112 research outputs found

    Lorenz gauged vector potential formulations for the time-harmonic eddy-current problem with L∞-regularity of material properties

    Get PDF
    In this paper we consider some Lorenz gauged vector potential formulations of the eddy-current problem for the time-harmonic Maxwell equations with material properties having only L1-regularity. We prove that there exists a unique solution of these problems, and we show the convergence of a suitable finite element approximation scheme. Moreover, we show that some previously proposed Lorenz gauged formulations are indeed formulations in terms of the modified magnetic vector potential, for which the electric scalar potential is vanishing

    A well-posed variational formulation of the Neumann boundary value problem for the biharmonic operator

    Full text link
    In this note we devise and analyze a well-posed variational formulation of the Neumann boundary value problem associated to the biharmonic operator Δ2\Delta^2.Comment: 14 page

    Numerical approximation of partial differential equations

    Get PDF
    This is the softcover reprint of the very popular hardcover edition. This book deals with the numerical approximation of partial differential equations. Its scope is to provide a thorough illustration of numerical methods, carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is one of its main features. Many kinds of problems are addressed. A comprehensive theory of Galerkin method and its variants, as wel

    Mixed finite element approximation of eddy current problems

    Get PDF
    Finite element approximations of eddy current problems that are entirely based on the magnetic field H are haunted by the need to enforce the algebraic constraint curl H=0 in non‐conducting regions. As an alternative to techniques employing combinatorial Seifert (cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed multi‐field formulations, which enforce the constraint in the variational formulation. In light of the fact that the computation of cutting surfaces is expensive, the mixed finite element approximation is a viable option despite the increased number of unknown

    Coercive domain decomposition algorithms for advection-diffusion equations and systems

    Get PDF
    Two families of non-overlapping coercive domain decomposition methods are proposed for the numerical approximation of advection dominated advection-diffusion equations and systems. Convergence is proven for both the continuous and the discrete problem. The rate of convergence of the first method is shown to be independent of the number of degrees of freedom. Several numerical results are presented, showing the efficiency and robustness of the proposed iterative algorithms

    On the proof of Taylor's conjecture in multiply connected domains

    Get PDF
    In this Letter we extend the proof, by Faraco and Lindberg (2020), of Taylor's conjecture in multiply connected domains to cover arbitrary vector potentials and remove the need to impose restrictions on the magnetic field to ensure gauge invariance of the helicity integral. This extension allows us to treat general magnetic fields in closed domains that are important in laboratory plasmas and brings closure to a conjecture whose resolution has been open for almost 50 years. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Utilization of 340b Program in a Rural Hospital

    Get PDF
    Introduction: The 340B is a federal program that provides eligible rural hospitals, providers, and clinics the capability to purchase medications at reduced prices for outpatient use. Enrollment in the 340B program requires drug manufacturers to supply covered healthcare entities and eligible healthcare organizations medications at substantially reduced prices and has allowed covered entities to extend federal resources by offering more comprehensive services and reaching more of the vulnerable populations. The purpose of this research study was to examine utilization of 340B program within provider based clinics of a university medical school affiliated with a rural hospital to assess the benefits and barriers of its utilization. Methodology: The methodology for this study was a literature review complemented with a semi-structured interview of an expert in 340B program. Seven electronic databases were utilized with a total of 21 sources referenced for this review. Results: The type and volume of care provided in rural areas has been expanded as a result of the 340B program leading to median savings of 10,000permonthinprescriptionpurchases.Pharmacysavingshaverangedfrom10,000 per month in prescription purchases. Pharmacy savings have ranged from 600 to 158,000permonthdependinguponwhetherchemotherapywasavailableonanoutpatientbasisornot.In2010,totalcostofdrugdiscountsequaled158,000 per month depending upon whether chemotherapy was available on an outpatient basis or not. In 2010, total cost of drug discounts equaled 6 billion dollars, and has been projected to be $12 billion by 2016 with a discount range between 30% to 50%. Discussion/Conclusion: The results of this study suggest that the benefits in the types and volume of services provided outweigh the barriers of maintaining separate drug inventories and difficulties in the management of the outpatient pharmacy that include audits at the state and federal levels as well as audits from pharmaceutical manufacturers

