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Abstract
Earthquakes cause lasting changes in static equilibrium, resulting in global
deformation fields that can be observed. Consequently, deformation measure-
ments such as those provided by satellite based InSAR monitoring can be used
to infer an earthquake’s faulting mechanism. This inverse problem requires a
numerical forward model that is both accurate and fast, as typical inverse pro-
cedures require many evaluations. The Weakly-enforced Slip Method (WSM)
was developed to meet these needs, but it was not before applied in an inverse
problem setting. Consequently, it was unknown what affects particular prop-
erties of the WSM, notably its inherent continuity, have on the inversion pro-
cess. Here we show that the WSM can accurately recover slip distributions in a
Bayesian-inference setting, provided that data points in the vicinity of the fault
are removed. In a representative scenario, an element size of 1 km was found to
be sufficiently fine to generate a posterior probability distribution that is close to
the theoretical optimum. For rupturing faults amasking zone of 10 km sufficed to
avoid numerical disturbances that would otherwise be induced by the discretiza-
tion error. These results demonstrate that the WSM is a viable forward method
for earthquake inversion problems. While our synthesized scenario is basic for
reasons of validation, our results are expected to generalize to the wider gamut
of scenarios that finite element methods are able to capture. This has the poten-
tial to bring modeling flexibility to a field that is often forced to impose model
restrictions in a concession to computability.

KEYWORDS
elastic dislocation, inverse problem, Bayesian inference

1 INTRODUCTION

With the advent of satellite based interferometry, or InSAR, routine measurements of the earth’s surface deformation
have become available, providing a wealth of information about subsurface processes.1 One of these processes is tectonic
faulting, along with its violent manifestation, earthquakes. While the dynamics of the quake itself cannot be measured
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from space in the way that seismometers do, what can be measured to great accuracy is the lasting adjustments of static
equilibrium to the defect that results from the relative displacement, or slip, of two adjacent masses along a fault.
Given two measurements of the earth’s surface covering the area of an earthquake, of which one taken just prior, the

other just after, it can be reasonably assumed that the differences can be wholly attributed to the process of tectonic
faulting.2 Separation of co-seismic and post-seismic signal can be controlled by shortening the satellite revisit time.3 How-
ever, to establish the details of the faulting mechanism that corresponds to the observed co-seismic deformation, such as
the location and orientation of the fault, and the amount, depth and direction of the slip that occurred, we require an
understanding of the physics bridging the two.
It is generally assumed that on the near-instantaneous time scale of co-seismic deformation, the earth behaves to a good

approximation elastically.4 The default model connecting the fault mechanism and surface observations, therefore, is that
of static, elastic dislocations. While a formal definition of this problem will be presented in Section 2, sufficing at present
is that this type of problem has been studied for well over a century, during which a range of solution methods has been
devised.5
Of the many solution methods available, the most powerful is arguably the finite element method (FEM),6 which is

capable of incorporating all available knowledge of material heterogeneity and surface topography and thus capturing the
system to the greatest detail. While FEM is occasionally used to establish slip,7 which is a linear problem, inversion studies
that aim to establish the fault plane geometry as well as the slip distribution are commonly forced to the other end of the
complexity spectrum for reasons of computational cost. This is why such analyses are often based on the assumption of
a homogeneous halfspace,8–10 for which cheaply evaluable analytical expressions are available. It is with this situation in
mind that we proposed theWeakly-enforced SlipMethod (WSM)11 to strike a better balance betweenmodeling complexity
and computational cost.
The key strength of the WSM is that it decouples the computational mesh from the geometry of the fault, so that the

mesh does not need to be updated for every distinct fault geometry as would be the case in ordinary FEM. Crucially, this
means that the stiffness matrix, as well as derived products such as LU factors, can be constructed once and be reused
throughout the inversion process. While the remaining vector that needs to be constructed for a given fault geometry is
nonstandard, it should be relatively straightforward to integrate this in existing FEM softwares, as well as combine it with
domain specific innovations such as Agata et al.’s Fast FE Analysis.7
The efficiency of WSM does come at a price: the displacement field it produces is continuous, and therefore unable to

capture the jump at the fault. It was however shown11 that the error thus incurred decays exponentially with distance to
the fault. It was therefore hypothesized that this drawback is of little consequence in the context of satellite observations,
as most surface measurements are sufficiently far removed from the dislocation. Only rupturing or near-rupturing faults
will cause numerical errors that significantly interfere with the observables, and even that only locally. As InSAR data
tend to be of low quality in these regions with damage leading to decorrelation, it is hoped that a reduction of numerical
accuracy in this region will be of little consequence.
It bears repeating that the above considerations are speculative. While the mathematical soundness of the WSM was

proved,11 it is in the present paper that we set out to thoroughly test the utility of the WSM in the problem setting for
which it was devised. To this end a number of synthetic but otherwise fully representative case studies are presented and
analyzed using the WSM, as well as validated against the exact solutions. For the sake of this validation the scenarios will
be restricted to homogeneous half spaces so that exact solutions are available in the form of analytical expressions, but it is
to be understood that the presented methodology is valid for the wider class of problems including material heterogeneity
and topography.
The first two sections will lay the theoretical groundwork for the analysis. Section 2 presents the forward problem of

determining surface displacements for a given fault location and slip distribution, focusing both on the construction of
an exact solution and on approximating it using the WSM. Section 3 then considers the inverse problem, of determining
fault location and slip distribution for given surface displacements, using the framework of Bayesian inference. Section 4
will define the methodology and introduce case studies, and Section 5 will present the results of the comparative study.

2 FORWARD PROBLEM: LINEAR ELASTIC DISLOCATION

To formally define the dislocation problem that will stand as the model of the earth’s response to tectonic faulting, we
will denote by Ω the solid domain, by 𝑑 its spatial dimension, and by 𝑢 ∶ Ω → ℝ𝑑 the deformation field, that is, the
displacement of the solid compared to its reference configuration. We assume that it is possible to create a mapping from
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F IGURE 1 Adapted from Van Zwieten et al.5 visualization of the forward problem and all entities of Equation (2)

the deformation field 𝑢 to the corresponding state of internal stress 𝜎. In particular, we assume that the stress depends
linearly on the deformation gradient, leading to the well known constitutive relation

𝜎(𝑢) = 𝐶 ∶ ∇𝑢, (1)

where 𝐶 ∶ Ω → ℝ𝑑×𝑑×𝑑×𝑑 is the stiffness tensor representing local material properties, subject to symmetry relations 𝐶 −

𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 . For the medium to be at rest, Newton’s second law states that the divergence of stress must be
in balance with the applied loading. Rather than incorporating the loading conditions of the earth’s gravitational field, we
use the linearity of the stress-strain relation of Equation (1) to have 𝑢 represent only the deviations relative to the existing
equilibrium. The earth’s gravitational field being constant in time, this means the stress field (1) is divergence free.
Through the remainder of this document we will use a consistent notation for the four spaces that form the basis of our

mathematical framework. By  we denote the space of local fault plane coordinates 𝜉 ∈ ℝ𝑑−1. Bywe denote the space
of all possible fault geometries𝑚 ∶  → ℝ𝑑 that position the manifold in physical space. Bywe denote the space of slip
distributions pulled back to , the slip vector 𝑏(𝜉) being the jump in the displacement field when passing from one side of
the manifold to the other. By we denote the space of surface displacements 𝑑 ∶ ℝ𝑑−1 → ℝ as measured in line of sight
to the satellite. With this notation in place we can reformulate the forward problem as follows:

(Forward problem) Determine the surface observations 𝑑 ∈  corresponding to a given manifold𝑚 ∈  and slip distri-
bution 𝑏 ∈ .

We denote the fault plane  = 𝑚() and the domain boundary Γ as shown in Figure 1. At any fault point 𝑥 ∈  we
demand that the displacement field 𝑢 jumps discontinuously by a displacement 𝑏(𝑚−1(𝑥)). Since this makes the displace-
ment field locally non-differentiable, the stress is locally not defined, and our general equilibrium condition does not
apply. Instead, Newton’s second law transforms into a jump condition for the traction, stating that the tractions on either
side of the fault plane must be in balance. At the earth’s surface Γsurf we assume traction-free conditions, and the remain-
ing domain boundary Γfar is assumed to be sufficiently far away for the relative displacements to be zero. Taken together,
this results in the following system of equations for the forward problem:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div 𝜎(𝑢) = 0 at Ω ⧵  (static equilibrium, continuum)

[[𝑢]] = 𝑏◦𝑚−1 at  (fault slip)

[[𝜎(𝑢)]]𝜈 = 0 at  (static equilibrium across fault)

𝜎(𝑢)𝑛 = 0 at Γsurf (traction-free surface)

𝑢 = 0 at Γfar (zero displacement at far field)

(2)

Before looking into solution strategies for this system, it is readily apparent that solutions to this problem are linear
in 𝑏. Hence, for any manifold𝑚 ∈ , there exists a linear map from the space of slip distributions to the corresponding
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observations:

𝐹𝑚 ∶  → . (3)

If  and  are finite-dimensional and endowed with a basis, we can identify every linear operator with a matrix, 𝐹𝑚 ∈

ℝ#×#, where #(⋅) denotes the cardinality of set (⋅).

