81 research outputs found

    Plant characteristics associated with widespread variation in eelgrass wasting disease

    Get PDF
    Seagrasses are ecosystem engineers of essential marine habitat. Their populations are rapidly declining worldwide. One potential cause of seagrass population declines is wasting disease, which is caused by opportunistic pathogens in the genus Labyrinthula. While infection with these pathogens is common in seagrasses, theory suggests that disease only occurs when environmental stressors cause immunosuppression of the host. Recent evidence suggests that host factors may also contribute to disease caused by opportunistic pathogens. In order to quantify patterns of disease, identify risk factors, and investigate responses to infection, we surveyed shoot density, shoot length, epiphyte load, production of plant defenses (phenols), and wasting disease prevalence in eelgrass Zostera marina across 11 sites in the central Salish Sea (Washington state, USA), a region where both wasting disease and eelgrass declines have been documented. Wasting disease was diagnosed by the presence of necrotic lesions, and Labyrinthula cells were identified with histology. Disease prevalence among sites varied from 6 to 79%. The probability of a shoot being diseased was higher in longer shoots, in patches of higher shoot density, and in shoots with higher levels of biofouling from epiphytes. Phenolic concentration was higher in diseased leaves. We hypothesize that this results from the induction of phenols during infection. Additional research is needed to evaluate whether phenols are an adaptive defense against Labyrinthula infection. The high site-level variation in disease prevalence emphasizes the potential for wasting disease to be causing some of the observed decline in eelgrass beds

    Species-speciWc defense strategies of vegetative versus reproductive blades of the PaciWc kelps Lessonia nigrescens and Macrocystis integrifolia

    Get PDF
    Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae

    Marine epibiosis. II. Reduced fouling on Polysyncraton lacazei (Didemnidae, Tunicata) and proposal of an antifouling potential index

    Get PDF
    Polysyncraton lacazei is a colonial tunicate (family didemnidae) living in the NW-mediterranean rocky sublitoral. A thorough scanning of numerous colonies revealed that in spite of an apparently heavy local fouling pressure only one fouling species — a kamptozoan — is encountered with some regularity on Polysyncraton. We try to define the epibiotic situation of sessile marine organisms as composed of four epibiotic parameters: longevity or exposure time (A), epibiont load (E), colonizer pool (CP) and fouling-period (FP). Subsequently, these factors are combined to propose an “Antifouling Potential” index: AFP=(1−E/CP)×A/(FP+A). This index is intended to permit evaluating the relative antifouling defense potency to be expected in a given organism in a given epibiotic situation and to compare different cases of epibiosis and fouling

    Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere

    Get PDF
    Corals are prolific producers of dimethylsulfoniopropionate (DMSP). High atmospheric concentrations of the DMSP breakdown product dimethylsulfide (DMS) have been linked to coral reefs during low tides. DMS is a potentially key sulfur source to the tropical atmosphere, but DMS emission from corals during tidal exposure is not well quantified. Here we show that gas phase DMS concentrations (DMSgas) increased by an order of magnitude when three Indo-Pacific corals were exposed to air in laboratory experiments. Upon re-submersion, an additional rapid rise in DMSgas was observed, reflecting increased production by the coral and/or dissolution of DMS-rich mucus formed by the coral during air exposure. Depletion in DMS following re-submersion was likely due to biologically-driven conversion of DMS to dimethylsulfoxide (DMSO). Fast Repetition Rate fluorometry showed downregulated photosynthesis during air exposure but rapid recovery upon re-submersion, suggesting that DMS enhances coral tolerance to oxidative stress during a process that can induce photoinhibition. We estimate that DMS emission from exposed coral reefs may be comparable in magnitude to emissions from other marine DMS hotspots. Coral DMS emission likely comprises a regular and significant source of sulfur to the tropical marine atmosphere, which is currently unrecognised in global DMS emission estimates and Earth System Models

    Facilitating Organisational Fluidity with Computational Social Matching

    Get PDF
    Striving to operate in increasingly dynamic environments, organisations can be seen as fluid and communicative entities where traditional boundaries fade away and collaborations emerge ad hoc. To enhance fluidity, we conceptualise computational social matching as a research area investigating how to digitally support the development of mutually suitable compositions of collaborative ties in organisations. In practice, it refers to the use of data analytics and digital methods to identify features of individuals and the structures of existing social networks and to offer automated recommendations for matching actors. In this chapter, we outline an interdisciplinary theoretical space that provides perspectives on how interaction can be practically enhanced by computational social matching, both on the societal and organisational levels. We derive and describe three strategies for professional social matching: social exploration, network theory-based recommendations, and machine learning-based recommendations.Striving to operate in increasingly dynamic environments, organisations can be seen as fluid and communicative entities where traditional boundaries fade away and collaborations emerge ad hoc. To enhance fluidity, we conceptualise computational social matching as a research area investigating how to digitally support the development of mutually suitable compositions of collaborative ties in organisations. In practice, it refers to the use of data analytics and digital methods to identify features of individuals and the structures of existing social networks and to offer automated recommendations for matching actors. In this chapter, we outline an interdisciplinary theoretical space that provides perspectives on how interaction can be practically enhanced by computational social matching, both on the societal and organisational levels. We derive and describe three strategies for professional social matching: social exploration, network theory-based recommendations, and machine learning-based recommendations.Peer reviewe

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Feeding Preferences and the Nutritional Value of Tropical Algae for the Abalone Haliotis asinina

    Get PDF
    Understanding the feeding preferences of abalone (high-value marine herbivores) is integral to new species development in aquaculture because of the expected link between preference and performance. Performance relates directly to the nutritional value of algae – or any feedstock – which in turn is driven by the amino acid content and profile, and specifically the content of the limiting essential amino acids. However, the relationship between feeding preferences, consumption and amino acid content of algae have rarely been simultaneously investigated for abalone, and never for the emerging target species Haliotis asinina. Here we found that the tropical H. asinina had strong and consistent preferences for the red alga Hypnea pannosa and the green alga Ulva flexuosa, but no overarching relationship between protein content (sum of amino acids) and preference existed. For example, preferred Hypnea and Ulva had distinctly different protein contents (12.64 vs. 2.99 g 100 g−1) and the protein-rich Asparagopsis taxiformis (>15 g 100 g−1 of dry weight) was one of the least preferred algae. The limiting amino acid in all algae was methionine, followed by histidine or lysine. Furthermore we demonstrated that preferences can largely be removed using carrageenan as a binder for dried alga, most likely acting as a feeding attractant or stimulant. The apparent decoupling between feeding preference and algal nutritive values may be due to a trade off between nutritive values and grazing deterrence associated with physical and chemical properties

    DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution
    corecore