    The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner

    Full text link
    [EN] Plant viruses of the genera Potyvirus and Ipomovirus (Potyviridae family) use unrelated RNA silencing suppressors (RSS) to counteract antiviral RNA silencing responses. HCPro is the RSS of Potyvirus spp., and its activity is enhanced by the upstream P1 protein. Distinctively, the ipomovirus Cucumber vein yellowing virus (CVYV) lacks HCPro but contains two P1 copies in tandem (P1aP1b), the second of which functions as RSS. Using chimeras based on the potyvirus Plum pox virus (PPV), we found that P1b can functionally replace HCPro in potyviral infections of Nicotiana plants. Interestingly, P1a, the CVYV protein homologous to potyviral P1, disrupted the silencing suppression activity of P1b and reduced the infection efficiency of PPV in Nicotiana benthamiana. Testing the influence of RSS in host specificity, we found that a P1b-expressing chimera poorly infected PPV's natural host, Prunus persica. Conversely, P1b conferred on PPV chimeras the ability to replicate locally in cucumber, CVYV's natural host. The deleterious effect of P1a on PPV infection is host dependent, because the P1aP1b-expressing PPV chimera accumulated in cucumber to higher levels than PPV expressing P1b alone. These results demonstrate that a potyvirus can use different RSS, and that particular RSS and upstream P1-like proteins contribute to defining the virus host range.We thank H. Garcia-Ruiz for critical reading of the manuscript, D. Baulcombe for providing GFP and P19 expression vectors, Rijk Zwaan Iberica (Almeria, Spain) for supplying cucumber seeds, and E. Dominguez for technical assistance. This work was supported by grants BIO2010-18541 from Spanish MICINN, SAL/0185/2006 from Comunidad de Madrid, and KBBE-204429 from European Union. A. Valli was a recipient of an I3P fellowship from CSIC-Fondo Social Europa)Carbonell, A.; Dujovny, G.; Garcia, JA.; Valli, A. (2012). The Cucumber vein yellowing virus silencing suppressor P1b can functionally replace HCPro in Plum pox virus infection in a host-specific manner. Molecular Plant-Microbe Interactions. 25(2):151-164. https://doi.org/10.1094/MPMI-08-11-0216S15116425

    Heterologous RNA silencing suppressors from both plant- and animal-infecting viruses support Plum pox virus infection