2.1 Analytical solutions

The general expression for solutions to (2) was presented in integral form by Volterra12:

𝑢𝑛(𝑦) =
∑
𝑖𝑗𝑘𝑙

∫
𝜉∈

𝑏𝑖(𝜉)𝜈𝑗(𝜉)𝐶𝑖𝑗𝑘𝑙(𝑚(𝜉))
𝜕𝑢𝑛

𝑘

𝜕𝑥𝑙
(𝑚(𝜉), 𝑦) det

||||𝜕𝑚𝜕𝜉 ||||𝑑𝜉, (4)

where the Green’s function 𝑢𝑛
𝑘
(𝑥, 𝑦) is the 𝑘-th component of the displacement vector in 𝑥 due to a unit point force at 𝑦 in

direction 𝑛. Note that (4) has an equivalent alternative form owing to the symmetry relation 𝑢𝑛
𝑘
(𝑥, 𝑦) = 𝑢𝑘𝑛(𝑦, 𝑥), which is

a direct result of Betti’s reciprocal theorem.13
To obtain closed form expressions for theGreen’s functionwe need to place additional constraints on our system. Firstly,

we require that the elastic properties of ourmedium are homogeneous and isotropic, thus reducing the constitutivemodel
to having two independent parameters. Choosing as our parameters the Young’s modulus 𝐸 and Poisson’s ratio 𝜈, the
constitutive tensor becomes

𝐶𝑖𝑗𝑘𝑙 =
𝐸

2 + 2𝜈

[
2𝜈

1 − 2𝜈
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

]
. (5)

Since the displacement resulting from a unit force is inversely proportional to the Young’s modulus, we observe that the
displacement field resulting from Volterra’s equation (4) depends only on the Poisson’s ratio of the medium.
Secondly, for closed form expressions for the Green’s functions 𝑢𝑘𝑛(𝑥, 𝑝) to be available, we require the physical domain

Ω to be a half space, that is, to have an infinite, flat surface as its free surface Γsurf and the far field boundary Γfar at infinity.
The Green’s functions for the 2D half space were derived by Melan14, those for the 3D half space by Mindlin15.
Building on Mindlin’s results, closed form expressions for Volerra’s equation have been presented by Yoffe16 and

Okada17, subject to further restrictions in terms of fault planes and slip distributions. While it is these results that are
typically used in practical applications, for the purposes of our study we shall apply Volterra’s equation directly to
avoid incurring additional and unnecessary restrictions to our case studies that would diminish the value of the present
study.

2.2 The weakly-enforced slip method

The Weakly-enforced Slip Method is a special case of the FEM, which is in turn a Galerkin method, employing shape
functions to construct a finite system of equations that can be solved numerically. Contrary to classical finite element
treatments of Equation (2), in which the domain must be discretized such that the mesh conforms to the manifold 𝑚,
the defining property of the Weakly-enforced Slip Method is that the finite element mesh can be formed independent
of𝑚.
Foregoing derivations and proofs, which are presented in detail in Van Zwieten et al.11, we present the WSM only in

terms of its core result. Given a finite element discretization for the computational domain Ω, and generating from it a
discrete, vector-valued function space �̂�, the WSM solution to Equation (2) is the field �̂� ∈ �̂� that satisfies, for all test
functions 𝑣 ∈ �̂�,

∫
Ω

∇�̂� ∶ 𝐶 ∶ ∇𝑣 =
∑
𝑖𝑗𝑘𝑙

∫
𝜉∈

𝑏𝑖(𝜉)𝜈𝑗(𝜉)

{
𝐶𝑖𝑗𝑘𝑙(𝑚(𝜉))

𝜕𝑣𝑘
𝜕𝑥𝑙

(𝑚(𝜉))

}
det

||||𝜕𝑚𝜕𝜉 ||||𝑑𝜉. (6)



van ZWIETEN et al. 1733

Here {⋅} is the mean operator, which takes effect only in case 𝑚 coincides with an element boundary, making 𝜎(𝑣ℎ)
multi-valued; in the general case it reduces to a single evaluation. It is noteworthy that upon substitution of the
Green’s function 𝑢𝑛

𝑘
(𝑚, 𝑦) for the test function 𝑣𝑘(𝑚), the left-hand-side reduces to �̂�𝑛(𝑦) and we obtain Volterra’s

equation (4).
The advantage of constructing the discrete solution space �̂� independently of𝑚 is directly apparent from Equation (6):

the stiffness matrix, which results from the left hand side of the equation, as well as solution primitives such as LU factors,
are independent of𝑚 and can thus be created once and reused for many different faulting scenarios. The right hand side
vector, resulting from the right hand side of the equation, while dependent on 𝑚, is constructed by integrating over the
fault plane alone and is therefore considerably cheaper to construct.
The disadvantage, as touched upon before, is that in constructing function space �̂� independently of 𝑚 it cannot

possibly allow for discontinuities at any subsequently defined manifold. The main qualitative difference between the
exact solution 𝑢 and the WSM solution �̂�, therefore, is that where the former is discontinuous, jumping at the manifold
by a distance 𝑑, the latter exhibits a smeared out transition extended in the adjacent area. It was shown11 that the size
of the transition zone can be controlled through mesh refinement, and that the error decreases exponentially with
distance to the fault. Moreover, the method is shown to have optimal convergence for any subdomain that excludes the
manifold.

3 INVERSE PROBLEM: BAYESIAN FORMULATION

The endeavor to infer the fault geometry and slip distribution from observed displacements is known as the inverse prob-
lem. With notation as introduced in Section 2, this problem can be formulated as follows:
(Inverse problem) Determine the manifold𝑚 ∈  and slip distribution 𝑏 ∈  corresponding to given observations 𝑑 ∈

.
While this problem was proved 18 to have a unique solution (subject to regularity assumptions) when observations are

exact and cover an entire surface patch, real world observations are inherently discrete and noisy, and no statement of this
kind can bemade in practice. On the contrary, inverse problems tend to be highly sensitive to overfitting and often require
somemeans of regularization for stability. To this effect we follow the typical strategy of adding a priori information, in the
form of quantified notions on expected fault geometries and slip distributions, and use it to select the most likely solution
out of a multitude of good fits.
Observing that noisy data and prior likelihoods are stochastic concepts, the problem naturally presents itself in terms

of random variables, and we select Bayesian inference19, Ch.1] as a suitable framework for solving stochastic problems of
this kind in an approach that is similar to that of Xu et al.[10 Our stochastic framework consists of three random variables:
manifold𝑀 ∈ , slip distribution 𝐵 ∈ , and line-of-sight surfacemeasurements𝐷 ∈ . The probability density of find-
ing a manifold𝑀 = 𝑚 and slip distribution 𝐵 = 𝑏 given that we observe surface displacements 𝐷 = 𝑑 is given by Bayes’
theorem as being proportional to the likelihood of observing 𝐷 = 𝑑 given𝑀 = 𝑚 and 𝐵 = 𝑏, and the prior probability of
𝑀 = 𝑚 and 𝐵 = 𝑏 in the absence of observations:

posterior
⏞⎴⎴⎴⏞⎴⎴⎴⏞
𝑓𝑀𝐵|𝐷(𝑚, 𝑏, 𝑑) =

likelihood
⏞⎴⎴⎴⏞⎴⎴⎴⏞
𝑓𝐷|𝑀𝐵(𝑑,𝑚, 𝑏)

prior
⏞⎴⎴⏞⎴⎴⏞
𝑓𝑀𝐵(𝑚, 𝑏) ∕

marginal
⏞⏞⏞
𝑓𝐷(𝑑) . (7)

Themarginal represents the probability of observing𝐷 = 𝑑. Its distribution follows directly from the likelihood and the
prior, owing to the fact that the posterior probability density integrates to one. We present this relation for completeness,
although we will not need to evaluate it for our purposes:

𝑓𝐷(𝑑) = ∫
𝑚∈∫

𝑏∈
𝑓𝐷|𝑀𝐵(𝑑,𝑚, 𝑏)𝑓𝑀𝐵(𝑚, 𝑏) (8)

This means that the only terms that require further elaboration are the prior, the likelihood, and the posterior, which
we shall explore in the following sections.
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3.1 Prior distribution

The prior 𝑓𝑀𝐵(𝑚, 𝑏) is the probability density of finding a manifold 𝑚 and fault slip 𝑏 absent any observations. It is a
quantification of all prior knowledge relating to manifolds, slip distributions, and the local tectonic setting. The prior dis-
tribution could be based on a general understanding of physics, or it could introduce knowledge from other sources, such
as seismic data. The latter is done for instance by Xu et al.,10 who construct a Gaussian prior around the moment magni-
tude.
Constructing a truly accurate quantification of prior knowledge is difficult, if not impossible. For this reason the distri-

bution is in practice often parameterized with what is known as hyperparameters: tunable constants that are optimized
using additional criteria such as Akaike’s Bayesian Information Criterion (ABIC).20,21 Since the present work does not
deal with real world data, we are in the special position that prior knowledge can be considered a known quantity. It
should be emphasized that this circumstance relates only to the design of the current study, and is in no way implied by
the use of WSM as a forward model.
A useful first step in the construction of our prior is to decompose it. Since fault slip is defined on themanifold, a natural,

universally valid decomposition is the following:

𝑓𝑀𝐵(𝑚, 𝑏) = 𝑓𝑀(𝑚)𝑓𝐵|𝑀(𝑏,𝑚), (9)

where 𝑓𝑀(𝑚) is the prior probability density of the manifold, and 𝑓𝐵|𝑀(𝑏,𝑚) the prior probability density of the fault slip
conditional to the manifold.
Before constructing a prior for the manifold we must identify  with a parameter space. For instance, three coor-

dinates, two angles and two lengths define a rectangular plane. Additional parameters can encode curvature, forks,
or other irregularities as appropriate. Once defined, the simplest prior is constructed by taking all parameters to be
uncorrelated, and every parameter either normally distributed around an expected value or uniformly distributed
within a chosen interval based on available in-situ information. In case actual data is available about a-priori cor-
relations and distributions, this can directly be translated into a high quality prior. If limited information is avail-
able, this can be encoded in a weakly informative prior, for example, a normal distribution with large standard
deviation.
Regarding the probability density 𝑓𝐵|𝑀 , the conditionality of the slip 𝑏 on the manifold 𝑚 is immediately appar-

ent from the observation that beyond certain dip angles there is a strong predominance of normal faults over reverse
faults, which translates in an asymmetric probability on the sign of the slip distribution. Real world inversions would
benefit greatly from encoding this and other mechanisms in a high quality prior, although at the expense of making
the slip inversion nonlinear. For reasons of simplicity, however, we shall consider the manifold and fault slip to be
independent:

