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Coercive Domain Decomposition Algorithms
for Advection-Diffusion Equations and Systems

Ana ALONSO®™, R. Loredana TROTTA®»
and Alberto VALLI®

Summary. Two families of non-overlapping coercive domain decomposition methods
are proposed for the numerical approximation of advection dominated advection-diffusion
equations and systems. Convergence is proven for both the continuous and the discrete
problem. The rate of convergence of the first method is shown to be independent of
the number of degrees of freedom. Several numerical results are presented, showing the
efficiency and robustness of the proposed iterative algorithms.

1. Introduction

The interest for the use of domain decomposition methods for advection-diffu-
sion equations has considerably grown in the last years (see, e.g., [14], [16], [7], [11],
[17], [8], [9], [2] for non-overlapping partitions, [6], [18] for overlapping partitions).

In this paper we are concerned with non-overlapping domain decomposition
methods for advection dominated advection-diffusion equations and systems. The
computational domain €2, a connected open bounded subset of R?, d = 2,3, with a
Lipschitz boundary 052, will be split into two non-overlapping subdomains €2 and
Q. We set T := Q; N Qy, and denote by n the unit normal vector on I', directed
from Q4 to Q.

We propose two families of methods, depending on the choice of a parameter,
denoted by v, and show their convergence, for both the continuous problem and its
discrete approximation. The first method, called v-DR, turns out to have a rate of
convergence which is independent of the mesh size h, hence it introduces an optimal
preconditioner for the associated Schur complement matrix related to the unknown
nodal values on the interface T'.

The main novelty in our methods resides in the fact that we don’t care about
the local direction of the advective field b on I' (as in adaptive methods proposed
n [7], [11]), but we only need that the boundary value problems in €, and 2, along
the subdomain iterations are associated to a suitable coercive bilinear form.

To start with, in Sections 2, 3 and 4 we consider the following homogeneous
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Dirichlet boundary value problem

d
1) L.ou:i=—cAu+ ZDj(bju) +apu =f in§
) =

U =0,

where D; denotes the derivative with respect to xj, j =1,...,d, f € L*(Q) and the
coefficients satisfy the regularity conditions

b€ (L=(Q)?, divb € L=(Q) , ap € L™=(Q)
and the coerciveness condition

(1.2) % divb(x) + ap(x) > 0 for almost each x € Q0 .

As a consequence of (1.2), the associated bilinear form

a*(w,v) : = eVw - Vv ldivb ag ) wo
e e e

—I—E/(vb-Vw—wb-Vv),
2 Q

is continuous and coercive in V' = H}(Q), the Sobolev space of functions belonging
to L*(Q) together with their first order distributional derivatives.
The variational formulation of (1.1) reads:

(1.4) find v € HY(Q) : a(u,v) = / fo Yove H Q) .

The Lax-Milgram lemma ensures that the solution to (1.4) exists and is unique.

The results we are going to present can be straightforwardly extended to other
boundary conditions, provided that the coerciveness of the associated bilinear form
1s still satisfied.

In Section 5 we will take into consideration the case of systems of advection
dominated advection-diffusion equations. The extension of the proposed methods
to this case turns out to be an easy task. On the contrary, it is worthwhile to notice
that this is not the case for the adaptive methods devised in [7], [11], as these
algorithms are based on the knowledge of the direction of the flow on the interface
I', and this information is not easily available for systems of advection-diffusion
equations.

Finally, the numerical results illustrating the performances of the proposed
methods are presented in Section 6, for several suitable benchmark problems. The
~-DR method turns out to be very efficient and robust, and the numerical examples
show that the choice of the parameter v and of the relaxation coefficient 8 (see (3.2)
and (3.3), respectively) can be done in a simple way. In conclusion, these results
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suggest to propose the v-DR method as an “universal” non-overlapping domain
decomposition procedure for advection-diffusion equations and systems.

2. A model one-dimensional problem

Let us start by considering the model problem
Lou=—cuyy +buy +agu=f inQ=(0,1)
(2.1)

where ¢ > 0, b # 0 and ag > 0 are constant coefficients.
In [11] the following iteration-by-subdomain method to solve (2.1) has been
analyzed: given \°, solve for k > 1

Lttt =f inQ =(0,¢)
(2.2) w1 (0) =0
euty (e) = (5b+ A)uit(e) = Ak
then
Lot =f  inQy=(c1)
(2.3) ukt(1) =0
cuztt(e) = (50 + Blus T (¢) = euif ! (¢) — (50 + Bluy () ,

and finally set
1
(2.4) AL = 5u’2€;'1(c) — (56 + A) u§+1(c) \

where 0 < ¢ < 1, and A and B are real parameters, with A # B. Indeed, the
cases A = +o00o and B € R, or A € R and B = 400 can also be considered. For
these choices one of the two first-order interface conditions in ¢ becomes a Dirichlet
boundary condition.