    Full text link
    [EN] HCPro, the RNA silencing suppressor (RSS) of viruses belonging to the Potyvirus genus in the Potyviridae family, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that Plum pox potyvirus (PPV) HCPro can be successfully replaced by Cucumber vein yellowing ipomovirus P1b, a sequence unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be functionally replaced by some, but not all, unrelated RSSs, including the NS1 protein of the mammalian-infecting Influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not strictly correlate with its RNA silencing suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for an efficient escape of PPV from the RNA silencing machinery. The approach followed here based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro could further help to study the function of diverse RSSs in a ¿highly-sensitive¿ RNA silencing context, such as that taking place in plant cells during the process of a viral infection.We are especially grateful to those people who sent us plasmids containing the DNA sequence of different viral proteins. We thank Veronique Ziegler-Graff for providing BWYV P0, Ana Giner and Juan Jose Lopez-Moya for providing SPMMV P1, Joel Milner for providing CaMV P6, Maria Rosa Lopez-Huertas and Jose Alcami for providing HIV Tat, Jan Kreuze for providing SPCSV RNase3, and M. Taliansky for providing GRV ORF3. We thank Herman Scholthof and Ariel Rodriguez for providing anti-P19 and anti-NS1 serum, respectively. We are also grateful to David Baulcombe for providing the GFP expression vector and TBSV P19-containing plasmid, and Mark Curtis for providing the pMDC32 destination vector. This work was supported by grants from Spanish MICINN (BIO2010-18541) and the European Union (KBBE-204429). M. C. was the recipient of an 13P fellowship from CSIC-Fondo Social Europeo.Maliogka, VI.; Calvo, M.; Carbonell, A.; Garcia, JA.; Valli, A. (2012). Heterologous RNA silencing suppressors from both plant- and animal-infecting viruses support Plum pox virus infection. Journal of General Virology. 93(7):1601-1611. https://doi.org/10.1099/vir.0.042168-0S16011611937Ala-Poikela, M., Goytia, E., Haikonen, T., Rajamäki, M.-L., & Valkonen, J. P. T. (2011). Helper Component Proteinase of the Genus Potyvirus Is an Interaction Partner of Translation Initiation Factors eIF(iso)4E and eIF4E and Contains a 4E Binding Motif. Journal of Virology, 85(13), 6784-6794. doi:10.1128/jvi.00485-11Ambros, V., & Chen, X. (2007). The regulation of genes and genomes by small RNAs. Development, 134(9), 1635-1641. doi:10.1242/dev.002006Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, 95(22), 13079-13084. doi:10.1073/pnas.95.22.13079Anandalakshmi, R., Marathe, R., Ge, X., Herr, J. M., Mau, C., Mallory, A., … Vance, V. B. (2000). A Calmodulin-Related Protein That Suppresses Posttranscriptional Gene Silencing in Plants. Science, 290(5489), 142-144. doi:10.1126/science.290.5489.142Ballut, L., Drucker, M., Pugnière, M., Cambon, F., Blanc, S., Roquet, F., … Badaoui, S. (2005). HcPro, a multifunctional protein encoded by a plant RNA virus, targets the 20S proteasome and affects its enzymic activities. Journal of General Virology, 86(9), 2595-2603. doi:10.1099/vir.0.81107-0Baulcombe, D. (2005). RNA silencing. Trends in Biochemical Sciences, 30(6), 290-293. doi:10.1016/j.tibs.2005.04.012Bennasser, Y., Le, S.-Y., Benkirane, M., & Jeang, K.-T. (2005). Evidence that HIV-1 Encodes an siRNA and a Suppressor of RNA Silencing. Immunity, 22(5), 607-619. doi:10.1016/j.immuni.2005.03.010Blanc, S., López-Moya, J.-J., Wang, R., García-Lampasona, S., Thornbury, D. W., & Pirone, T. P. (1997). A Specific Interaction between Coat Protein and Helper Component Correlates with Aphid Transmission of a Potyvirus. Virology, 231(1), 141-147. doi:10.1006/viro.1997.8521Brigneti, G. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739Bucher, E., Hemmes, H., de Haan, P., Goldbach, R., & Prins, M. (2004). The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. Journal of General Virology, 85(4), 983-991. doi:10.1099/vir.0.19734-0Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272. doi:10.1016/j.tplants.2011.02.010Carbonell, A., Dujovny, G., García, J. A., & Valli, A. (2012). The Cucumber vein yellowing virus Silencing Suppressor P1b Can Functionally Replace HCPro in Plum pox virus Infection in a Host-Specific Manner. Molecular Plant-Microbe Interactions®, 25(2), 151-164. doi:10.1094/mpmi-08-11-0216Carrington, J. C., Cary, S. M., Parks, T. D., & Dougherty, W. G. (1989). A second proteinase encoded by a plant potyvirus genome. The EMBO Journal, 8(2), 365-370. doi:10.1002/j.1460-2075.1989.tb03386.xCheng, Y.-Q., Liu, Z.-M., Xu, J., Zhou, T., Wang, M., Chen, Y.-T., … Fan, Z.-F. (2008). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology, 89(8), 2046-2054. doi:10.1099/vir.0.2008/001271-0Choi, I.-R., Stenger, D. C., & French, R. (2000). Multiple Interactions among Proteins Encoded by the Mite-Transmitted Wheat Streak Mosaic Tritimovirus. Virology, 267(2), 185-198. doi:10.1006/viro.1999.0117Cuellar, W. J., Kreuze, J. F., Rajamaki, M.-L., Cruzado, K. R., Untiveros, M., & Valkonen, J. P. T. (2009). Elimination of antiviral defense by viral RNase III. Proceedings of the National Academy of Sciences, 106(25), 10354-10358. doi:10.1073/pnas.0806042106Delgadillo, M. O., Sáenz, P., Salvador, B., García, J. A., & Simón-Mateo, C. (2004). Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. Journal of General Virology, 85(4), 993-999. doi:10.1099/vir.0.19735-0DIELEN, A.-S., SASSAKI, F. T., WALTER, J., MICHON, T., MÉNARD, G., PAGNY, G., … GERMAN-RETANA, S. (2010). The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the Lettuce mosaic potyvirus HcPro protein. Molecular Plant Pathology, 12(2), 137-150. doi:10.1111/j.1364-3703.2010.00654.xDing, S.-W. (2010). RNA-based antiviral immunity. Nature Reviews Immunology, 10(9), 632-644. doi:10.1038/nri2824Ding, S. W., Li, W. X., & Symons, R. H. (1995). A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. The EMBO Journal, 14(23), 5762-5772. doi:10.1002/j.1460-2075.1995.tb00265.xDunoyer, P., & Voinnet, O. (2005). The complex interplay between plant viruses and host RNA-silencing pathways. Current Opinion in Plant Biology, 8(4), 415-423. doi:10.1016/j.pbi.2005.05.012Endres, M. W., Gregory, B. D., Gao, Z., Foreman, A. W., Mlotshwa, S., Ge, X., … Vance, V. (2010). Two Plant Viral Suppressors of Silencing Require the Ethylene-Inducible Host Transcription Factor RAV2 to Block RNA Silencing. PLoS Pathogens, 6(1), e1000729. doi:10.1371/journal.ppat.1000729Garcia-Ruiz, H., Takeda, A., Chapman, E. J., Sullivan, C. M., Fahlgren, N., Brempelis, K. J., & Carrington, J. C. (2010). Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection  . The Plant Cell, 22(2), 481-496. doi:10.1105/tpc.109.073056Gazzani, S., Lawrenson, T., Woodward, C., Headon, D., & Sablowski, R. (2004). A Link Between mRNA Turnover and RNA Interference in Arabidopsis. Science, 306(5698), 1046-1048. doi:10.1126/science.1101092Giner, A., Lakatos, L., García-Chapa, M., López-Moya, J. J., & Burgyán, J. (2010). Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs. PLoS Pathogens, 6(7), e1000996. doi:10.1371/journal.ppat.1000996Guo, D., Rajamäki, M.-L., Saarma, M., & Valkonen, J. P. T. (2001). Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. Journal of General Virology, 82(4), 935-939. doi:10.1099/0022-1317-82-4-935Guo, D., Spetz, C., Saarma, M., & Valkonen, J. P. T. (2003). Two Potato Proteins, Including a Novel RING Finger Protein (HIP1), Interact with the Potyviral Multifunctional Protein HCpro. Molecular Plant-Microbe Interactions®, 16(5), 405-410. doi:10.1094/mpmi.2003.16.5.405Haas, G., Azevedo, J., Moissiard, G., Geldreich, A., Himber, C., Bureau, M., … Voinnet, O. (2008). Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. The EMBO Journal, 27(15), 2102-2112. doi:10.1038/emboj.2008.129Haasnoot, J., de Vries, W., Geutjes, E.-J., Prins, M., de Haan, P., & Berkhout, B. (2007). The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing. PLoS Pathogens, 3(6), e86. doi:10.1371/journal.ppat.0030086Havelda, Z., Hornyik, C., Crescenzi, A., & Burgyán, J. (2003). In Situ Characterization of Cymbidium Ringspot Tombusvirus Infection-Induced Posttranscriptional Gene Silencing in Nicotiana benthamiana. Journal of Virology, 77(10), 6082-6086. doi:10.1128/jvi.77.10.6082-6086.2003Janssen, D., Martín, G., Velasco, L., Gómez, P., Segundo, E., Ruiz, L., & Cuadrado, I. M. (2005). Absence of a coding region for the helper component-proteinase in the genome of cucumber vein yellowing virus, a whitefly-transmitted member of the Potyviridae. Archives of Virology, 150(7), 1439-1447. doi:10.1007/s00705-005-0515-zJin, Y., Ma, D., Dong, J., Jin, J., Li, D., Deng, C., & Wang, T. (2007). HC-Pro Protein of Potato Virus Y Can Interact with Three Arabidopsis 20S Proteasome Subunits In Planta. Journal of Virology, 81(23), 12881-12888. doi:10.1128/jvi.00913-07Jin, Y., Ma, D., Dong, J., Li, D., Deng, C., Jin, J., & Wang, T. (2007). The HC-Pro Protein of Potato Virus Y Interacts with NtMinD of Tobacco. Molecular Plant-Microbe Interactions®, 20(12), 1505-1511. doi:10.1094/mpmi-20-12-1505Kasschau, K. D., & Carrington, J. C. (1995). Requirement for HC-Pro Processing during Genome Amplification of Tobacco Etch Potyvirus. Virology, 209(1), 268-273. doi:10.1006/viro.1995.1254Kasschau, K. D., & Carrington, J. C. (1998). A Counterdefensive Strategy of Plant Viruses. Cell, 95(4), 461-470. doi:10.1016/s0092-8674(00)81614-1Kasschau, K. D., & Carrington, J. C. (2001). Long-Distance Movement and Replication Maintenance Functions Correlate with Silencing Suppression Activity of Potyviral HC-Pro. Virology, 285(1), 71-81. doi:10.1006/viro.2001.0901Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., & Carrington, J. C. (2003). P1/HC-Pro, a Viral Suppressor of RNA Silencing, Interferes with Arabidopsis Development and miRNA Function. Developmental Cell, 4(2), 205-217. doi:10.1016/s1534-5807(03)00025-xLakatos, L., Csorba, T., Pantaleo, V., Chapman, E. J., Carrington, J. C., Liu, Y.-P., … Burgyán, J. (2006). Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. The EMBO Journal, 25(12), 2768-2780. doi:10.1038/sj.emboj.7601164Lecellier, C.-H., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., … Voinnet, O. (2005). A Cellular MicroRNA Mediates Antiviral Defense in Human Cells. Science, 308(5721), 557-560. doi:10.1126/science.1108784Li, W.-X., Li, H., Lu, R., Li, F., Dus, M., Atkinson, P., … Ding, S.-W. (2004). Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proceedings of the National Academy of Sciences, 101(5), 1350-1355. doi:10.1073/pnas.0308308100Love, A. J., Laird, J., Holt, J., Hamilton, A. J., Sadanandom, A., & Milner, J. J. (2007). Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. Journal of General Virology, 88(12), 3439-3444. doi:10.1099/vir.0.83090-0Maia, I. G., Haenni, A.-L., & Bernardi, F. (1996). Potyviral HC-Pro: a multifunctional protein. Journal of General Virology, 77(7), 1335-1341. doi:10.1099/0022-1317-77-7-1335Merits, A., Guo, D., Järvekülg, L., & Saarma, M. (1999). Biochemical and Genetic Evidence for Interactions between Potato A Potyvirus-Encoded Proteins P1 and P3 and Proteins of the Putative Replication Complex. Virology, 263(1), 15-22. doi:10.1006/viro.1999.9926Qian, S., Zhong, X., Yu, L., Ding, B., de Haan, P., & Boris-Lawrie, K. (2009). HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1. Proceedings of the National Academy of Sciences, 106(2), 605-610. doi:10.1073/pnas.0806822106Qiu, W., Park, J.