𝑓𝐵|𝑀(𝑏,𝑚) = 𝑓𝐵(𝑏). (10)

Adopting this simplification, we further wish the slip vectors to be strongly correlated at points that are close together,
and weakly correlated at points that are spaced far apart, based on a general understanding of the physics underlying slip
events. These notions are formalized in the positive semi-definite autocovariance function 𝐾 ∶  ⊗  → ℝ𝑑−1×𝑑−1:

𝐾𝑖𝑗(𝜉 − 1, 𝜉 − 2) = cov(𝐵𝑖(𝜉 − 1), 𝐵𝑗(𝜉 − 2)), (11)

which we are free to design in any way that reflects existing prior knowledge. Typically, 𝐾(𝜉 − 1, 𝜉 − 2) depends only on
𝜉 − 1, 𝜉 − 2 via their Euclidean distance in relation to a specified correlation length.
For practical reasons we cannot operate on the infinite dimensional space , but will instead operate on a finite

dimensional subspace and discrete random variables �̂� ∈ ̂ ⊂ . To aid its construction we define a vector-valued basis
ℎ = {ℎ − 1, ℎ − 2,… , ℎ𝑁} for the discrete space of slip distributions, and is thus associated with any random slip �̂� ∈ ̂ a
random vector 𝐵ℎ ∈ ℝ𝑁 such that �̂�(𝜉) =

∑
𝑛=1…𝑁 𝐵

ℎ
𝑛ℎ𝑛(𝜉). We now take 𝐵ℎ to be normally distributed with covariance

matrix Σℎ𝐵, which we aim to construct in such a way that (11) still holds to good approximation, that is, 𝐾(𝜉 − 1, 𝜉 − 2) ≈

ℎ𝑇(𝜉 − 1)Σℎ𝐵ℎ(𝜉 − 2). To this end we multiply both sides of the equation by ℎ(𝜉 − 1)ℎ(𝜉 − 2)𝑇 and integrate over the



van ZWIETEN et al. 1735

domain to form the following projection:

∫
𝜉−1∈ ∫

𝜉−2∈
ℎ(𝜉 − 1)𝐾(𝜉 − 1, 𝜉 − 2)ℎ(𝜉 − 2)𝑇

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
𝐻𝐾

=

(
∫
𝜉−1∈

ℎ(𝜉 − 1)ℎ(𝜉 − 1)𝑇

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝐻𝛿

Σℎ𝐵

(
∫
𝜉−2∈

ℎ(𝜉 − 2)ℎ(𝜉 − 2)𝑇

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝐻𝛿

(12)

The extent to which the projection Σℎ𝐵 = 𝐻−1
𝛿
𝐻𝐾𝐻

−1
𝛿

approximates the autocovariance function depends on the details of
the autocovariance function 𝐾 in relation to the approximation properties of the basis, but can in general be controlled
fully by adding basis vectors, that is, increasing the dimension of ̂.
One remaining issue with the above construction is that the resulting Σℎ𝐵 may not be positive semi-definite, which is

a requirement for it to qualify as a covariance matrix. We therefore proceed by diagonalizing the result as Σℎ𝐵 = 𝑉Λ𝑉𝑇 ,
where Λ and 𝑉 are the real-valued eigenvalues resp. 𝐻𝛿-orthogonal eigenvectors of the generalized eigenvalue problem
𝐻𝐾𝑉 = 𝐻𝛿𝑉Λ. Eliminating the negative eigenvalues and corresponding eigenvectors we arrive at the covariance matrix
that approximates our autocovariance function𝐾. In fact, we could go a step further and eliminate small positive eigenval-
ues as well, as these modes are seen to not contribute much to the overall expansion (more details on this in Section 4.2)—
this process has the potential to greatly reduce the dimension of ̂ and hence improve numerical efficiency.
For the purposes of construction we were forced to make the difference explicit between the true space of slip distri-

butions, , and the finite dimensional subspace that we will use for the analysis, ̂. We note that, although we did not
need to make this formal, a similar distinction applies to all spaces: our parametric space is really a finite dimensional
subspace of the much larger space of possible manifolds, and the observation space  is arguably a discrete subspace of
a continuous signal space. Since our analysis is finite dimensional, however, we consider only (sufficiently rich) finite
dimensional subspaces. For this reason we shall also drop this distinction for slip distributions, and have  denote the
finite dimensional space going forward.
Finally, note that the covariancematrix is specific to the chosen basis ℎ. We could therefore still strive to create a basis ℎ′

in such a way that the corresponding covariance matrix Σℎ′𝐵 becomes an identity and all slip coefficients become indepen-
dent random variables. Indeed, the diagonalization provides us with the tools we need in the form of the recombination
matrix 𝑉Λ1∕2, post removal of unwanted modes. The resulting basis is known as a Karhunen-Loeve expansion22, and it is
what we shall be using in our practical implementation. However, while we shall drop the suffix ℎ from here on, we shall
continue to write Σ𝐵, rather than 𝐼, in the interest of preserving structure and keeping our derivations general.

3.2 The likelihood

Given amanifold𝑚 and slip distribution 𝑏, using a linearmap𝐹𝑚 of the type of Equation (3)we expect surface observations
to equal 𝐹𝑚𝑏. Due to model errors and measuring noise, we take the likelihood of observing 𝑑 to be normally distributed
around this expected value with covariance Σ𝐷 :

𝑓𝐷|𝑀𝐵(𝑑,𝑚, 𝑏) = 𝐺Σ𝐷(𝑑 − 𝐹𝑚𝑏), (13)

with the Gaussian probability density function defined as

𝐺Σ(𝑥) =
exp(−

1

2
𝑥𝑇Σ−1𝑥)√

det |2𝜋Σ| . (14)

Since the sum of independent, normally distributed random variables is in turn normal, the covariance matrix Σ𝐷 can be
seen as the superposition of several noise mechanisms. Spatially uncorrelated noise resulting directly from the properties
of the InSAR measurement system contributes to the diagonal, with entries possibly varying to reflect dependence on
distance or incidence angle, or local factors such as those caused by damage or other sources of temporal decorrelation.
Off-diagonal terms may be added to account for spatially-correlated noise, such as errors caused by atmospheric delay.
Furthermore, it is through the covariance that we may account for the quality of the forward model itself. In the

context of the WSM we expect a large error in locations where the continuous solution space is not able to follow local
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discontinuities. Making the variance locally large is a convenient way of downweighing the data in this area, while the
extreme case of making it locally infinite effectively masks out the area, keeping only the intermediate and far field data
for the inversion.

3.3 Posterior distribution

Substituting the prior probability distribution and the likelihood into Bayes’ theorem (7), we can rework terms to obtain
the following result:

𝑓𝑀𝐵|𝐷(𝑚, 𝑏, 𝑑) =
𝑓𝐷|𝑀𝐵(𝑑,𝑚,𝑏)

⏞⎴⎴⎴⏞⎴⎴⎴⏞
𝐺Σ𝐷(𝑑 − 𝐹𝑚𝑏)

𝑓𝐵(𝑏)⏞ ⏞⏞
𝐺Σ𝐵(𝑏) 𝑓𝑀(𝑚)∕𝑓𝐷(𝑑) = 𝐺Σ′𝐵(𝑚)

(𝑏 − 𝑏′(𝑚, 𝑑))
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

𝑓𝐵|𝑀𝐷(𝑏,𝑚,𝑑)

𝑓𝑀|𝐷(𝑚,𝑑)
⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞
𝐺Σ′𝐷(𝑚)

(𝑑)
⏟⎴⏟⎴⏟
𝑓𝐷|𝑀(𝑑,𝑚)

𝑓𝑀(𝑚)∕𝑓𝐷(𝑑) (15)

with the posterior covariance and expected value of 𝐵 conditional to𝑀 and 𝐷,

Σ′𝐵(𝑚)
−1 = Σ−1𝐵 + 𝐹𝑇𝑚Σ

−1
𝐷 𝐹𝑚 (16)

𝑏′(𝑚, 𝑑) = Σ′𝐵(𝑚)𝐹
𝑇
𝑚Σ

−1
𝐷 𝑑. (17)

and the posterior covariance of 𝐷 conditional to𝑀,

Σ′𝐷(𝑚)
−1 = Σ−1𝐷 − Σ−1𝐷 𝐹𝑚Σ

′
𝐵(𝑚)𝐹

𝑇
𝑚Σ

−1
𝐷 (18)

The identity of Equation (15) is verified through direct substitution of the posterior covariances and expected value
in the Gaussian probability density function (14). Of particular use in this exercise is the Weinstein-Aronszajn identity,
det |𝐼 + 𝐴𝐵| = det |𝐼 + 𝐵𝐴|, which, taking𝐴 = 𝐹𝑚 and 𝐵 = −Σ′𝐵(𝑚)𝐹

𝑇
𝑚Σ

−1
𝐷 , results in the following useful relationship:

det |Σ𝐵| det |Σ𝐷| = det |Σ′𝐵(𝑚)| det |Σ′𝐷(𝑚)| (19)

