclusion with cubic B-splines.

the smallest volume fraction for the unit square with

the relative fill-in of the preconditioning matrix (or matrices in the case of LU). The relative
fill-in of the preconditioning matrix is defined here as the number of off-diagonal entries in the
preconditioner divided by the total number of nonzero entries in the system matrix. Note that this
definition of the relative fill-in of the preconditioning matrix differs from the definition used for
the relative additional fill-in in Figure 4.4b. For the SIPIC preconditioner a direct relation exists
between the computational costs in terms of floating point operations and this fill-in definition,
in the sense that the number of floating point operations needed in addition to setting up the
Jacobi preconditioner scales with the fill-in. In practice this implies that — provided that the fill-in
remains small — the computational overhead of the SIPIC preconditioner is comparable to that
of a Jacobi preconditioner, which can be considered the most favorable from the computational
complexity point of view.

For our comparison we again consider the test case introduced in Section 3.3, for which the
application of SIPIC was considered in Section 4.3. The results of this comparison are presented
in the Figures 4.5 and 4.6. All presented results are based on the Matlab (2011b) implementation
of the commonly used preconditioners. More specifically, we consider:

e An incomplete Cholesky (ichol) approximation with the same sparsity pattern as the system
matrix (type=’nofill’) and without additional row and column manipulation (michol=’off
Moreover, the diagonal of the system matrix that is fed to the algorithm is multiplied with the
maximum of the row sum of the absolute values of the off-diagonal terms divided by the di-
agonal term to ensure diagonal dominance (diagcomp=max (sum(abs(4),2)./diag(A))-2).
Without this optional argument, the incomplete Cholesky preconditioner fails due to the
fact that the system matrix is only very slightly positive definite;

A Modified incomplete Cholesky (ichol with the option michol=’on’) approximation, sim-
ilar to the aforementioned incomplete Cholesky preconditioner, but with the diagonal of the
Cholesky factorization manipulated such that the row and column sum of the preconditioner
are equal to the row and column sum of the system matrix;

An incomplete LU (ilu) preconditioner with the same sparsity pattern as the system matrix
(type=’nofill’) and without additional row and column manipulation (milu=’off’). Note
that since this preconditioner is not symmetric, the power algorithm used to compute the
condition number is applied to the matrix (L_lAU_l)T (L_lAU_l), the condition number
of which is equal to the square of that of the preconditioned system matrix;

A row/column-modified incomplete LU (ilu with the option milu=’row’ or milu=’column’),
which is similar to the standard incomplete LU-preconditioner, but with the diagonal of U
manipulated such that the row/column sum of the preconditioner is equal to the row/column
sum of the system matrix.
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Figure 4.5: Condition numbers vs. the smallest volume fraction for the unit square with circular exclusion with
second order bases.
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Figure 4.6: Relative fill-in vs. the smallest volume fraction for the unit square with circular exclusion with second
order bases.

It is noted that the employed Matlab preconditioner implementations also provide the possibility
for setting a threshold drop tolerance. This setting is, however, not practical, since to avoid
breakdown of the algorithm due to ill-conditioning of the system matrix, the threshold drop
tolerance has to be set so low that the resulting system loses its sparsity. This problem could
be ameliorated by restoring the diagonal dominance of the system matrix as discussed above for
the incomplete Cholesky preconditioner. However, this approach is not effective, as it will neglect
small off-diagonal elements, which are essential for improving the system conditioning since these
(in combination with diagonal elements of the same magnitude) cause quasi linear dependencies.

From the condition numbers presented in Figure 4.5, it is observed that incomplete LU-hardly
improves the condition number and that incomplete Cholesky performs better than Jacobi, but
does not manage to resolve the quasi linear dependencies in all cases. Overall it is observed that
SIPIC is the most effective preconditioner in all considered cases, where it should be noted that
(modified) incomplete Cholesky preconditioning is also very competitive in terms of its effectivity
for a significant number of test cases. The relative fill-in results are presented in Figure 4.6. By
construction, the relative fill-in of the incomplete LU-factorizations is approximately one (this
is the sum of the lower and upper diagonal matrices) and the relative fill-in of the incomplete
Cholesky preconditioners is approximately a half. The SIPIC preconditioner is observed to be
considerably sparser, with a relative fill-in of at most a few percent.
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In summary, it is observed that the SIPIC preconditioner is considerably more effective in
terms of improving the condition number than Jacobi and incomplete LU-preconditioning. While
incomplete Cholesky preconditioning can compete with SIPIC in terms of effectivity, these pre-
conditioners lead to considerably larger fill-in ratios. An additional advantage of SIPIC compared
to the other preconditioners is that it is an approximation of the inverse of the system matrix
instead of an approximation of the system matrix itself. As a result, with SIPIC preconditioning,
the preconditioned system can be computed explicitly and has a minimal additional fill-in, such
that it does not induce extra cost to an iterative step in the solver. In contrast, the other precon-
ditioning techniques, besides Jacobi, approximate the system matrix itself with lower and upper
diagonal matrices. Accordingly, these preconditioning techniques require the solution of a lower
diagonal and an upper diagonal system in every iterative step.