-W., & Scholthof, H. B. (2002). Tombusvirus P19-Mediated Suppression of Virus-Induced Gene Silencing Is Controlled by Genetic and Dosage Features That Influence Pathogenicity. Molecular Plant-Microbe Interactions®, 15(3), 269-280. doi:10.1094/mpmi.2002.15.3.269Roth, B. (2004). Plant viral suppressors of RNA silencing. Virus Research, 102(1), 97-108. doi:10.1016/j.virusres.2004.01.020Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delécolle, B., Candresse, T., & Le Gall, O. (2002). Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. Journal of General Virology, 83(7), 1765-1770. doi:10.1099/0022-1317-83-7-1765Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E., & Le Gall, O. (2007). Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. Journal of General Virology, 88(3), 1029-1033. doi:10.1099/vir.0.82501-0Sáenz, P., Salvador, B., Simón-Mateo, C., Kasschau, K. D., Carrington, J. C., & García, J. A. (2002). Host-Specific Involvement of the HC Protein in the Long-Distance Movement of Potyviruses. Journal of Virology, 76(4), 1922-1931. doi:10.1128/jvi.76.4.1922-1931.2002Shimura, H., & Pantaleo, V. (2011). Viral induction and suppression of RNA silencing in plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1809(11-12), 601-612. doi:10.1016/j.bbagrm.2011.04.005Silhavy, D. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. The EMBO Journal, 21(12), 3070-3080. doi:10.1093/emboj/cdf312Stenger, D. C., French, R., & Gildow, F. E. (2005). Complete Deletion of Wheat Streak Mosaic Virus HC-Pro: a Null Mutant Is Viable for Systemic Infection. Journal of Virology, 79(18), 12077-12080. doi:10.1128/jvi.79.18.12077-12080.2005Syller, J. (2005). The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physiological and Molecular Plant Pathology, 67(3-5), 119-130. doi:10.1016/j.pmpp.2005.12.005Valli, A., Martín-Hernández, A. M., López-Moya, J. J., & García, J. A. (2006). RNA Silencing Suppression by a Second Copy of the P1 Serine Protease ofCucumber Vein Yellowing Ipomovirus, a Member of the FamilyPotyviridaeThat Lacks the Cysteine Protease HCPro. Journal of Virology, 80(20), 10055-10063. doi:10.1128/jvi.00985-06Valli, A., L��pez-Moya, J. J., & Garc��a, J. A. (2009). RNA Silencing and its Suppressors in the Plant-virus Interplay. Encyclopedia of Life Sciences. doi:10.1002/9780470015902.a0021261Valli, A., Oliveros, J. C., Molnar, A., Baulcombe, D., & Garcia, J. A. (2011). The specific binding to 21-nt double-stranded RNAs is crucial for the anti-silencing activity of Cucumber vein yellowing virus P1b and perturbs endogenous small RNA populations. RNA, 17(6), 1148-1158. doi:10.1261/rna.2510611Vargason, J. M., Szittya, G., Burgyán, J., & Hall, T. M. T. (2003). Size Selective Recognition of siRNA by an RNA Silencing Suppressor. Cell, 115(7), 799-811. doi:10.1016/s0092-8674(03)00984-xVoinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147Yambao, M. L. M., Masuta, C., Nakahara, K., & Uyeda, I. (2003). The central and C-terminal domains of VPg of Clover yellow vein virus are important for VPg–HCPro and VPg–VPg interactions. Journal of General Virology, 84(10), 2861-2869. doi:10.1099/vir.0.19312-0Young, B. A., Stenger, D. C., Qu, F., Morris, T. J., Tatineni, S., & French, R. (2012). Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms. Virus Research, 163(2), 672-677. doi:10.1016/j.virusres.2011.12.019Zilian, E., & Maiss, E. (2011). Detection of plum pox potyviral protein–protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. Journal of General Virology, 92(12), 2711-2723. doi:10.1099/vir.0.033811-
    corecore