While the identity of Equation (15) is itself entirely algebraic, the interpretation of the individual terms as conditional
probabilities 𝑓𝑀|𝐷 , 𝑓𝐵|𝑀𝐷 and 𝑓𝐷|𝑀 is not immediately apparent. The first follows from marginalizing over : since the
marginal of 𝐺Σ′𝐵(𝑚) is 1 by definition, (15) directly leads to the identity

𝑓𝑀|𝐷(𝑚, 𝑑) = 𝐺Σ′𝐷(𝑚)
(𝑑)𝑓𝑀(𝑚)∕𝑓𝐷(𝑑). (20)

Interpretation of the remaining conditional probabilities then follows readily from the conditional probability relation
𝑓𝐵|𝑀𝐷(𝑏,𝑚, 𝑑) = 𝑓𝑀𝐵|𝐷(𝑚, 𝑏, 𝑑)∕𝑓𝑀|𝐷(𝑚, 𝑑), and from Bayes’ theorem, 𝑓𝐷|𝑀(𝑑,𝑚) = 𝑓𝑀|𝐷(𝑚, 𝑑)𝑓𝐷(𝑑)∕𝑓𝑀(𝑚).
The result of Equation (20) is particularly useful as it allows us to evaluate the total probability density of manifold

𝑚 conditional to observations 𝑑, leaving the study of the slip 𝑏 to a separate, later stage. To aid this evaluation we use
definition (14) of themulti-variateGaussian, togetherwith identities (17), (18), and (19), to expand themarginal distribution
(20) into

𝑓𝑀|𝐷(𝑚, 𝑑) =
⎛⎜⎜⎜⎜⎜⎝

exp
(
−
1

2
𝑑𝑇Σ−1𝐷 𝑑

)
𝑓𝐷(𝑑)

√
det |2𝜋Σ𝐷| det |Σ𝐵|

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
independent of𝑚

⎞⎟⎟⎟⎟⎟⎠
𝑓𝑀(𝑚) exp

(
1

2
𝑑𝑇Σ−1𝐷 𝐹𝑚𝑏

′(𝑚, 𝑑)
)

√
det |Σ′𝐵(𝑚)|−1 . (21)

While the expression contains the marginal 𝑓𝐷 , which although a known quantity is impractical to evaluate, this incon-
venience is circumvented by using sampling techniques that are scaling invariant, meaning that 𝑓𝐷(𝑑) and other 𝑚-



van ZWIETEN et al. 1737

independent terms can be ignored. An example of such a technique is Markov ChainMonte Carlo (MCMC), which allows
one to obtain low order moments of the conditional probability density of𝑚 using a feasibly low number of evaluations.
Using any technique to single out a particular manifold, the probability density of slip 𝑏 conditional onmeasurements 𝑑

andmanifold𝑚 is normally distributed around expected value 𝑏′(𝑚, 𝑑)with posterior covarianceΣ′𝐵(𝑚). Interestingly, the
latter is independent of the measurements, meaning we can evaluate a-priori how a certain combination of measurement
noise properties, satellite viewing geometry and manifold position results in a variance of the estimated slip along the
length of the manifold.
In the expected value of Equation (17) we recognize the solution to a weighted least squares problem with Tikhonov

regularization:

𝑏′(𝑚, 𝑑) = argmin
𝑏∈

(‖𝐹𝑚𝑏 − 𝑑‖2
Σ−1𝐷

+ ‖𝑏‖2
Σ−1𝐵

)
. (22)

While this is a standard method for solving ill-posed problems, the stochastic interpretation thus obtained helps us in
three ways. Firstly, it provides a confidence measure of the result in the form of a posterior covariance matrix. Secondly, it
lendsmeaning to Σ𝐵 and Σ𝐷 that helps us to construct the requiredmatrices. And lastly, it enables one to design numerical
experiments that match the stochastic underpinnings of the method.

4 METHODOLOGY

To test theWSM-based inversion of tectonic faulting, we synthesize a deformation field for certain fault parameters𝑚 and
slip distribution 𝑏, and then try to estimate the fault parameters �̂� and slip distribution �̂� from noisy line-of-sight data
using both the WSM and Volterra’s equation. The process can be divided into five steps:

1. Select fault parameters𝑚 from𝑀;
2. Draw a slip distribution 𝑏 from 𝐵 (or construct it manually);
3. Draw observation data 𝑑 from 𝐷 conditional to𝑀 and 𝐵 using Volterra’s equation (4) as the forward model according

to Sections 2.1 and 2.2;
4. Evaluate the posterior expected value �̂� = 𝐸(𝑀|𝐷 = 𝑑) and covariances using either the WSM or Volterra’s equa-

tion as the forward model;
4*. Alternatively set �̂� = 𝑚 to study a linear-only inversion limited to 𝐵.
5. Evaluate the posterior expected value �̂� = 𝐸(𝐵|𝑀 = �̂�,𝐷 = 𝑑) and covariances using the same forward model as in

4.

In the following we will elaborate on each of these steps.

4.1 Constructing fault parameters

Although any real world situation naturally concerns three-dimensional space, it is advantageous to study a two-
dimensional analogue as well as this allows us to study the entire work flow in a setting that is less expensive and easier
to visualize. We will therefore construct two different sets of fault parameters, one for one-dimensional faults in two-
dimensional space, the other for two-dimensional faults in three-dimensional space.
We limit ourselves to the space of straight faults of fixed dimensions, that are placed anywhere in a box of 50 km in

width, 50 km in breadth (for 3D scenarios) and 25 km in depth. In order to distinguish between the class of rupturing and
non-rupturing faults (a distinction that can often be made on the basis of field observations) we set the minimum depth
to remain fixed. This leaves two parameters in 2D space and four parameters in 3D space to parameterize the entire space,
as summarized in Figure 2.
We note that while the fixed dimensions of the fault plane form an upper bound for the dimensions of the fracture

zone, the support of the slip distribution can still localize within these confines. Introducing additional parameters for
length and width would therefore not add actual degrees of freedom but rather ambiguities between the two spaces 
and, manifested in additional expenses for the nonlinear inversion due to the increased dimension of.While omitting
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F IGURE 2 Fault parameters and their representation in 2D and 3D scenarios. The invalid parameter combination shown in gray in the
2D scenario is not a member of

dimensions from the parameter space means that we require expert judgment to define what size is sufficiently large for
a given situation, we can verify the validity of this assumption a postiori, for example by testing if the inverted slip is
sensitive to fault plane enlargement.
Similar considerations apply to fault location, where in-plane variations can to some degree be captured by . This is

what allows us to fix the depth, while the actual onset of slip might be deeper still. Relatedly, in the 3D scenario we encode
the location as a ‘position’ that is normal to strike, and an ‘offset’ along strike. While we could conceivably eliminate the
latter and rely entirely on to capture the in-plane component, we choose to keep the offset in, as the fault planewould
otherwise have to be undesirably large in order to still cover the search box in all orientations. However, we anticipate
that its posterior variance will be significantly larger than that of the position due to the remaining ambiguities between
 and .
The fault size is the largest size that fits the box given the vertical offset. Rupturing faults are thus of 25 km in length,

while faults that close 5 km below the surface are of 20 km in length. For the 3D scenario both dimensions of the fault are
always kept equal. The mapping to physical space 𝑚(𝜉) is an affine transformation, supporting the assumption that the
slip distribution 𝑏(𝜉) can be considered independently. As it is important for our purposes that the entire fault fits inside
the search box, we define to contain no positions that fall outside of it, nor any angle that causes the fault to intersect
its boundary. Figure 2 shows an example of this in the 2D scenario. On the resulting oblique domain we take the prior
distribution of𝑀 to be uniform.

4.2 Constructing the slip distribution

To construct a space of slip distributions we take the local fault plane coordinates to be the unit line or unit square,
 = [0, 1]𝑑−1, mapping through𝑚 onto a fault plane of dimensions 𝐿. We take slip components in orthogonal directions
to be independent, which is a non-restrictive assumption in practice. This reduces the distribution of the vector field to a
series of identically distributed scalar fields, for which we define an exponential autocorrelation function with correlation
length 𝓁 and maximum slip amplitude 𝛽:

𝐾(𝜉 − 1, 𝜉 − 2) = 𝛽2𝑤(𝜉 − 1)𝑤(𝜉 − 2) exp
(
−
1

2

|𝜉−1−𝜉−2|2
(𝓁∕𝐿)2

)
. (23)

Here 𝑤 is a window function. The window sets the variance to zero on all boundaries for non-rupturing faults, or for all
but the surface edge for rupturing faults. In 2D space (with a 1D fault) these window functions are 𝑤closed(𝜉) = 4𝜉(1 − 𝜉)

and 𝑤open(𝜉) = 𝜉(2 − 𝜉), respectively. In 3D space (with a 2D fault) they are the tensor product of 𝑤closed ⊗ 𝑤closed and
𝑤closed ⊗ 𝑤open.
A Karhunen-Loève expansion is constructed for this autocovariance function via the projection of Equation (12) using

a truncated trigonometric series for the basis ℎ— though we remark that a mesh-based construction can be used instead
in case more flexibility is required. Similar to the window functions, we distinguish the non-rupturing and the rupturing
situations. For non-rupturing faults in one dimension, we use the orthonormal sine series ℎ𝑛(𝜉) =