5. Numerical simulations: SIPIC preconditioned finite cell analysis

The numerical simulations presented in the previous sections have demonstrated the effectivity
of the SIPIC preconditioning technique for Poisson’s problem as a model problem. To demonstrate
that the condition number estimate and preconditioning solution are applicable to the broader class
of symmetric and coercive unfitted Galerkin formulations, the test cases in this section involve
problems of linear elasticity. While the simulations in Sections 3.3, 4.3 and 4.4 had a strong focus
on studying the condition number, in this section we will demonstrate that SIPIC preconditioning
also enables robust finite cell analyses using iterative solvers.

Since the considered finite cell systems are symmetric positive definite, a Conjugate Gradient
(CG) solver is used. As discussed in Section 3, preconditioning of the finite cell system results in
faster convergence of the solver (see (3.3)). Moreover, for well-conditioned systems the residual
provides an adequate measure for the error in the energy norm (see (3.4)). As a result, for the
same CG tolerance, the energy norm error of a well-conditioned system is generally expected to
be smaller than that of an ill-conditioned system. These two beneficial effects of preconditioning
enable the computation of high-accuracy finite cell approximations.

For the simulations presented in this section, the solver performance and accuracy aspects of
finite cell preconditioning are discussed in the context of mesh convergence studies. Section 5.1
considers the elastic analysis of a square with a circular hole. Since condition numbers can be com-
puted for this two-dimensional test case, it is also used to demonstrate that the results presented
in the previous sections extend to linear elasticity. Furthermore, this section contains a further
comparison of the SIPIC preconditioner to the other preconditioners introduced in Section 4.4,
regarding both the effect on the condition number and the solver performance. Section 5.2 studies
the performance of SIPIC preconditioning for a three-dimensional linear elasticity problem.

5.1. Square with a circular hole

We consider the linear elastic analysis of a uniaxially-loaded infinite domain with a circular
hole with radius R = 3/(2m) (Figure 5.1a). Under plane strain conditions, the displacement field
u = (ug, uy) corresponding to a unit horizontal traction loading is given by

9 A 2 Y 2 §R4 2R2 2 p4
= & (G n= VR GRS R 2T/ (5.1a)
I 4(p+ M)r? ré 76
—r2 S\R?2  3RY+y?R? 2R?
uy = V(AP INRE RRU R PRY (.10
1 A(p+ Mr r 6

with r = /22 + 92 and Lamé parameters A = u = 1. This exact solution is reproduced on a
truncated domain by considering the strong formulation

—div(o(u)) =0 in Q,
o(u)-n=g"¥ onT¥V, (5.2)
u = gP on I'P,
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Figure 5.1: A square with a circular hole is rotated over 45° with respect to a Cartesian mesh. The Neumann and
Dirichlet data on T'V and I'P, respectively, match the exact solution of the infinite domain problem.

with boundary data ¢g” and ¢V set in accordance with the analytical solution of the infinite
domain problem (5.1). The Cauchy stress is related to the displacement field by Hooke’s Law,
o (u) = Mdiv(uw)I + 2uVeu, with V* the symmetric gradient operator.

In view of symmetry, only a square of length L = 1 is considered (Figure 5.1a). This square is
rotated over an angle of 45° with respect to the Cartesian mesh with size h in which it is immersed
(Figure 5.1b). Quadratic B-spline spaces are constructed over a sequence of ten uniformly refined
meshes, starting with cells of size h = 1. The number of elements that intersect the domain ranges
from 4 on the coarsest mesh to 216,672 on the finest mesh. Similar to the test case in Section 3
and 4, the exact geometry of the domain is again approximated by a bisection-based tessellation
scheme on which exact integration is performed (see [12] for details). To preserve the geometry
parametrization provided by the bisection-based tessellation scheme, the maximal recursion depth
is reduced with each mesh refinement. On the finest mesh (nine refinements) trimmed cells are
directly triangulated for integration purposes. Note that exact geometric representation of the do-
main would yield homogeneous Neumann data: g% = 0. However, since the employed tessellation
is only an approximation of the exact geometry, a (small) traction is applied along the circular
boundary in accordance with (5.1) and the approximate geometry.