The convergence of this method is achieved provided that

(2.5) pe(AB) <1,
where

T coth(r¢) — B/e 7coth[r(1l —¢)]+ A/e
T coth(re) — A/e Teoth[r(1 —¢)]+ B/e’

pe(A,B) =

and
vV b2 + 45@0

2e

T =



(see [11], Section 3, in which o = %b—l— Aand 8 = %b + B).
Introducing a relaxation parameter 6 # 0, we can consider a more general
iterative scheme in which

(2.6) A“H::G{aéj?@)—-(%bﬁ—A>zé+1@ﬂ + (1= 6N .

In this case we have convergence when
(2.7) 1 —6[1—p.(A,B)]| <1.

This means

(28) {0<9<ﬁ fOI'pg(A,B)<]_

ﬁ <8<0 for ,Og(A,B) > 1
(Notice that p.(A,B) # 1 for A # B.)

The iterative method based on the relaxation procedure (2.6) is therefore con-
vergent, provided we choose 6 as in (2.8). However, we are interested in advection-
dominated problems, namely, the “viscous” parameter ¢ we are considering is very
small in comparison with b and ag. An efficient method in this situation is therefore
the one which converges for a choice of 6 independent of ¢ as ¢ — 0%.

A direct calculation shows that

. b/2— B [bl/2+ A
2, A B = 1 B A,B — 9
(29) pold B) = L p-(AB) = 5 la— 4

hence the choices A = [b|/2 and B = —|b|/2 lead to a non-efficient scheme. These
correspond to imposing the value of the normal derivative on the inflow region,
or the value of the conormal derivative on the outflow region. Notice that when
we consider these boundary conditions the boundary value problem at hand is
associated to a non-coercive bilinear form.

When the asymptotic reduction factor po(A, B) belongs to the interval (—1, 1),
the relaxation parameter can be chosen in the whole interval (0, 1], leading to ef-
ficient iterative schemes. By means of a simple computation one can see that the
values of the parameters A and B for which —1 < po(A4, B) < 1 strictly contains
the region

(2.10) C:={(A,B)cR?’|A<0,B>0, A#B}.

More precisely, choosing (A*, B*) in the region of convergence (i.e., where —1 <
po(A,B) < 1) but not in C, the absolute value of exactly one of the two factors
in (2.9) is strictly larger than one. In this situation, we have either A* > 0 or
B* < 0. To fix the ideas, suppose that B* < 0. The argument above says that we
can improve the rate of convergence of the iterative scheme by only changing the
interface condition in 25, substituting the one associated to B* with another one,
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related to any parameter B > 0, i.e., choosing (A*, B) in the region C. Therefore,
one should expect best convergence properties choosing the parameters in C.

The region C is exactly the set of parameters A and B for which both the
bilinear forms, associated to the boundary value problems we are considering, are
coercive for each choice of the ellipticity coefficient ¢. The limit cases A = —oo,
B > 0 (Dirichlet boundary condition in ;) and B = 0o, A < 0 (Dirichlet boundary

condition in Q3) can be also included.

The analysis performed in [11] leaded the authors to propose adaptive iterative

schemes for advection-dominated advection-diffusion equations. In this context,
adaptivity means that the boundary conditions imposed along the iterations are

consistent with the “hyperbolic” limit as ¢ — 07, namely, the Dirichlet boundary

condition is never imposed on the outflow. In fact, this choice could create artificial
internal layers at the interface.