√
2 sin(𝜉𝑛𝜋). For rup-

turing faults we use amodified cosine series ℎ𝑛(𝜉) =
∑

𝑖=0…𝑛 𝛼𝑛𝑖 cos(𝜉𝑖𝜋), with coefficients 𝛼𝑛𝑖 chosen such that ℎ𝑛(1) = 0

and the basis functions are orthonormal. For two-dimensional faults we use the outer products to form a scalar basis on
the unit square, preserving orthonormality.
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F IGURE 3 The eigenvalue spectrum Λ of the𝐻𝐾 matrix for a rupturing fault in three-dimensional space and a correlation length
𝓁 = 0.1𝐿, computed at different truncation points of the trigonometric series. The inset shows the autocorrelation of the 153-mode
Karhunen-Loève expansion based on 1024 randomly selected point pairs (blue) along with the target autocorrelation function (red). Shown to
the right are the first 10 Karhunen-Loève modes 𝑉Λ1∕2

While orthonormality is not a requirement, it is a convenient property as we no longer need to form 𝐻𝛿 (now an iden-
tity) and the generalized eigenvalue problem reduces to a conventional eigenvalue problem 𝐻𝐾𝑉 = 𝑉Λ — the size of
which depends on the truncation point of the trigonometric series. Selecting the 𝑛 largest eigenvalues, the Karhunen-
Loève expansion is formed by recombining the modes by 𝑉Λ1∕2 causing the corresponding covariance matrix to reduce
to an identity; drawing a sample from the distribution then amounts to independently drawing 𝑛 coefficients from a stan-
dard normal distribution. Since orthogonal slip components are taken to be independent in our choice of autocovariance
function, it suffices to form a scalar basis for each of the components of the vector. Figure 3 shows the spectrumΛ for first
nine scalar bases functions for illustration.
For our experiments we set the correlation length to 𝓁 = 2.5 km and the slip amplitude to 𝛽 = 1 m. These values are

representative of actual geophysical conditions but otherwise arbitrary. To determine the number of Karhunen-Loève
modes to retain, we set a maximum error of ‖𝐻𝐾 − 𝑉Λ𝑉𝑇‖ < 10 mm2 measured in the Frobenius norm. By this process
we establish that 𝑛 = 12Karhunen-Loèvemodes are sufficient for the 2D scenario and 𝑛 = 153modes for the 3D scenario.
Repeating this process for different truncation sizes of the original trigonometric series we find that this result is stable
beyond 16 modes per dimension, and decide based on this that 32 basis functions per dimension is a sufficiently rich
starting point for the expansion.
In a practical application one may wonder if the constructed prior distribution is an accurate representation of reality,

and indeed if the true slip distribution is even an element of  at all. To make sure that a slip distribution drawn from
the prior does not represent an artificial best case scenario with little real world value, we additionally construct a slip
distribution that has local support at a select area of the fault. In addition to testing the robustness of the method to
incorrect assumptions, the local support also allows us to test whether fault dimensions can indeed be captured via the
slip, rather than via additional fault parameters.

4.3 Synthesizing observation data

Selecting a fault plane𝑚 from the space defined in Section 4.1, and drawing a random slip 𝑏 from the distribution defined
in Section 4.2, we obtain the 2D and 3D configurations shown in Figure 4.While it is readily apparent that neither outcome
is physically plausible, we note that this merely highlights the limitations of the constructed prior. In the 2D scenario we
observe the hanging wall moving upward relative to the footwall, at an angle at which reverse faulting is not likely to
occur in nature. This is a direct consequence of the assumptionmade in Section 3.1 that the random variables𝑀 and 𝐵 are
independent, so that the direction of slip cannot be made to depend on the orientation of the fault. The 3D scenario shows
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F IGURE 4 Visualization of the search box containing a non-rupturing fault at position 5 km (0.2𝐿) and dip angle 72◦ (0.4𝜋), and in 3D
additionally offset 2.5 km (0.1𝐿) and strike angle 54◦ (0.3𝜋) (Section 4.1), a slip distribution drawn from the prior distribution (Section 4.2) and
corresponding synthesized deformation data at a 30◦ incidence angle (Section 4.3). Left: a 2D scenario. Right: a 3D scenario in orthographic
projection normal to the fault, showing line of sight deformations modulo 2.8 cm to mimic a typical C-band interferogram

a fairly wild slip distribution that is equally unlikely to occur in practice, underscoring the fact that a prior distribution
based solely on correlation lengths is a poor quantification of actual expert knowledge. Nevertheless, since the inverse
problem measures likelihood only by the prior distribution from which the scenarios are drawn, these considerations of
non-physicality are not important for the purposes of this study.
We proceed by synthesizing a displacement field based on the assumption that the free surface is flat and infinite,

and the material properties are homogeneous, fixing Poisson’s ratio at 𝜈 = 0.25 for all experiments. In this situation we
have a fundamental solution available in the form of Melan’s (2D) and Mindlin’s (3D) solution, which means we can
synthesize the displacement field by evaluating Volterra’s Equation (4). The integral is evaluated numerically by means
of Clenshaw-Curtis quadrature up to a truncation error that is well below the selected noise level. The displacement field
is evaluated in a uniformly spaced grid at a 50 meter resolution, covering the top of the search box defined in Section 4.1.
These displacements are then projected onto a vector at a 30 degrees incidence angle, simulating line-of-sight observations
as obtained from a typical satellite mission. Finally, Gaussian noise is added to the line-of-sight data that is spatially
uncorrelated (thus ignoring atmospheric delays) and normally distributed with a standard deviation of 1 mm. Note that,
while the displacement in Figure 4 is displayed without noise, the assumed noise is so small relative to the magnitude of
the signal that adding it would not make a visible difference.
A difference between the raw synthesised data and deformation data received from a satellite mission is that the

SAR sensor provides deformation data modulo the sensor’s semi-wave length (for details see e.g. Hanssen23), measur-
ing 𝑑 + 𝑘𝜆∕2 for an unknown integer value of 𝑘. While this is typically solved through phase unwrapping (under the
assumption that |Δ𝑑| < 𝜆∕4 for adjacent points) it leaves the data inherently lacking an absolute reference. As we aim for
this synthesized study to be representative of real world situations, we need to make sure that our measurement data is
similarly relative. To this end we select one measurement point as a reference and subtract its deformation from that of
the other measurement points. The inversion is then performed based on the differenced data, using a forwardmodel that
reflects the identical differencing procedure.
To formalize this procedure we introduce the unit vector 𝑟 ∈ ℝ𝑛 that selects the reference point, and 𝑒 ∈ ℝ𝑛 the vector

of ones. With that we can express the differencing operator as

𝐷 = 𝐼 − 𝑒𝑟𝑇. (24)

The differencing is followed by a restriction operation that removes the reference point from the data, for which we intro-
duce the operator 𝑅 ∈ ℝ𝑛×𝑛−1. Note that 𝑟 and 𝑅 are related via 𝑟𝑇𝑅 = 0 and 𝑅𝑅𝑇 + 𝑟𝑟𝑇 = 𝐼.
Regardless of the covariance of the measurement noise, all differenced data is correlated due to the shared reference

point: 𝐸((𝑑𝑖 − 𝑑ref )(𝑑𝑗 − 𝑑ref )) ≠ 0 in general due to the nonzero variance of 𝑑ref . Using the differencing and restriction
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operators we can express the covariance matrix of the differenced data in terms of that of the original measurements,
which we shall denote henceforth as Σ̌𝐷 :

Σ𝐷 = 𝑅𝑇𝐷Σ̌𝐷𝐷
𝑇𝑅. (25)

The additional covariances render the matrix fully dense. Fortunately, we note that we can express the inverse covari-
ance of the differenced data in terms of that of the original measurements. Therefore, if the original covariance
matrix can be inverted efficiently (for instance if it is diagonal) then this property carries over to the new covariance
matrix:

Σ−1𝐷 = 𝑅𝑇𝑋Σ̌−1𝐷 𝑅, (26)

where 𝑋 is a rank-1 update defined as

𝑋 = 𝐼 −
Σ̌−1𝐷 𝑒𝑒𝑇

𝑒𝑇Σ̌−1𝐷 𝑒
. (27)

While our choice of spatially uncorrelated noise implies that the covariance matrix is diagonal, (26) holds for any Σ̌𝐷
and is easily verified using the identities 𝐷𝑇𝑋 = 𝑋, 𝐷𝑋𝑇 = 𝐷 and 𝑋Σ̌−1𝐷 = Σ̌−1𝐷 𝑋𝑇 , together with 𝐷𝑅 = 𝑅, 𝑅𝑅𝑇𝐷 = 𝐷 and
𝑅𝑇𝑅 = 𝐼. Using the same identities it further follows that

𝐷𝑇𝑅Σ−1𝐷 𝑅𝑇𝐷 = 𝑋Σ̌−1𝐷 . (28)

This last result (28) is noteworthy for two reasons. Firstly, in Equations (16) and (17) the inverse covariance occurs
only surrounded by either the forward model or the data, both of which need to be differenced as 𝐹𝑚 = 𝑅𝑇𝐷�̌�𝑚 and
𝑑 = 𝑅𝑇𝐷𝑑. The result shows that it is not necessary to perform these operations explicitly, and that a rank-1 update of the
original covariance matrix inverse is all it takes to switch from an inversion of absolute measurements to that of relative
measurements. Secondly, the absence or 𝑅 and 𝑟 in (27) proves that the inversion is entirely insensitive to the chosen
reference point—indeed, we do not need to make any choice at all.