In contrast to the weak form introduced in Section 2, the weak form for (5.2) contains two
separate stabilization parameters following the approach in [9]:

F(vp,up) :/stvh o (up)dV
+ /FD —(vn - o (up) - n+up - o(vy) - n)dS
+ /1“13 (B op - (n@n) - up + Bop - up)dS, (5.3a)
£(vp) :/rN vy - gV dS + /FD —g? - o(vp) -ndS
+ /FD (,6’>‘11;I “(n@n)- g+ plu, ~gD)dS, (5.3b)
with separate local stabilization parameters f* = 2A\C* > \C* and g* = 4uC* > 2uC* for C*
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Figure 5.2: Original and SIPIC-preconditioned condition numbers for the square with a circular hole with second
order B-spline bases.

and C* according to
Jop div(vy)?dS
C}= max 0 —
vREVL(R) th_r le(’Uh)2dV
frD [Vouy, - nf2dS
Vo ||2dV

(5.4)
cr =

max
vh €V () th_,r

Figure 5.2 shows the original and SIPIC-preconditioned condition numbers versus the smallest
volume fraction (Figure 5.2a) and the mesh size (Figure 5.2b). The scaling relation (3.26) for the
original system is clearly observed from Figure 5.2a, despite the fact that the mesh size h is varied.
One can observe that the SIPIC-preconditioned condition number is essentially independent of
the minimal volume fraction. Both observations are in agreement with the numerical results in
Section 4.3. Figure 5.2b shows the same data versus the mesh size h. The observed relation
between the original condition number and the mesh size can be conceived of as an induced effect,
due to a correlation between the mesh size h and smallest volume fraction 7, viz., in general smaller
minimum volume fractions can be expected when the number of trimmed cells is increased (by
h-refinement). An important observation from Figure 5.2b is that SIPIC preconditioning results
in a scaling relation x2(SAS”) oc b2, which resembles that of standard finite elements [37].

The performance of the SIPIC preconditioner is studied further in Figure 5.3. Figure 5.3a
displays the convergence of the CG solver for the finest mesh (438,756 degrees of freedom) with
and without SIPIC preconditioning. The original condition number s(A) ~ 1027, whereas the
SIPIC-preconditioned condition number equals x2(SAS?s) ~ 10°. Both the residual (|b— Ax;||2,
solid lines) and the error in the energy norm (||x—x;||a, dashed lines) are shown. As expected from
Equation (3.3), it is indeed observed that the SIPIC-preconditioned system converges significantly
faster than the original system. For a CG solver tolerance of 1076, the preconditioned system
requires approximately 50 times fewer iterations. Furthermore, following Equation (3.4), it is
observed that the correlation between the residual and the energy norm error is stronger in the
preconditioned system. For the same tolerance, the energy norm error in the original system is
substantially larger than the energy norm error in the preconditioned system.

An important effect of the stricter correlation between the residual and the energy norm error
for preconditioned systems is visible in Figure 5.3b. In this figure, we study the mesh convergence
by plotting the strain energy of the error, E(u—up,) = 3V*(u—up) : o(u—uy), against the mesh
size for various CG solver tolerances (ranging from 3 x 107! to 745 x 107!!). The CG solver ter-
minates when either the relative residual (||b— Ax;||2/|/b||2) or the absolute residual (||b— Ax;||2)
reaches the specified tolerance, or when the number of CG iterations exceeds 100,000. One can
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Figure 5.3: Original and SIPIC-preconditioned finite cell results for the square with a circular hole with second
order B-spline bases: (a) Convergence of the residual and energy norm error vs. the CG iterations on the finest
mesh; (b) Convergence of the strain energy error under mesh refinement for various CG solver tolerances.

observe that for the original system, the error due to not solving the linear system with sufficient
accuracy becomes dominant when the mesh is refined. For these ill-conditioned systems, the pre-
cision with which the linear system can be solved hinders mesh convergence of the strain energy
error under mesh refinement. Improving the accuracy of the original system’s solution by lower-
ing the CG tolerance is not a practical solution to this problem, since the number of iterations
required to reach convergence of the CG solver (and thereby the computational effort) increases
dramatically. For the the finest mesh with the smallest considered tolerance, a converged result
was not obtained within 100,000 CG iterations (indicated by the dashed line in Figure 5.3b). The
SIPIC preconditioner improves the quality of the solution measured in the strain energy of the
error, and asymptotic convergence under mesh refinement is observed even for relatively large CG
solver tolerances. The observed rate of mesh convergence of the strain energy error of h* resembles
the optimal rate for standard finite elements of order p = 2.

In Figure 5.4 the effectivity of the SIPIC preconditioner is compared with the commonly used
preconditioners discussed in Section 4.4. It is observed that the condition number with incomplete
LU preconditioning remains strongly dependent on the volume fraction. The incomplete Cholesky
and Jacobi preconditioning perform considerably better and yield virtually identical results. For
all considered cases SIPIC yields the lowest condition number. On some of the considered meshes
Jacobi and incomplete Cholesky preconditioning give similar results, by virtue of the fact that the
condition number on these meshes is only weakly affected by quasi linear dependencies.