We are going to suggest here a different point of view. The choice that leads to
efficient iteration-by-subdomain schemes is the one which, in each subdomain, pre-
serves the coerciveness of the associated bilinear forms. For example, the Dirichlet
boundary condition can always be imposed, no matter if the interface is an inflow or
an outflow boundary. Numerical evidence will show that the artificial internal lay-
ers, which indeed arise, are damped out after very few iterations, provided that the
relaxation parameter 6 is suitably chosen, and don’t affect convergence in a signi-
ficative way. To illustrate this behaviour, we present Fig. 2.1 and Fig. 2.2. In both
figures, we refer on the left to the equation (2.1) for e = 1072, b =1, ap = f = 0,
and on the right to the same case, but with boundary condition u(0) = 1. In Fig.
2.1 the splitting (2.2)-(2.4) have been performed with A = —c0, B = %b, ie., we

consider to the so-called Dirichlet/Robin scheme, and in Fig. 2.2 we have taken
A = —oo0, B = 0, which corresponds to the 0-DR scheme we are going to propose

in Section 3. The optimal choice of 8 is clearly § = 1 in Fig. 2.1 and § = 0.5 in Fig.
2.2.
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Figure 2.1. The smoothing of the artificial internal layer for A = —c0, B =
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Figure 2.2. The smoothing of the artificial internal layer for A = —oc0, B = 0.

Notice also that, as in [11], our argument permits imposing the value of the
normal derivative on an outflow boundary and similarly the value of the conormal
derivative on an inflow boundary. Indeed, this corresponds for b > 0 to taking
A= —-b/2 < 0 (outflow for Q) or B = b/2 > 0 (inflow for Q3), and for b < 0 to
choosing A = b/2 < 0 (inflow for ;) or B = —b/2 > 0 (outflow for €23), and for all
these choices coerciveness is guaranteed.

Finally, if the boundary has an inflow and an outflow part at the same time, we
claim that it is not necessary to employ an adaptive strategy on the interface, but
it is sufficient to impose a set of boundary conditions which assures coerciveness of
the bilinear forms in both subdomains. In the next Sections 3 and 4 we are going
to present two families of boundary value problems which enjoy these properties.

3. The +-DR iterative scheme

We propose the following iteration-by-subdomain scheme for solving (1.1),

which will be called ~-Dirichlet/Robin (v-DR).
Define by A the trace space on T' of H}(2). Tt can be shown that this space
coincides with the Sobolev space Hégz(T) (for the definition of this space, see, e.g.,

[13]).
The scheme reads: let \° be given in A, for each k > 0 solve
Lguf"i'1 =f 1in Yy
(3.1) ubt =0 on 9 N N

u’f"H = \F on T



Loyttt = f in Q,
u§+1 =0 on 0{y N 0N

(3.2) Ou kit 1
o <§b'n+7> ur'

ouytt (1
=¢ ualn —<§b-n—|-’7> u’f“ onl |

and set

(3.3) AL Gugall +(1-— 9)/\k onTl,
where 6 # 0 is a relaxation parameter introduced to accelerate convergence.

In (3.2) v = y(x) is a given function belonging to L>(T"), satisfying v(x) > 0 for
almost each x € T'; the rate of convergence of the method is in principle dependent
on the choice of this function. Compared with the scheme analized in Section 2, we
are choosing here A = —oco0 and B = ~.

To ensure the solvability of problems (3.1) and (3.2), it is useful to consider
their variational formulation. Let us define for : = 1,2

Vi = {vi € H' () |vijpanan, = 0}

and introduce the local bilinear forms

1
af(wi,vi) D= / {5Vwi -Vou; + <§ divb —|—a0> w; vl}—l—
Q;
(3.4) .
—|——/(Uib-Vwi—wib-VUi) .
2 Q

Notice that, from (1.2), there exist constants ﬁlﬁ and of, i = 1,2, such that

[

(3'5) a?(wivvi) < ﬁzﬁ ||wi||17Qi Ui||17Qi YV w;,v; € V;
and
(3.6) v v) > ad foilldg, Vi € Vi

The iterative scheme (3.1)-(3.3) reads:

find u’f+1 eV

(3.7) at (kT o) = for Vo € Ho($)
931
k
u1|—|£‘1 — /\k



find s €V,

ah(uft vy) = A foo Vs € Hy(22)

(3.8)
ab(us ™ Rop) + / yug e = / fRap +/ FRip
r Qo 931
—aﬁ(u’f""l,Rul) ‘|‘/F’yulf|";lp Vel
and finally
(3.9) ANH = Gugft +(1-0)AF onT,

where R; denotes any extension operator from A to V;.
Problem (3.8) can be rewritten in the equivalent form

find ubt €V,

(3.10) aﬁ(U'fl,vz)Jr/w’;}lvzw :/ fvz—l-/ TRyvgr
r Qa 931

—aﬁ(u’f“,Rlvguﬂ) + / ’yu’f}lvﬂp Yo €V5.
r

It must be noticed that problem (3.7) is a coercive problem in HJ (1), whereas
problem (3.10) is coercive in Va3, for any v > 0. Hence the iterative scheme is
correctly defined, and, more important, enjoys the coerciveness properties which
have been shown in Section 2 to lead to convergent schemes. We want also to
underline that it is different from the ADN scheme proposed in [11], as the Dirichlet
boundary condition is imposed on the whole interface I', no matter if it is an inflow
or an outflow boundary. However, in the particular situation in which the flow has
always the same direction on I', say b-n < 0 on I', choosing v = —% b - n we recover
the ADN scheme.

