48 research outputs found

    The cytoplasm of living cells behaves as a poroelastic material

    Get PDF
    The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at physiologically relevant timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology

    Binary mixture effects by PBDE congeners (47, 153, 183 or 209) and PCB congeners (126 or 153) in MCF-7 cells: biochemical alterations assessed by IR spectroscopy and multivariate analysis

    No full text
    Target organisms are continuously and variously exposed to contaminant mixtures in the environment. We noted that treatment with brominated diphenyl ether (BDE)47 or polychlorinated biphenyl (PCB)126 (toxic equivalency factor [TEF] = 0.1) induces similar alterations in MCF-7 cells when these were determined using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy with multivariate analysis. Because this method appears sensitive enough to signature low-dose effects, we examined how various test agents interact in binary mixtures to induce cell alterations. MCF-7 cells were exposed for 24 h to low concentrations (10−12 M) of polybrominated diphenyl ether (PBDE) congeners (47, 153, 183, or 209) with or without the coplanar PCB126 or nonplanar PCB153. Following treatment, ethanol-fixed cellular material was interrogated using ATR-FTIR spectroscopy; derived IR spectra in the biochemical-cell fingerprint region (1800 cm−1−900 cm−1) were then subjected to principal component analysis-linear discriminant analysis. Assuming that if two test agents independently induce the same cell alteration that in combination they’ll give rise to an additive effect, we examined predicted versus observed differences in induced alterations by binary mixtures. Compared to corresponding control clusters, treatment with PBDE congener plus PCB126 appeared to cancel out their respective induced alterations. However, treatment with binary mixtures including PCB153 gave rise to an enhanced segregation. Our findings suggest that test agents which mediate their cellular effects via similar mechanisms might result in inhibition within a binary mixture whereas independently acting agents could exacerbate induced alterations in overall cell status

    Bimodal responses of cells to trace elements:insights into their mechanism of action using a biospectroscopy approach

    No full text
    Understanding how organisms respond to trace elements is important because some are essential for normal bodily homeostasis, but can additionally be toxic at high concentrations. The inflection point for many of these elements is unknown and requires sensitive techniques capable of detecting subtle cellular changes as well as cytotoxic alterations. In this study, we treated human cells with arsenic (As), copper or selenium (Se) in a dose?response manner and used attenuated total reflection Fourier-transform infrared (ATR-FTIR) microspectroscopy combined with computational analysis to examine cellular alterations. Cell cultures were treated with Asv, Cu2+ or Seiv at concentrations ranging from 0.001 mg L?1 to 1000 mg L?1 and their effects were spectrochemically determined. Results show that Asv and Cu2+ induce bimodal dose?response effects on cells; this is in line with hormesis-driven responses. Lipids and proteins seem to be the main cell targets for all the elements tested; however, each compound produced a unique fingerprint of effect. Spectral biomarkers indicate that all test agents generate reactive oxygen species (ROS), which could either stimulate repair mechanisms or induce damage in cells

    ALMA reveals a large structured disk and nested rotating outflows in DG Tauri B

    No full text
    We present Atacama Large Millimeter Array (ALMA) Band 6 observations at 14−20 au spatial resolution of the disk and CO(2-1) outflow around the Class I protostar DG Tau B in Taurus. The disk is very large, both in dust continuum (Reff, 95% = 174 au) and CO (RCO = 700 au). It shows Keplerian rotation around a 1.1 ± 0.2 M⊙ central star and two dust emission bumps at r = 62 and 135 au. These results confirm that large structured disks can form at an early stage where residual infall is still ongoing. The redshifted CO outflow at high velocity shows a striking hollow cone morphology out to 3000 au with a shear-like velocity structure within the cone walls. These walls coincide with the scattered light cavity, and they appear to be rooted within 70°). The properties of the conical walls are suggestive of the interaction between an episodic inner jet or wind with an outer disk wind, or of a massive disk wind originating from 2 to 5 au. However, further modeling is required to establish their origin. In either case, such massive outflow may significantly affect the disk structure and evolution

    Modeling the CO outflow in DG Tauri B: Swept-up shells versus perturbed MHD disk wind

    No full text
    Context. The origin of outflows and their exact impact on disk evolution and planet formation remain crucial open questions. DG Tau B is a Class I protostar associated with a rotating conical CO outflow and a structured disk. Hence it is an ideal target to study these questions. Aims. We aim to characterize the morphology and kinematics of the DG Tau B outflow in order to elucidate its origin and potential impact on the disk. Methods. Our analysis is based on Atacama Large Millimeter Array (ALMA) 12CO(2–1) observations of DG Tau B at 0.15″ (20 au) angular resolution. We developed a tomographic method to recover 2D (R,Z) maps of vertical velocity VZ and specific angular momentum j = R × Vϕ. We created synthetic data cubes for parametric models of wind-driven shells and disk winds, which we fit to the observed channel maps. Results. Tomographic analysis of the bright inner conical outflow shows that both VZ and j remain roughly constant along conical surfaces, defining a shear-like structure. We characterize three different types of substructures in this outflow (arches, fingers, and cusps) with apparent acceleration. Wind-driven shell models with a Hubble law fail to explain these substructures. In contrast, both the morphology and kinematics of the conical flow can be explained by a steady conical magnetohydrodynamic (MHD) disk wind with foot-point radii r0 ≃ 0.7–3.4 au, a small magnetic level arm parameter (λ ≀ 1.6), and quasi periodic brightness enhancements. These might be caused by the impact of jet bow shocks, source orbital motion caused by a 25 MJ companion at 50 au, or disk density perturbations accreting through the wind launching region. The large CO wind mass flux (four times the accretion rate onto the central star) can also be explained if the MHD disk wind removes most of the angular momentum required for steady disk accretion. Conclusions. Our results provide the strongest evidence so far for the presence of massive MHD disk winds in Class I sources with residual infall, and they suggest that the initial stages of planet formation take place in a highly dynamic environment

    The cytoplasm of living cells behaves as a poroelastic material

    No full text
    The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at short timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology at short timescales. © 2013 Macmillan Publishers Limited. All rights reserved

    The cytoplasm of living cells behaves as a poroelastic material.

    Get PDF
    The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at short timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology at short timescales
    corecore