Figure 5.5 shows the relative number of off-diagonal elements in the preconditioner (a) and the
required number of iterations to obtain a solution with an energy norm error smaller than 10~7
(b). Again, we define the relative fill-in as the number of off-diagonal entries in the preconditioner
divided by the total number of nonzero entries in the system matrix. Similar to the results in
Section 4.4 the relative fill-in of the incomplete LU factorizations (for both factors together) is ap-
proximately one and the relative fill-in of the incomplete Cholesky factorizations is approximately
a half. The SIPIC preconditioner is considerably sparser and the relative number of off-diagonal
elements is observed to be approximately proportional to h. This can be explained by the fact that
quasi linear dependencies can only occur amongst trimmed functions, and the relative number of
functions whose support is intersected by the boundary scales with h. Jacobi preconditioning is
not displayed in this figure, as it does not have any off-diagonal elements.

Figure 5.5b conveys that all considered preconditioning techniques effectively improve the
convergence behavior, in the sense that the required number of iterations to reduce the energy
norm error below 10~7 is significantly smaller than for the unpreconditioned system. Again the
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Figure 5.5: Required number of iterations and fill-in of various preconditioners against the mesh size for the square
with circular exclusion with second order bases.

results for the incomplete Cholesky factorizations and the Jacobi preconditioner are virtually
identical. The SIPIC preconditioner converges slightly faster, as is expected from the condition
numbers in Figure 5.4. It should be noted that, even with the same number of required iterations,
Jacobi preconditioning and SIPIC are computationally cheaper than incomplete Cholesky. This
is because the latter approximates the system matrix itself, while Jacobi and SIPIC approximate
the inverse (see Section 4.4). Note that incomplete LU preconditioning does not give a symmetric
positive definite system and, accordingly, the conjugate gradient method cannot be applied directly.

5.2. Quarter solid torus

We consider the linear elastic analysis of a quarter of a three-dimensional solid torus (Fig-
ure 5.6). The radius of the torus, measured from its axis of revolution (z-axis) to the center of its
circular cross-sectional area, is equal to R = 2. The radius of the cross-section is equal to r = %\/ﬁ
On the bottom boundary (T2, y = 0) only the normal (y-)component of the displacement is con-
strained. On the left boundary (I'P, z = 0) the downward (y-)displacement is prescribed, while
the displacement in the z-direction is constrained. This boundary can move freely in the normal
(z-)direction.
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Figure 5.6: Problem setup for a quarter of a solid torus with radius of revolution R and cross-sectional radius r.

The flat ends of the quarter torus coincide with the mesh. The stress magnitude is defined as the Euclidean norm
of the Cauchy stress tensor, and the displacements in (b) are scaled.

The strong formulation is given by

—div(e) =0 in £,

u-n=0 and Po-n=0 on I'D (5.5)
Pu=PgP and n-o-n=0 onTP, '
oc-n=0 on o0\ (T2 UTP),

with projection operator P, P¢ = £ — (n ® n) - £, and Dirichlet data g” = (0,0, —1). Note that
this condition is only applied on the tangential (left) boundary I'P, as on the normal (bottom)
boundary I'”? homogeneous Dirichlet conditions are applied. The Cauchy stress tensor is related to
the displacement field by Hooke’s law with Lamé parameters A = p4 = 1. Note that this problem is
underconstrained as it permits for a rigid body translation in the z-direction and an infinitesimal
rigid body rotation around the y-axis. Herein, these rigid body modes are automatically accounted
for by the employed CG solver. Also, the analysis only considers the strain energy, which is
independent of the rigid body modes.

The solid torus is immersed in a Cartesian mesh with size h that is aligned with the coordinate
system in Figure 5.6a. Quadratic B-spline spaces are considered over a sequence of six uniformly
refined meshes, starting with a mesh of size h = 1. Again the domain is approximated and
integration is performed according to a tessellation scheme [12]. The recursion depth for the
tessellation scheme is equal to five on the coarsest mesh, and is decreased upon mesh refinement to
preserve the geometry parametrization. The number of elements that intersect the computational
domain ranges from 16 on the coarsest mesh to 168,928 on the finest mesh.

25



The operators for the finite dimensional weak formulation (2.3) corresponding to problem (5.5)
— with the Dirichlet boundary conditions imposed by Nitsche’s method — are given by

F(op,up) = | Vo : o(up)dV
Q

+/FE_(vh-<n®n>-a<uh>-n+uh-<n®n>~a<vh>-n)ds

+A$(BA+ﬁ5)Uh-(n®n)-uhdS

+/F —(on - Po(up) -1+ up - Po(vy) - n)dS

+ /F . Bioy, - Pupds, (5.6a)
(op) = /FP —gP - Po(vy) - ndS

+ F; By, - PgPds. (5.6b)