4.4 Sampling the posterior distribution

We are interested in evaluating the expected value and autocovariance of𝑀|𝐷, that is, the posterior distribution of fault
parameters given the measurements at the surface. The probability density function 𝑓𝑀|𝐷(𝑚, 𝑑) was presented in (20).
However, evaluation of this expression for a particular value of𝑚 is problematic because of the marginal 𝑓𝐷(𝑑) contained
within, which, while defined in Equation (8), does not have a closed form expression. As such we cannot feasibly evaluate
the Lebesgue integral to compute the desired quantities.
We find a solution in the class of Markov Chain Monte Carlo (MCMC) methods, which provides an algo-

rithm for drawing samples from 𝑀|𝐷 while relying only on the ratio of the probability density function at
two points 𝑚 − 1 and 𝑚 − 2, thereby canceling the marginal and other factors that are independent of 𝑚.
As the sample sequence {𝑚 − 1,𝑚 − 2,… } thus produced has an empirical probability measure that coincides
with the posterior distribution, the expected value and higher moments can be evaluated using Monte Carlo
integration

𝐸(𝑔(𝑀|𝐷)) = lim
𝑁→∞

1

𝑁

∑
𝑖=1…𝑁

𝑔(𝑚𝑖), (29)

for any 𝑔, which we can truncate at any 𝑁 depending on the desired level of accuracy.
Building on the result of (21), we observe that we can additionally isolate the prior distribution 𝑓𝑀 as being independent

of𝑚, as we choose it to be uniformly distributed in our setup. This leaves the following linearity relation to feature in our
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MCMCmethod:

𝑓𝑀|𝐷(𝑚, 𝑑) ∼ exp
(
1

2
𝑑𝑇Σ−1𝐷 𝐹𝑚𝑏

′(𝑚, 𝑑)
)

√
det |Σ′𝐵(𝑚)|−1 (30)

Every evaluation of this function involves a linear inversion of the slip for given𝑚, as is seen directly from the presence of
the posterior expected value 𝑏′(𝑚, 𝑑) and covariance matrix Σ−1𝐵 (𝑚). The construction of these and of the forward model
𝐹𝑚 will be discussed in Section 4.5, which details the linear slip inversion process. Of note presently is that when the
required inversion of Σ−1𝐵 (𝑚) is performed via a Cholesky decomposition, then the trace of the Cholesky matrix conve-
niently equals the square-root determinant in Equation (30).
The particular MCMCmethod selected for our purpose is the Metropolis-Hastings24 algorithm, which performs a ran-

dom walk through the sample space  using a proposal distribution to generate candidates, combined with an accep-
tance/rejection step based on the ratio of probability densities. The algorithm as it is employed here consists of the follow-
ing steps:

1. initialize𝑚 − 0 ∈ 
2. for 𝑖 = 1, 2, … ,𝑁:

(a) draw a random update vector 𝛿𝑚 ∈  from the proposal distribution
(b) draw a uniform random number 𝑢 ∈ [0, 1]

(c) set𝑚𝑖 = 𝑚𝑖−1 +

{
𝛿𝑚 if 𝑓𝑑(𝑚𝑖−1 + 𝛿𝑚) ≥ 𝑢𝑓𝑑(𝑚𝑖−1) (accept update)
0 otherwise (reject update)

Note that condition of step 4.4 implies that the update is always accepted if it leads to a state of higher probability. Note
further that if an update is rejected the current state is repeated in the sequence, thereby adding weight to the empirical
distribution and subsequent Monte Carlo integration (29).
What remains is to define the starting vector and the proposal distribution.While the proven convergence of theMarkov

chain suggests that both can be chosen arbitrarily if we take 𝑁 sufficiently large, this approach is not feasible in practice
as the number of iterations required to escape from a local maximum can be prohibitively large. Instead, we require the
starting point to be reasonably close to where 𝑓𝑑 takes its maximum, and the proposal distribution to be locally similar to
𝑓𝑑 in order to have a reasonable acceptance rate.
Aiming for the global maximum, we select the starting vector𝑚 − 0 using a grid search to find local maxima followed

by the Nelder-Mead uphill simplex method. The proposal distribution is taken to be Gaussian with covariance Σ𝑃, which
we would like to resemble the distribution of 𝑓𝑑 local to𝑚 − 0. Aiming to use a projection in logarithmic space, we wish
to form a symmetric matrix 𝐴 such that, for all �̂� in the vicinity of𝑚 − 0,

−
1

2
(�̂� − 𝑚 − 0)𝑇𝐴(�̂� − 𝑚 − 0) ≈ log 𝑓𝑑(�̂�) − log 𝑓𝑑(𝑚 − 0). (31)

As this relation is linear in the matrix coefficients 𝐴𝑖𝑗 we can optimize it using the weighted linear least squares method,
in which we reuse the sequence {�̂�𝑖} of Nelder-Mead iterates as data points, and 𝑓𝑑(�̂�𝑖) as weights in order to downweigh
the tails of the distribution. We note that, while it is convenient to reuse available data, we are at liberty to augment the
series with extra evaluations in the vicinity of the optimum to increase the quality of the projection, even though we have
found no need to do so for the cases considered.
Finally, we use the optimal scaling result of Roberts et al.25 to form the covariance matrix of our proposal distribution,

Σ𝑃 =
(2.38)2

# 𝐴−1. (32)

4.5 Evaluating the posterior expected slip

The expected value 𝐸(𝐵|𝑀𝐷) of the slip distribution given a fault 𝑚 and surface measurements 𝑑 is provided in
closed form by Equation (17). The posterior covariance matrix is defined in Equation (16), in which Σ𝐵 is the identity
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matrix owing to the properties of the Karhunen-Loève expansion. Crucially, both involve the formation of the for-
ward model 𝐹𝑚, which maps the coefficient vector that encodes the slip distribution onto the corresponding vector
of surface deformation gradients. It follows that the rows of the matrix 𝐹𝑚 are formed by the surface deformations
corresponding to the slip distribution that is represented by the individual basis vectors ℎ𝑛(𝜉) that we constructed in
Section 4.2.
If the selected forward model is Volterra’s equation then 𝐹𝑚 is formed by repeated evaluation of Equation (4). If the

selectedmodel is theWSM then constructing 𝐹𝑚 involves constructing a finite element matrix and solving it for a block of
right-hand-side vectors. Having discussed the evaluation of Volterra’s equation in Section 4.3, we will use the remainder
of this section to elaborate on details of the latter.
A first step in any finite element computation is the formation of the computational mesh on which the discrete

basis is formed, in our case to describe the displacement field. Recall from Section 4.1 that all fault planes  will
be confined in a rectangular box of given size. We now create a regularly spaced grid of elements spanning this
search box, allowing us to cheaply trace any physical coordinate inside the box to the containing element and its
element-local coordinate which will greatly aid the efficiency of the fault plane integration. We note, however, that
efficient lookup procedures exist for other mesh types as well, for example using quad trees26 or alternating digital
trees27.
Since our computational domain is a halfspace we have no boundary conditions to place on the walls of the search

box, except for the free surface which is traction free. Instead we take the infinite element approach of extending our
mesh with several rows of extra elements and using a geometric map to continuously stretch the elements outside the
search box towards infinity. Specifically, if 2𝐿 is the width of the box, 2𝑛box the number of elements spanning the box
and 2𝑛inf the number of elements spanning infinity, we apply the following piecewise hyperbolic map to every spatial
dimension:

𝑥𝑖(𝑒) =
𝐿

𝑛box

⎧⎪⎨⎪⎩
𝑒 − (𝑛box + 𝑒)2∕(𝑛inf + 𝑒) −𝑛inf < 𝑒 < −𝑛box

𝑒 −𝑛box ≤ 𝑒 ≤ +𝑛box

𝑒 + (𝑛box − 𝑒)2∕(𝑛inf − 𝑒) +𝑛box < 𝑒 < +𝑛inf

(33)

Note that this includes the depth direction, in which case we take −𝑛inf < 𝑒 ≤ 0. Unless stated otherwise we will select
a infinity-to-box ratio of 𝑛inf ∕𝑛box =

3

2
, which means that in 3D the treatment of the far field increases the number of

elements by a factor ( 3
2
)3 ≈ 3.38 relative to the number of elements in the search box.

In creating the discrete function space 𝑉𝑛 we make use of the fact that our mesh is structured by creating a C1
quadratic spline basis, also known as isogeometric analysis28, which we showed11 to have better accuracy to degrees
of freedom, and we remove the outermost basis functions to impose the far field constraint. With that we are in a
position to evaluate the left hand side of Equation (6) to form the stiffness matrix. Since this matrix will be reused many
times we also invest the time to construct a high quality preconditioner, opting, in fact, to form a complete Cholesky
decomposition.
The right-hand side of Equation (6) involves an integral over for which we use the same Clenshaw-Curtis quadrature

scheme that we used for the synthetization of observation data in Section 4.3, while making use of the rectilinearity of the
mesh in the search box to locate the corresponding element coordinates necessary to evaluate the basis functions. Having
formed the right-hand side vector we can solve the system and form the discrete solution 𝑢ℎ ∈ 𝑉𝑛, which can then be
evaluated in any point of our choosing.