We also propose a modified algorithm, which is somehow more complicated to
implement, but enjoys better convergence properties. Setting ((n,))a the scalar
product in the trace space A = Hégz(T), we solve instead of (3.10) the following
problem

find w5t € V3

(3.11) ag(ufj“,vz) + ’7((“5}17U2|F))A = foa + fR1U2|F
Qs o

—aﬁ(u'f“,Rlvzw) + ’7((U11€|—|1:1,U2|F))A Vv, €V )

for a constant v > 0.



For proving the convergence of this scheme, we need some preliminary results.
First of all, for : = 1,2 and for each n € A, introduce the solution E;n € V; of the
Dirichlet boundary value problem

L.(En)=0 in €;
(3.12) (Ein)jagnaa; =0
(Eﬂ?)|F =7.

By well-known a-priori estimates for elliptic problems, the extension operator E; :
A — V; is continuous, i.e., there exists k; > 0 such that

(3.13) 1Einllo; < killnlla V€A,
Moreover, the trace inequality yields

(3.14) Eillnlla < |Emllie, YneA

for a suitable constant ]%l > 0.
For each 1, 1 € A define now the Steklov-Poincaré operators S; : A — A’ as

(Sum, 1) = b (Eyn, Eype) — (1, 10))a

(3.15)
(a7, 1) = ab(Ban, Bap) +~4((n,10))a

and set

S=95+52.

The operator S7 turns out to be continuous as

(3.16) (Sum, ) < (BEkT + ) Inllallplla -

and moreover, for each v > 0, S; is continuous and coercive, as

(3.17) (Som, 1) < (B3k3 + ) Inllallela
and
(3.18) (San.m) > (abk3 +)InlfA -

It is easily seen that the iteration operator in (3.7), (3.11), (3.9) is given by
(3.19) Te:=1—-6S,'S

(see for instance [1], Section 5, for the same result in a different context). The proof
of convergence is therefore reduced to showing that the operator Ty is a contraction
in A, with respect to a suitable norm.



We need the following abstract convergence theorem:

Theorem 3.1. Let X be a (real) Hilbert space and X' its dual space, and
denote by (-,-) the duality pairing between X' and X. Let the linear continuous
operator S : X — X' be split as S = S1 + So. Suppose that

1. Sy 18 linear and continuous, i.e., there exists 31 > 0 such that

(S p) < B Inllx llellx Vn,pe X

2. Sy 1s linear, continuous and coercive, i.e.
2.a there exists Py > 0 such that

(S2m, 1) < BalInllx [lpllx ¥V onpe X
2.b there exists ag > 0 such that
(Sam,m) > az X ¥neX;
3. there exists a constant k* > 0 such that
(S2m, Sy Sn) +(Sn.n) = w|Inllx VneX .
Then for any given \° in X the sequence
PRI L P
converges to 0, provided that

K*al
0<6< 2

Ba(B1 + B2)?

Proof. We introduce the scalar product

00 1) = 5 (S, 2) + (S2pm))

with the corresponding norm ||n]|s, := (S27,7)'/%, which is equivalent to the norm
[Inllx; ie.,

az|lnllx < [Inlls, < Ballnllk -
We prove that the map Ty : X — X defined as
Ten :=n— 0SSy
is a contraction with respect to the norm || - ||s,. Assuming that 0 < 6, we have

1 Ton||%, = |Inll5, +6°(Sn. S5 Sn) — 6({S2n, S5 ' .Sn) + (Sn, 1))

B+ Ba)? *
< Il + 6 PP i~ et
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and we obtain
| Tonll5, < Kglnll%,

where

2 *
K; :1+92M_9i

04% B2
The thesis follows by imposing the condition K; < 1. [

We are in a position to prove

Theorem 3.2. There exists v* > 0 such that for each v > ~* and for each
A0 € A the iterative scheme (3.7), (3.11), (3.9) is convergent in A, provided that the
relazation parameter 6 is chosen in a suitable interval (0,6, ).