The local stabilization parameters are taken as f* = 2AC* > A\C*, B¢ = 4uCF > 2uC#, and
Bl = 4uCl > 2uCY. Provided that each trimmed cell intersects with at most one type of
Dirichlet boundary, the constants C*, C¥, and C}* satisfy:
fFP div(vp)?dS
Cl= max ———— _
VR EVL(Q) fm div(vy)2dV

fF? (n - Vv - n)%dS

oF . = : 5.7
T @) Joe VP 0R[2AV (5.7)
. Jop IPVE0y - n|[2dS
BT 00Q) o VP 0R[2AV

The weak imposition of Dirichlet constraints in normal or tangential direction by means of the
above operators has, to the best of our knowledge, not been reported in literature. Since the
Dirichlet boundaries are aligned with the Cartesian mesh, the Dirichlet constraints can also be
imposed strongly by using open knot vectors in the parametric directions corresponding to the z-
and y-axes. This enables us to compare weak imposition of boundary conditions using Nitsche’s
method to (traditional) strong imposition of boundary conditions.

On the finest mesh, the number of degrees of freedom is equal to 592,680, which makes the
computation of condition numbers impractical. Therefore, we will focus on the performance of the
preconditioned iterative solver and the effect of SIPIC preconditioning on the mesh convergence
behavior. Figure 5.7 displays the CG solver convergence on the finest mesh, for both impositions
of boundary conditions. One can observe that the convergence of the CG method is very similar
for the formulations with weakly and strongly imposed boundary conditions, for both the original
and the SIPIC-preconditioned system. However, a significant difference between the convergence
behavior of CG for the original and the preconditioned system is observed. SIPIC preconditioning
reduces the number of CG iterations to reach a residual of 10~7 by more than a factor of 100 relative
to the original system. Moreover, SIPIC preconditioning improves the correlation between the
residual (||b— Ax;]|2) and the energy norm error (||x —x;||a). The effect of the stricter correlation
between the residual and the energy norm error for preconditioned systems is visible in Figure 5.8,
which studies mesh convergence of the error in the strain energy using a solver tolerance of 9.5-1077.
The error in the strain energy is defined as the absolute difference in strain energy compared to an
overkill solution computed on the finest mesh with cubic B-splines (i.e., | E(toverkin) — F (un)| with
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Figure 5.8: Convergence of the strain energy under mesh refinement for the original and SIPIC-preconditioned
finite cell results for the quarter solid torus problem with second order B-spline bases. A CG solver tolerance of
9.5-1077 is used.

E(u) = 1V*u : o(u)). Figure 5.8 clearly illustrates that ill-conditioning of the original system
impedes asymptotic mesh convergence and hinders the computation of high-accuracy solutions.
Using SIPIC preconditioning, optimal asymptotic mesh convergence behavior is observed. The
rates of mesh convergence for both weakly and strongly imposed Dirichlet boundary conditions
closely resemble the optimal rate of h* for standard finite elements, despite the fact that the mesh
convergence rate can be affected by e.g., the mesh dependent bilinear forms considered herein, or

by a lack of accuracy in the overkill solution.

6. Concluding remarks

In this work, we have rigorously established a scaling relation for the condition number of
second order elliptic finite cell systems. This scaling relation reveals that the condition number
is inversely proportional to the smallest trimmed cell volume fraction, a result which confirms
observations reported in the literature. Since this inverse proportionality scales with the power of
2p, with p the order of the considered basis functions, ill-conditioning problems become particularly
apparent when higher-order methods (e.g., IGA or p-FEM) are considered. The obtained scaling
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relation is valid for locally stabilized systems, independent of the type of boundary conditions. For
globally stabilized systems, an even stronger dependence of the condition number on the volume
fraction is observed.

We have developed the SIPIC (Symmetric Incomplete Permuted Inverse Cholesky) precondi-
tioning technique, which effectively improves the conditioning of finite cell systems. This improved
conditioning has been observed directly in condition number computations and indirectly in the
iterative solver performance. On one hand, the preconditioner applies diagonal scaling to the
applied basis to avoid ill-conditioning due to small (in the finite cell norm) basis functions. On
the other hand, ill-conditioning due to quasi linearly dependent basis functions is mitigated by
the application of local Gram-Schmidt orthonormalization. The preconditioner is constructed at
negligible computational cost and is solely based on information from the finite cell system matrix,
which makes it algebraic. By virtue of this algebraic nature, it is straightforward to implement as
it is non-intrusive in the rest of the numerical code. Applying the preconditioner does not yield
significant fill-in to the finite cell system matrix. For locally stabilized systems, we found that
the condition number of the SIPIC-preconditioned system matrix is independent of the smallest
trimmed cell volume fraction, which is essential to enable robust solutions of finite cell systems. Al-
though it is observed that for globally stabilized formulations a slight dependence of the condition
number on the smallest volume fraction remains, the preconditioning technique also dramatically
improves the conditioning of such systems.