5 RESULTS

We will present several results of the process outlined in Section 4, with the aim of illustrating the many variables and
their effect on the overall computation. While we are mainly interested in applications in three-dimensional space, we
find that most computational aspects appear identically in the two-dimensional analogue. Appreciating the advantages
for visualization we therefore present most of our observations in this setting, adding 3D results mainly to confirm these
findings. For structure we will use the scenarios of Figure 4 as a baseline test case, with minor modifications where
required.
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F IGURE 5 Linear inversion of the slip distribution in the 2D non-rupturing scenario of Figure 4 using Volterra’s equation. Left: The
exact slip distribution 𝑏, the inverted slip distribution 𝑏′(𝑚, 𝑑), and the one standard deviation, 68% confidence interval ±

√
ℎ𝑇Σ′𝐵(𝑚)ℎ. Right:

The difference between the exact surface deformation and the deformation that corresponds to the inverted slip distribution 𝑏′(𝑚, 𝑑) using
Volterra’s equation as the forward model

F IGURE 6 Linear inversion of the slip distribution in the 2D non-rupturing scenario of Figure 4 using the WSM forward model on a
76 × 38 element mesh, of which 50 × 25 elements form the search box. The graph layout is identical to that of Figure 5, with the addition of
the ‘forward’ deformation error that corresponds to the exact slip distribution, rather than the inverted slip distribution

5.1 Linear inversion: Slip distribution

We will study first the linear inversion process, in which we keep the fault parameters 𝑚 equal to the exact values and
invert the slip distribution 𝑏 only—referring to the methodology of Section 4 we set �̃� = 𝑚 in step 4. A natural starting
point is to establish the best case solution by inverting using Volterra’s equation, the forward model that was used to
synthesize the data. The results of this are shown in Figure 5. While the inverted slip distribution does not match the exact
slip due to the smoothing effect of the prior distribution, we observe in the left panel a reasonable fit that is in keepingwith
the posterior variance. In the right panel we observe that the deformation error stays well below the 1 mm measurement
noise standard deviation.
Repeating this process with the WSM on a 76 × 38 element mesh we obtain the result of Figure 6, showing that the

expected slip and standard deviation are almost identical to those obtained using Volterra’s equation. Paradoxically, the
corresponding deformation error in the right panel (‘inverted’) is relatively large. It is noteworthy that the deformation
error is characterized by a significant offset (approximately 3 mm) with a relatively small variation (approximately 0.2
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F IGURE 7 Linear inversion of the slip distribution in the identical setting to Figure 6 except for different finite element meshes.
Referencing Equation (33), the baseline mesh was constructed for 𝑛box = 25 and 𝑛inf = 38, resulting in a 76 × 38 element mesh of which
50 × 25 elements form the search box. Left: 𝑛box = 25 and 𝑛inf = 200, keeping the search box resolution fixed while adding elements to the far
field. Right: 𝑛box = 100 and 𝑛inf = 150, keeping the infinity-to-box ratio fixed while increasing resolution by a factor 4

mm). A similar offset can be seen in the (‘forward’) error that the model produces with the exact slip as input, thus repre-
senting the discretization error for this particular computational setting. From this we can conclude that the offset does
not result from the inversion process, but is in fact a side effect of the discrete model. Fortunately, by virtue of the differ-
encing approach layed out in Section 4.3, the inversion is insensitive to offsets of this kind. We observe that the errors are
small relative to the offset, with a peak to peak error range that is well below 1 mm, which explains the perceived paradox.
In addition to the 3 mm offset, the forward error curve of Figure 6 shows a distinct spatial trend, dropping by 0.35 mm

over the length of the domain. Both aspects of the discretization error are studied in Figure 7, which shows two variations
of the mesh resolution. On the left we see the effect of increasing the resolution in the far field while keeping that in the
search box fixed. Comparing to Figure 6, we observe that both the offset and the trend are greatly reduced, indicating
that these phenomena are caused largely by the treatment of the far field. At the same time the errors did not change
significantly relative to the offset, confirming that this far field-induced error should not strongly affect the inversion. On
the right we see how an eight-fold uniform mesh refinement results in a stark reduction of the discretization error, and
in an inverted deformation error that closely resembles that of the baseline result of Figure 5 modulo the remaining offset
and trend.
Taken together, the results of Figure 7 uphold our result11 that the discretization error can be made arbitrarily small

via mesh refinement. However, as we have already seen, it is by no means necessary to drive the error orders below
the noise level of the deformation measurements. To see what happens in the opposite direction, Figure 8 compares the
Volterra andWSM-based inversion at a noise level that is 100 times smaller while maintaining the mesh. While Volterra’s
equation correctly tightens the error margin around the exact slip, the WSM-based inversion deviates significantly from
the exact slip due to the dominant numerical error. At this noise level it takes an eightfold uniformmesh refinement for the
WSM-based inversion to return to being indistinguishable from the Volterra based inversion, beyond which the inversion
is essentially mesh-independent. Based on these results, we consider that a mesh at which the discretization error does
not exceed half the standard deviation of the measurement noise appears to strike a good balance between accuracy and
numerical efficiency.
There is one situationwherewe cannot control the discretization error throughmesh refinement, which is in the case of

a rupturing fault. As the approximation is inherently continuous, the error at the point of intersection equals half the slip
magnitude regardless of element size. Since this violates the established rule that the discretization error may not exceed
the measurement noise, care must be taken to avoid the detrimental effects we observed in the right panel of Figure 8.
Arguably the simplest way to achieve this is to discard measurements close to the rupture and use only the remaining
intermediate to far field data. Incidentally, the masking out of data in the rupture zone is not uncommon in the context of
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F IGURE 8 Linear inversion of the slip distribution in the identical setting to Figure 6 except for a 100× reduction of the measurement
noise to 0.01 mm. Left: Volterra-based inversion. Right: WSM-based inversion on a 76 × 38 element mesh, of which 50 × 25 elements form the
search box. This is an illustration of the adverse effects on the inversion when the noise level undercuts the discretization error

F IGURE 9 Linear inversion of the slip distribution in a 2D rupturing scenario. The graph layout is similar to that of Figure 5, with the
difference that the right panel shows the absolute displacements rather than the displacement errors with the black ‘exact’ curve representing
the synthesized displacement field. The gray band in the the right panel corresponds to the area that was masked out in order for the locally
meter-scale errors not to affect the inversion

SAR interferometry, as local destruction tends to lead to decorrelation of the radar signal. We hypothesize, therefore, that
no valuable data need be discarded in practice.
An example of a rupturing fault can be seen in Figure 9. The right panel shows the absolute displacement (rather than

the displacement error) in which we observe continuous oscillations at the 5 km position where the exact displacement
exhibits a discontinuity. The oscillations decay rapidly, reaching sub-millimeter scale amplitudes at a 5 km distance from
the surface rupture. The left panel shows the inversion result based on the deformation data outside of this±5 km interval
that is marked gray in the right panel. The result accurately recovers the exact slip distribution, and is virtually indistin-
guishable from the Volterra-based inversion (not displayed) subject to the same data mask, confirming that data masking
is a suitable strategy to deal with the continuous representation of discontinuities in the WSM. We note that since WSM
displays optimal convergence away from the dislocation[11, Cor.7] the required masking zone can be made arbitrarily
narrow by sufficiently refining the mesh.
So far we have drawn a slip distribution from the prior distribution, the same that is subsequently used in the inversion

procedure to reconstruct the slip frommeasurements. Since it is difficult in practice to accurately capture prior knowledge
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F IGURE 10 Linear inversion of a manually constructed Gaussian slip distribution in a 2D scenario, solved on a 76 × 38 element mesh.
Left: a non-rupturing scenario with the slip centered at 40% dip. Right: a rupturing scenario with the slip centered at 20% dip and a masked
area of 5 km

F IGURE 11 Linear inversion of the slip distribution in a 3D non-rupturing scenario using the WSM forward model on a 76 × 76 × 38
element mesh, of which 50 × 50 × 25 elements form the search box. Left: The exact slip distribution 𝑏 as black quivers, the inverted slip
distribution 𝑏′(𝑚, 𝑑) as blue quivers, and the local one standard deviation or 47% confidence region resulting from the 2 × 2 posterior
covariance matrix ℎ𝑇Σ′𝐵(𝑚)ℎ as blue ellipses, centered at the expected value and at matching scale. Right: the vector norm of the deformation
gradient error. The solid rectangle shows the outline of the fault plane

in terms of a distribution, it is relevant to study the robustness of the procedure to slip distributions not being elements
of our discrete space . Examples of this can be seen in Figure 10, which shows two Gaussian slip distributions, one
rupturing, the other non-rupturing. Though neither is a member of , both distributions are recovered with reasonable
accuracy, confirming that the methodology has at least some lenience to inadequacies in the choice of the prior. This also
confirms our premise that the size of the fault plane need not be an independent parameter if we have reasonable upper
bounds, as the areas of zero slip are captured accurately.
Finally we turn to the 3D scenario (right panel) of Figure 4. Employing the identical methodology, Figure 11 shows the

slip distribution and the corresponding error in deformation gradient, in which we recognize similar patterns to those
we observed in the direct 2D equivalent of Figure 6. Taking into account the local standard deviation, the inverted and
exact slip distributions are in good agreement.We also confirmed that the result is indistinguishable from that obtained via
Volterra’s equation. The error is largest in the vicinity of the fault, but stays well clear of the 1mmnoise level. Interestingly,
the error offset that we observed in the 2D results is much less pronounced in the 3D situation.
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F IGURE 1 2 Binned results of a 50,000-sample MCMC process for𝑀|𝐷 using Volterra’s equation in the 2D non-rupturing scenario of
Figure 4, which has fault parameters position=0.2𝐿 and dip angle=0.4𝜋. Left: reference results from Volterra’s equation. Right: results from
the WSM on a 48 × 24 element mesh, of which 32 × 16 elements form the search box. The bottom row shows the marginalized distributions
for fault position (left) and the dip angle (right), with axis labels showing mean value ± standard deviation or, equivalently, the 68%
confidence interval. The orange overlay shows the corresponding normal distribution. Grid lines are spaced at one standard deviation. The
top row shows the cross correlation of x coordinate and dip angle, with the orange overlay showing the bivariate normal distribution at two
standard deviations or, equivalently, the 91% confidence region