Proof. From (3.16),(3.17) and (3.18) assumptions 1 and 2 of Theorem 3.1 are
satisfied with

Bi=pB 4y, as=abki+~,

1 = 1,2. We are going to prove that there exists v* > 0 such that for each v > ~*
assumption 3 of Theorem 3.1 is satisfied. We have

(Sam, S5 1 Sn) 4+ (Sn.n) = 2(Sn,n) + (San, S5 Sn) — (Sn,n)
> 2(Sn,n) — |(S2n, S5 ' Sn) — (Sn,m)] .

Setting = S, ' Sn, one obtains

1(Sam, S5 Sn) — (S, )| = |ab(Ean, Bapt) — a(Eap, Ean)|

=] [ b (E:uVEm— EynVEsu)|
Qs

< 2||bl| e (o) | E2nl1,0. [ E2pt]1,02,
< 2[|b]| ey k3l nlal1S5 " Slla -

From the definition of S and (3.5),(3.6), (3.13) and (3.14) we find

(S, ) < (B1RT + B3K3) Il I 1wl
(Sn.m) > (afh? + abk3) [In]} -
Therefore, setting (3 := ﬁfkf + ﬁgk% and « = oz%l;f + Oégi%%, we have

_ B
(Sa, 857 8n) + (Sn,n) > 2a|lnl} — 2||b||Loo<Q2>k§a—2||77lli

s
=2 (a — ||b||Loo(QQ)k§— Inll3 -
a2

The assumption 3 is satisfied provided that

* 5
w2 (= bl ) >0,
Q2

11



1.e.

B
ag > ||b||L°°(92)k§E :

Recalling the definition of ay it is sufficient to take

0 for afkf > ||b||L°°(Qz)k%é

* (a4
Y2 = 3 i i g

> [[bll1=ak — = b3 for afhd < 1Bl 1= (ks —

and finally apply Theorem 3.1. [

It is worthwhile to notice that the rate of convergence of the iterative scheme
(3.7), (3.11), (3.9) only depends on the parameters ﬁlﬁ, ozf in (3.5) and (3.6), &, ki
in (3.13) and (3.14), ¢ = 1,2. When considering a finite dimensional approxima-
tion, all these constants, except k;, are independent of the total number of degrees
of freedom. Therefore, the iterative scheme furnishes an optimal preconditioner,
provided that we can find an uniform bound for k;. In other words, it is necessary

to prove the uniform extension result

(3.20) i nnnllie; < killalla ¥V oon € Ag

where Ay is the discrete approximation of the trace space A, and, for each n € A,
E; pn is the finite dimensional counterpart of E;n introduced in (3.12).

This result is well-known, e.g., for piecewise-polynomial finite elements defined
on a regular family of triangulations 7 of 2, which induces a quasi-uniform family
of triangulations on I' (see, for instance, [5], [4], [15]).

Remark 3.3. In the finite dimensional case, the convergence of the itera-
tive scheme (3.7)-(3.9) can be proven by a similar argument. In fact, for discrete
functions all the norms are equivalent, hence there exists a constant x, > 0 such
that

(3.21) fullnnlly < el Y ne € A
By using this estimate, we only have to substitute the constant as := ozgl%% +~in
(3.18) with

az 1= a5k} + vy

and convergence is achieved for infg v > v} 1= v* /K.

Therefore, in this case we are not in a condition to prove that the iterative
procedure introduces an optimal preconditioner. However, the numerical results
shows that the rate of convergence is in fact independent of h (see Section 6). [

Remark 3.4. Though the convergence result in Theorem 3.2 holds only for v
sufficiently large, numerical evidence shows that the v-DR iterative scheme indeed

12



converges for any v > 0, in particular for v = 0. In Section 6 we are really going to
apply only the 0-DR method, to all the numerical test cases.[]

4. The ~-RR iterative scheme

In this Section we present and analyze another iteration-by-subdomain proce-
dure, which will be called 4-Robin/Robin (v-RR). It reads as follows: given \° in
L?(T), for each k > 0 solve

Lguf"i'1 =f i 4
(4.1) u’f"H =0 on 09y N 0N
5821:1 — (%b-n—y) u’f+1:/\k on I’
and
Lgug"i'1 =f in 9
u§+1 =0 on 0{y N 0N
(4.2) gaqg;:rl - (%b ‘ n_|_7> kit
zgag{l—i—l—(%b-n—l—y) u’f"H on I |
where
(4.3) AR — 58%:1 — (% b-n-— ’y) ubtt on T,

~ = ~(x) being a given function in L>(I") satisfying v(x) > 4 > 0 for almost each
x € I' . With respect to the method introduced in Section 2, we are setting here
A= —~vand B =~.