The performance of the SIPIC preconditioner has been assessed in a comparison to a selection
of commonly used preconditioners. We note that in particular incomplete Cholesky precondi-
tioning is observed to be competitive with SIPIC for a large number of testcases, provided that
diagonal dominance of the matrix fed to the construction algorithm is ensured by increasing the
values on its main diagonal. However, we observe that the robustness of SIPIC is unmatched by
incomplete Cholesky preconditioning (and all other considered preconditioners), in the sense that
in a significant number of testcases the condition number improvement of the other preconditioners
is sub-optimal compared to SIPIC. This sub-optimality is explained by the fact that incomplete
Cholesky fails to detect quasi linear dependencies in some cases, and Jacobi preconditioning ig-
nores quasi linear dependencies altogether. Moreover, SIPIC is observed to have a significantly
lower relative matrix fill-in compared to incomplete Cholesky and incomplete LU preconditioning.
Evidently, the observed robustness in condition number improvement and minimal fill-in of the
SIPIC preconditioner stem from the fact that it is completely tailored to immersed systems, this
in contrast to the other preconditioners considered in the comparison.

Herein we have restricted ourselves to finite cell systems. However, the sources of ill-conditioning
indicate that similar condition number scaling relations hold for other immersed methods, enriched
finite element methods such as XFEM and weak coupling strategies, e.g., [29, 31, 32]. We expect
the SIPIC preconditioning technique to also be effective for such problems. In this study, we con-
sidered piecewise polynomial bases, but the SIPIC preconditioning technique may also be effective
with other types of bases. A particular point of attention for the application of SIPIC to different
methods or approximation spaces is the selection of an appropriate orthonormalization threshold.

The current work has been restricted to symmetric positive definite systems, such that the
bilinear form is an inner product with induced norm. Evidently, this covers a large variety of
problems in computational mechanics. However, problems such as convection-dominated flows
and mixed problems such as (Navier-)Stokes flows and incompressible elasticity are not within the
range of applicability of this work. Generalization of the developments in this manuscript to such
problems is a topic of further study.
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Appendix A. Local stabilization of finite cell systems

Coercivity of the finite cell bilinear form F(-,-), equation (2.4a), can be established by assuring
the coercivity of the element-wise restrictions F;(-, ). Coercivity of F;(-, ) subject to the condition
Bi > C; (see (2.7)), follows from

Fi(vn,vn) >F}H(on,vn) — |F2(vn, vn)| + F2 (vn, vn)

( )
>F (vn,vn) = 2[ln - DVup| 2ory lvnll 2opy + F (0, 0n)
>F} (vn,vn) = €illn - DVl T2 ooy — €7 lonll T2 opy + F7 (0, vn)
( )

>F} (v, vn) — CieiFi (vn, vn) *521\\%”%2@?) + 72 (vn, vn)

=(1— Ci&;) FlH(wn, vn) +/ (Bi — ;7 Hop, © vpdS > 5i||vhH%p(qu),
ro :

for some §; > 0. In the second line in (A.1), the Cauchy-Schwarz inequality is applied. Line
three follows from Young’s inequality, while equation (2.7) is substituted in the fourth line. The
last inequality is based on the fact that there exists a constant €; such that C; < e, ' < B; and
applies a specific form of the Poincaré inequality (e.g., Lemma B.63 in [39]). Global coercivity,
F(vp,vp) > 5”0’1”%’1(9) for some 6 > 0, follows by summation over all F;.

The values of C; can be computed numerically. Because V,(f2) is finite dimensional, (2.7) can
be cast in matrix form as

xTB;x
Ci = m}z{a,x XTViX, (A2)
with
B, = / (n-qu%) (n . DVST )ds and V; = F1(®;, ®7), (A.3)
rb

where ®; denotes the vector of all basis functions that are supported on €2;. The optimality
condition associated with (A.2) implies

xTB;x
B, - =—2V,; =0, .
( TVx > x=0 (A.4)
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because the matrices B; and V; are both symmetric. The solution to (2.7) therefore coincides
with the largest eigenvalue of the generalized eigenvalue problem

Bix = \V;x, (A.5)

which enables computation of C; = Ajax. The numerical solution of this problem requires careful
consideration of the following two aspects:

e The matrix V;, equation (A.3), is singular since it is based solely on the gradients of the
shape functions in ®;. This singularity is not a fundamental problem for the computation
of C; in accordance with (2.7), by virtue of the fact that ker(V;) C ker(B;). However, the
kernel of V; can negatively affect the robustness with which the largest eigenvalue can be
computed.

e After removal of the kernel of V, its conditioning can remain poor on cells with small volume
fractions due to quasi linear dependence of basis functions (see Section 4.1.2).