5.2 Nonlinear inversion: Fault parameters

We proceed by studying the nonlinear inversion of the fault parameters. Referring again to the methodology of Section 4,
in step 4 we now evaluate the posterior expected value for the fault parameters𝑚 using the Metropolis-Hastings MCMC
process. This process samples the posterior distribution through repeated evaluation of 𝑓𝑑(𝑚) as defined in Equation (30),
being proportional to the posterior probability density function 𝑓𝑀|𝐷 . As this entails evaluation of the expected value
𝑏′(𝑚, 𝑑), all aspects of the linear inversion process as explored in the previous section remain in effect.
Returning to the non-rupturing 2D baseline scenario (left panel) of Figure 4, Figure 12 shows the results of a MCMC

process comparing Volterra’s equation to theWSM.We use the same relatively coarsemesh that we used for Figure 6 to see
if there are adverse effects in pushing against the boundary of the discretization error. Both distributions are seen to capture
the fault parameters correctly, pinpointing the exact values to a high degree of accuracy both in terms of a nearly exact
expected value and of the equally narrow confidence interval. Furthermore, both distributions are in excellent agreement
with each other, demonstrating the robustness of the method with regard to discretization errors.
We started the MCMC random walk from the global maximum, obtained via the Nelder-Mead uphill simplex method,

that in turn was started from where we know the exact solution to be. Knowledge of an exact solution is a luxury that
is not available in any practical application, which means a global search algorithm will typically be required to prepare
for the final gradient ascent. A relevant question, therefore, is whether the WSM has a disturbing effect in this regard. To
explore this, Figure 13 compares the posterior probability density function obtained through direct evaluation of Volterra’s
equation against that obtained via the WSM, identifying local maxima as well as the associated watersheds. While the
WSM introduces some spurious local maxima, the global maximum as well as its watershed appear identical, suggesting
that there is no difference with regard to global optimization strategies.
For the rupturing scenario we mask out an area of 7.5 km centered at the point of rupture. While it may seem contra-

dictory to mask out the rupture zone while simultaneously inverting for the rupture coordinate, this process should be
understood in the context of having prior information in the form of in situ observations. Even though the precise tra-
jectory of the rupture may not be known to have sufficient accuracy, it may well be sufficient to define a masking zone.
In fact, although not employed here, we are at liberty to modify the prior distribution to have it reflect this knowledge as
well. Selecting the uniformly refined grid of Figure 9, the 7.5 km zone is 50% wider than the observed minimum in order
to not artificially limit mobility of the rupture coordinate, but rather give it some freedom to find its optimum within the
confines of the broader mask.
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F IGURE 13 Contour lines and local maxima of 𝑓𝑀|𝐷 for the same 2D non-rupturing scenario as that of Figure 12. The colored areas
represent (inverse) watersheds of the probability landscape, that is, the collection of points from which an uphill gradient method converges
to the associated local maximum. Left: reference result from Volterra’s equation. Right: results from the WSM on a 48 × 24 element mesh.
Powers smaller than -100 are shortened using scientific notation, denoting, for example, 10−31826 as 10−3𝑒4

F IGURE 14 Binned results of a 50,000-sample MCMC process for𝑀|𝐷 using the WSM forward model in a 2D rupturing scenario with
the same parameters as in Figure 12: position=0.2𝐿 and dip angle=0.4𝜋. A radius 0.3𝐿 data mask is applied centered at x=0.2𝐿. Left: reference
results from Volterra’s equation. Right: results from the WSM on a 96 × 48 element mesh, of which 64 × 32 elements form the search box

Figure 14 shows the side-by-side results of Volterra’s equation and theWSM.Note that themaskwas applied toVolterra’s
equation as well for sake of comparison, even though the method does not require it. The distributions in the rupturing
scenario are less precise as a result of data masking, but are otherwise in excellent agreement.
Figure 15 again explores the posterior probability density function, where this time we see a very large qualitative dif-

ference between Volterra’s equation and the WSM. While both show a clear delineation at (0.2 ± 0.3)𝐿, corresponding
to the applied data mask, the WSM produces many more local maxima, clustering in particular at the crossover points
and at shallow dip angles. The global maximum still has a fairly large associated watershed, however, suggesting that
the multitude of local maxima is not necessarily problematic in a global optimization context. Note also that the global
optimization algorithm needs only consider positions inside the masked region—the nonshaded region in the figure—as
ruptures outside of the mask are in violation of its premise.
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F IGURE 15 Contour lines, local maxima and watersheds of 𝑓𝑀|𝐷 for the same 2D non-rupturing scenario as that of Figure 14, with an
overlay delineating the masked region. Left: reference result from Volterra’s equation. Right: results from the WSM on a 96 × 48 element
mesh. Powers smaller than -100 are shortened using scientific notation, denoting, for example, 10−31826 as 10−3𝑒4

We conclude againwith the 3D scenario (right panel) of Figure 4. Using the samemesh aswas used for the slip inversion
of Figure 11, Figure 16 shows the posterior distribution of the 3D fault parameters. One can observe that the expected values
accurately match the parameters that were used to generate the synthetic data. The position along strike has a markedly
larger variance than that perpendicular to it, whichmatches the expectations laid out in Section 4.1 relating to ambiguities
with the slip distribution. Though the high computational costs involved in evaluating the Volterra solution in a 3D space
prohibit running the MCMC process using Volterra’s equation to verify the correctness of this result, we consider the
foregoing to be sufficient support to present this as a demonstration of the WSM driving a realistic, nonlinear inversion
of a 3D fault plane.

6 CONCLUSIONS

In this paper we performed for the first time a full inversion of fault plane parameters and fault slip distribution using
the Weakly-enforced Slip Method (WSM) that was developed explicitly for this purpose. By restricting the domain to a
homogeneous halfspacewewere able to synthesize the deformation data and to compare theWSM-based inversion against
a reference result obtained from the exact solution. This allowed us to study in detail the effect that the discretization
error has on different aspects of the inversion process. To provide our study with a mathematical framework we placed
the inverse problem in a Bayesian setting, in which a prior probability distribution is refined though observations into a
posterior probability that quantities the likelihood of various faulting mechanisms.
For linear inversions, the WSM was found to be competitive with Volterra’s equation in terms of accuracy, showing

excellent agreement already at coarse meshes (five elements per 10 km for the situation considered) in case of non-
rupturing faults. As a practical rule of thumb for the minimum required mesh density, we demonstrated empirically
that the discretization errors must not exceed the standard deviation of the measurement noise in order to avoid large
numerical errors. Conversely, increasing the mesh density beyond this point contributes little to the accuracy of the
inversion.
A WSM-based inversion of rupturing faults requires additional measures to account for the local smearing out of the

discontinuity, but it is argued that similar measures are often required in practice regardless. When a simple data mask is
applied to disregard data points in the vicinity of the rupture, theWSM and exactmethod again show excellent agreement,
albeit at a finer mesh that is required to localize the discrization error to the rupture zone. Local to the rupture the error
is observed to decay exponentially, at a rate that is inversely proportional to the element size of the computational mesh.
It is expected that this relation holds as well in the case of local, rather than uniform, refinements.



van ZWIETEN et al. 1751

F IGURE 16 Binned results of a 10,000-sample MCMC process for𝑀|𝐷 corresponding to the 3D non-rupturing scenario of Figure 4,
which has fault parameters offset=0.1𝐿, position=0.2𝐿, strike angle=0.3𝜋 and dip angle=0.4𝜋. The bottom row shows from left to right the
marginalized distributions for fault offset, position, strike and dip, with axis labels showing mean value ± standard deviation or, equivalently,
the 68% confidence interval. The orange overlay shows the corresponding normal distribution. Grid lines are spaced at one standard
deviation. The remaining rows show from top to bottom the fault parameters y, strike and dip, thus covering all cross correlations. The orange
overlay shows the bivariate normal distribution at two standard deviations or, equivalently, the 91% confidence region

While the WSM was originally analyzed on a finite domain with exact boundary conditions5, real world applications
cannot rely on the availability of such data. Instead of introducing artificial boundaries, we opted for a finite-to-infinite
mapping for the treatment of the far field in order not to introduce assumptions that might limit the validity of our results.
Though this treatment introduced a fairly significant error, we observe that the relative displacement error of two nearby
points remains dictated by the local element size. This circumstance fits remarkably well with the fact that satellite-based
InSAR observations are inherently relative, which means that treatment of the data must be insensitive to global offsets.
While successful in this regard, meshing the far field is arguably an expensive solution, increasing the number of degrees
of freedom by a factor of 3.38 in the test cases considered. Further study in this direction is therefore warranted.
For non-linear inversions, any global search algorithm followed by a gradient-based optimization is shown to perform

equally well for the WSM as it does for the exact forward method, as demonstrated by a full comparison of the posterior
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probability density. Furthermore, we demonstrated that the iterates of the Nelder-Mead uphill simplex method can be
reused in a linear least squares projection to provide a high quality Gaussian proposal distribution for a subsequent
exploration of the posterior probability using the Metropolis-Hastings Markov Chain Monte Carlo method.
In an observation that is unrelated to the WSM we have remarked that certain parameters that are customarily added

to the space of fault parameters, such as the fault plane dimensions, can instead be captured at lesser cost by the slip
distribution. In situations where an ambiguous relationship remains between a fault parameter and the slip distribution,
this translates to a large variance of the posterior distribution, as demonstrated by the along-strike offset of the fault plane
in the 3D scenario.
In conclusion, we believe that the present work convincingly demonstrates the utility of theWSM in real world applica-

tions, combining the power and flexibility of finite element analysis with a highly efficient reuse of computational effort.
It also provides a practical framework by which such studies can be performed. While the current experiments have been
restricted to homogeneous halfspaces for reasons of verification, none of these restrictions were required by the method-
ology as it is presented here; nor do we have reason to believe that our findings are limited to these conditions.
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