19 research outputs found

    Can the presence of plantain (Plantago lanceolata L.) improve nitrogen cycling of dairy grassland systems on peat soils?

    Get PDF
    Reactive nitrogen (N) losses, and in particular nitrous oxide losses, from dairy grasslands on peat soils are generally high as a result of relative high soil organic matter contents, potential N mineralisation rates and shallow groundwater levels. Effects of the inclusion of the temperate forage species plantain (Plantago lanceolata L.) (PL), which produces secondary compounds with biological nitrification inhibition capacity, on the fate of soil mineral N were studied in a combined mesocosm and field experiment. The experiments comprised four treatments differing in intentional herbage share of plantain versus perennial ryegrass (Lolium perenne L.) (100%PL, 66%PL, 33%PL and 0%PL). Potential nitrification in the mesocosm experiment was significantly lower at 100%PL versus 0%PL (p = 0.018), but soil nitrate concentrations were not. Nitrous oxide fluxes reduced by 39% (p = 0.021) in the presence of plantain in the field experiment, without an obvious link to the quantity of plantain. N use efficiency of plantain tended to increase with the quantity of plantain in the sward in the mesocosm experiment (p = 0.098), but not in the field experiment. Our results suggest that the presence of plantain can affect the fate of soil mineral N of dairy grasslands on peat soils.FWN – Publicaties zonder aanstelling Universiteit Leide

    Structural response of Caribbean dry forests to hurricane winds: a case study from Guanica Forest, Puerto Rico

    Get PDF
    Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance. Methods: Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics. Results: Direct effects of the hurricane were minimal, with stem mortality at \u3c 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high . over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (\u3e 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main Conclusions: Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi-stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short-term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds

    Genome-wide association and Meta-analysis of age at onset in Parkinson Disease

    Get PDF
    Background and Objectives Considerable heterogeneity exists in the literature concerning genetic determinants of the age at onset (AAO) of Parkinson disease (PD), which could be attributed to a lack of well-powered replication cohorts. The previous largest genome-wide association studies (GWAS) identified SNCA and TMEM175 loci on chromosome (Chr) 4 with a significant influence on the AAO of PD; these have not been independently replicated. This study aims to conduct a meta-analysis of GWAS of PD AAO and validate previously observed findings in worldwide populations. Methods A meta-analysis was performed on PD AAO GWAS of 30 populations of predominantly European ancestry from the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease (COURAGE-PD) Consortium. This was followed by combining our study with the largest publicly available European ancestry dataset compiled by the International Parkinson Disease Genomics Consortium (IPDGC). Results The COURAGE-PD Consortium included a cohort of 8,535 patients with PD (91.9%: Europeans and 9.1%: East Asians). The average AAO in the COURAGE-PD dataset was 58.9 years (SD = 11.6), with an underrepresentation of females (40.2%). The heritability estimate for AAO in COURAGE-PD was 0.083 (SE = 0.057). None of the loci reached genome-wide significance (p < 5 × 10−8). Nevertheless, the COURAGE-PD dataset confirmed the role of the previously published TMEM175 variant as a genetic determinant of the AAO of PD with Bonferroni-corrected nominal levels of significance (p < 0.025): (rs34311866: β(SE)COURAGE = 0.477(0.203), pCOURAGE = 0.0185). The subsequent meta-analysis of COURAGE-PD and IPDGC datasets (Ntotal = 25,950) led to the identification of 2 genome-wide significant association signals on Chr 4, including the previously reported SNCA locus (rs983361: β(SE)COURAGE+IPDGC = 0.720(0.122), pCOURAGE+IPDGC = 3.13 × 10−9) and a novel BST1 locus (rs4698412: β(SE)COURAGE+IPDGC = −0.526(0.096), pCOURAGE+IPDGC = 4.41 × 10−8). Discussion Our study further refines the genetic architecture of Chr 4 underlying the AAO of the PD phenotype through the identification of BST1 as a novel AAO PD locus. These findings open a new direction for the development of treatments to delay the onset of PD

    Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing.

    Get PDF
    BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies

    Differential optimal dopamine levels for set-shifting and working memory in Parkinson's disease

    No full text
    Contains fulltext : 152127.pdf (publisher's version ) (Closed access)Parkinson's disease (PD) is an important model for the role of dopamine in supporting human cognition. However, despite the uniformity of midbrain dopamine depletion only some patients experience cognitive impairment. The neurocognitive mechanisms of this heterogeneity remain unclear. A genetic polymorphism in the catechol O-methyltransferase (COMT) enzyme, predominantly thought to exert its cognitive effect through acting on prefrontal cortex (PFC) dopamine transmission, provides us with an experimental window onto dopamine's role in cognitive performance in PD. In a large cohort of PD patients (n=372), we examined the association between COMT genotype and two tasks known to implicate prefrontal dopamine (spatial working memory and attentional set-shifting) and on a task less sensitive to prefrontal dopamine (paired associates learning). Consistent with the known neuroanatomical locus of its effects, differences between the COMT genotype groups were observed on dopamine-dependant tasks, but not the paired associates learning task. However, COMT genotype had differential effects on the two prefrontal dopamine tasks. Putative prefrontal dopamine levels influenced spatial working memory in an 'Inverted-U'-shaped fashion, whereas a linear, dose-dependant pattern was observed for attentional set-shifting. Cumulatively, these results revise our understanding of when COMT genotype modulates cognitive functioning in PD patients by showing that the behavioural consequences of genetic variation vary according to task demands, presumably because set-shifting and working memory have different optimal dopamine levels
    corecore