The conditioning of V; can be improved using the SIPIC preconditioner, but for these matrices
a more direct solution exists. Since the eigenvalue problem is local to the cells, the numerical
difficulties related to these conditioning aspects can be circumvented by applying a local change
of basis. For scalar problems, quasi linear dependencies are avoided by employing the basis of
monomials 4

¢p =] (s — 2" (A.6)

j=1

with multi-index p = (p1, ..., pq) for 0 < p; < p and & the center of mass of the trimmed cell. With
this basis, diagonal scaling suffices for the robust computation of C;. Centering the monomials
at the center of mass of the trimmed cell minimizes the quasi linear dependence problem because
higher-order terms occur in separate functions. Therefore their contribution is not diminished by
lower-order terms, that are larger in magnitude on small volume fractions of a cell. Furthermore,
the kernel of V; only consists of the function ¢q, such that removing the kernel is straightforward.
For vector valued problems, one can use the functions ¢, 1 = er¢p, with e; the unit vector in the
k' direction. Besides removing rigid body translations, also rigid body rotations in the kernel of
V,; can be systematically removed from the monomial basis.

Appendix B. Upper bounds for F2(-,-) and F3(-,-)

Under the assumptions in Section 3, we can bound F2(-,-) and F3(-,-) from above. For the
polynomial basis in Section 3.2, we additionally assume that 3C), (~ 1), independent of mesh size
h, such that for every basis function ¢ in basis ® it holds that

On cell Q; we can then bound F2(-,-) and F2(-,-):

Fi(d,¢) < /FD 2[¢]l.Cp[IVelledS < 2[TP[||¢]lL=Cp ||V Lo (B.2a)

i

a-1
< 2CrCpCHh* 2y, ™,

F ¢, 0) = / Bi¢%dS < [TP|Bi]|¢]3 = < CrCsCpCER 2, T . (B.2b)
rp

For d > 2, the inequalities in (B.2) can be aggregated as

d—2
o d

FH$,0) + FH(¢,¢) < Crash® P, T < Crash®™2, (B.3)
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with Cr2s = (2 + Cg) CrCpC3. A similar derivation conveys that for the cross term between two
different basis functions ¢, and ¢g

Fi (b 85) + Fi(¢as dp) < Crash®™2. (B.4)

The number of functions that is supported on a cell is (p + 1) for all piecewise polynomial
spaces and the number of cells that support a function is is at most (p + 1)¢ for B-splines and
2 for most other bases. This bounds the sum of all terms per function by Cr2sh®2, with
C;_%l;,ne =(p+ 1)2dC’;i23 for B-splines and by CY%* = (p + 1)d2dC’fizs for most other bases. As a
result:

| [F2(@, @) + F3(®,@")] yll2 < Crash®?|y]2, (B.5)

such that ) 5
max ]: (’Umvh) ;:f (’U}“’Uh) S C]:23hd_2. (B.6)
ny yTy
The bounds in (3.17) follow directly from (B.6). Inequality (B.6) also follows directly from Holders
inequality. Because the sum of all terms per function is bounded by Cr2sh?2, this value also
bounds the ||-||oc norm and the [|-|; norm (due to symmetry) of matrix [F2(®, ®") + F3(®, ®")].
By Holders inequality this implies || [F2(®, @) + F3(®, ®")] |2 < Crash?2.

When a global stabilization parameter is applied (B.2b) no longer holds, because the bound
for B does not depend on 7; but on 7. Because 3 is proportional to A=~/ we can bound it
from below by 3 > cgh™ 1~/ for some 0 < cg. For a coefficient vector x with the coefficients
of basis functions supported on I'? set to 1 and all other coefficients set to 0, we have uy|pp = 1
such that F3(up,un) = BITP| > cgh~'n~Y4I'P| and ||x||3 < Ciig|TP|h' =4 for some 0 < Ch;.
With this, we can form the following bound

]_‘S(Uh’vh) ]:'S(Uh,uh) > ¢ hd72’r]71/d

B.7
ey yly = xTx Chite (B7)

Therefore, the condition number of globally stabilized systems is estimated by
Ra(A) > e~ 211/, (B3)

which is different from (3.26) and explains the different slope that is observed when global stabi-
lization is applied in Section 3.3 and 4.3.

Appendix C. Preconditioner-construction algorithm

Algorithm 1 outlines the construction of the SIPIC preconditioner S. Since this preconditioner
is algebraic, it is constructed solely based on the information contained in the system matrix A.
As the SIPIC preconditioner is incomplete in the sense that only functions that are quasi linearly
dependent are orthonormalized, an orthonormalization threshold parameter v € [0,1] is to be
provided as input to the algorithm.

The algorithm is initialized with the construction of the scaling matrix D and the sets Z and
J that respectively identify the current and total quasi linear dependencies. Subsequently, the
linear dependencies are grouped in ¥, and for every sorted local group of indices o € ¥ the Gram-
Schmidt orthonormalization procedure is applied. Finally, a check is performed to test if any new
quasi linear dependencies have emerged after this orthonormalization procedure. If this is the case,
these are added to the total set of quasi linear dependencies and the orthonormalization loop is
restarted. Otherwise the construction of the SIPIC preconditioner is finished. In our simulations,
we have observed convergence of this orthonormalization procedure in at most two iterations,
resulting in negligible computational cost for the construction of the SIPIC preconditioner.
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The subroutines in Algorithm 1 perform the following operations:
e scale(A) returns the diagonal matrix D according to Equation (4.4).

e identify(SAST, ~) locates quasi linear dependencies in the scaled system SAS” (i.e., the
diagonal entries are equal to one). As mentioned in Section 4.1.2, a measure for the linear
dependence of two basis functions with indices a and f is derived from the Cauchy-Schwarz
inequality:

|(¢a7¢5)f| <1, (Cl)
[6all7ll¢sll7
where equality to one indicates linear dependence. Two basis functions are identified as

being quasi linearly dependent if the absolute value of the corresponding off-diagonal term
in the scaled system matrix exceeds the orthogonalization threshold,

1SAS"]us| > 7, (C.2)

which — exploiting the symmetry of the system matrix — results in the set of index pairs of
quasi linearly dependent basis functions:

7= {(a, B) | a> B, |[SAST]us

> 'y} . (C.3)

e group(Z, A) returns a set (X) of non-intersecting sets (o € X) in which intersecting sets in
T are replaced by their union. That is, an element ¢ € ¥ is a tuple containing the indices
of all basis functions that are quasi linear dependent to each other. This tuple is ordered
from the index whose corresponding row in the system matrix has the least nonzero entries
to the index with the largest number of nonzero row entries in A, in order to reduce fill-in
as described in the last paragraph of Section 4.1.2.

e orthonormalize(A,) applies the Gram-Schmidt orthonormalization to the functions in-
dexed by o, such that S, becomes the inverse Cholesky decomposition of A, and S,A,ST
becomes the identity matrix.

Instabilities of the construction algorithm can occur when — due to the presence of cells with
extremely small volume fractions — some basis functions become linearly dependent in the
sense that the absolute off-diagonal entries (C.2) are up to machine precision equal to one.
When this occurs, [SAST]aa = 0 for some index « after orthogonalization, and rescaling
will result in a division by zero. To stabilize the algorithm, a check is performed to test if
[SAST]aa > ¢ before rescaling. If this is not the case, the function is eliminated by simply
deleting the row « from the preconditioning matrix. The preconditioner S is then no longer
square, but SAS? remains square and SPD and is merely reduced in size. This operation
does not influence the quality of the obtained solution, because the remaining basis functions
span the same approximation space up to machine precision. A value of € = 10% - eps (with
eps the machine precision) was found to be adequate for all simulations considered in this
manuscript.

As an example of a matrix that is singular up to machine precision we consider the 2 x 2
matrix

1 1—¢g?
A: |:1_52 1E:|7 (04)

with some parameter ¢ < 1 and condition number k3 = 2/e2 — 1 > 1. The SIPIC precon-
ditioner for A can be computed analytically as

1 0
S = e2_1 1 . (05)
eVv2—e? eV2—e?
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The computation of this matrix by the SIPIC construction algorithm will be impeded by ma-
chine precision errors when 2 ~ eps. From (C.4), it is directly observed that in this case the
rows of matrix A become linearly dependent up to machine precision. In the preconditioner
construction algorithm, this results in the division by zero in the renormalization step after
application of the Gram-Schmidt procedure. For this particular case, the Gram-Schmidt
matrix equals
g=|, Y C.6
-2t ) ()
which results in the orthogonalized matrix A+ = GAG?T (since D = diag(A) = I). Nor-
malization of this matrix results in the division by the square root of

e | e €
=12 - (1-¢?)?,

which numerically becomes equal to zero when €2 ~ eps.

Input: A~ #system matrix, orthonormalization threshold
Output: S #SIPIC preconditioner
#Initialize
S = scale(A) #diagonal scaling
T =J = identify(SAST, ~) #initial dependencies
#Main loop
while J # 0

3 = group(Z, A) #group and order dependencies

for o in X:
‘ S[o,0]l=orthonormalize (A [o,0])
end
J = identify(SAST )
I=TUJ #append current dependencies
end

return S

#0rthonormalization function
def orthonormalize(A,):

S, = scale(A,) #diagonal scaling
for ¢ in range(len(S,)): #Gram-Schmidt orthonormalization
for j in range(i): #j5 <t
‘ So- [i,: ] :Sa [ia:]_ (SUAUSZ) [ivj]so’ []7]
end
Sy li,:] = ——elid #rescale
arn (./saAasc,T) [4,4]
end
return S,
end

Algorithm 1: Construction of the SIPIC preconditioner.
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