Noticing that

k41 8u’f+1 k41 k41
(4.4) N = e == (gt ) w2
= N2 b,

we can rewrite the scheme above in the variational form

find u’f‘H eV a%(u’f""l,vl) —|—/’7u11€|—|1:11)1|1"
r

:/ fU1+//\kU1|F Vo eVy,
oH r

13
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then

find u§+1 eV, Clg(u126+1,1}2)—|—/’7u12€|—|£‘lvz|1"
r

(4.6) =) fo2 + A fR1U2|F—G§(UIf+17R1U2|F)

+ / ’yu’f}lvzuﬂ Vo €Va,
r

and finally

(4.7) ML — 2k 27(u’2“|"|111 — u’f}l) onI",

where notation is as in Section 3. Due to the assumption v € L>(T"), we have that
AL e L2(T).

Let us underline that, also in the present case, the bilinear forms which are
used in the iterative scheme, i.e.,

G?(wi,vi) +/7wlvl ) 1= 172 )
N

are coercive in V;, for each v > 0.
We obtain the following convergence theorem which is inspired by the results

of [14], [16]:

Theorem 4.1. Assume either that §2 1s a Lipschitz polygonal domain or that
o € C*. Suppose moreover that bip € (L>>(T'))?. For each \° € L*(T') and for
each i = 1,2, the sequences u® converge in H'(Q;) to the restriction ujg, of the
solution u of (1.4).

Proof. Set e := u* —uq, for each k > 0. The exact solution u clearly satisfies
aﬁ(ulﬂuvl) + / YU V1T :/ for + fRavyr
T Qq 92

- ag(U|QQ,R2U1|F) ‘|’/F’7U|FU1|F Voo €Vr,
and
ag(ulﬂzvv2)+/7u|l“v2|l“ :/ fo2 + fRivgr
r Qs 931
— af (uja,, Rivayr) +/FW|FU2|F Vo, eVs.

From well-known regularity results for elliptic equations (see, e.g., [13], [10]), the

solution u belongs to H*/?%9(Q) for a suitable § > 0, and consequently g—z e L*(T).

Therefore we can also write

/ fR2U1|F—Gg(u|927732v1|r)‘|‘/7U|FU1|F
Qs r

/( ou 1 )
= e— —=-b-nu+~yu oy -
T n 2 |F

14



Setting now

0 1
wk::/\k—<5—u——b-nu—|—’yu> )
2
n r
the error equations can be written as
(4.8) a§(6f+1,v1) + / 7e’fr111v1|p = /wkv1|p Yo eWVy,
T T
and
5w+ [ 2o
(4.9) r
= —a§(€f+17R1U2|F) + / ’ye’f'—;lvzu‘ Yo €V,
T
where
k+1 k k+1 k+1
(4.10) Wl = —|—2’y(62|"|1! — €1|—|1—“ ).

Taking vy = e’f‘H in (4.8) and vy = e§+1 in (4.9), we have

k k k k k
(4.11) et et = [t el
and
k k k k k k k

(@12) e ) = —ad e R + [ el
Choosing v1 = R4 e’;}l in (4.8), we also obtain

k k k k k
(4.13) a§(€1+177€1€2|?) - /F(w = e e

and inserting this result in (4.12) we have

(4.14) ab (et ek+1y = /F(2ve’f}1 —yeprt —wh)egtt

Adding (4.11) and (4.14) we find
aj (et et +

C A

k k k k
[7wk(€1|—|1—“1 - €2|—|1—“1) o ’72(61?1—“1 o €2|—|1:1)2]

1 k+1 k+1 k12 1 kN2
(e — o) — @ P [ wh)?
47 1r 2| r 47

I
Q
,1\[\3::’:
==

Il
—
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Recalling (4.10), we finally obtain

(A e P R AR e S [P
r r

Adding now over k from 0 to M — 1, it follows

= # #
[al(e’f,e'f)+a2(e§,e§)]—|— _(WM)z
" 2 J

hence the series

[af (e ef) + aj(e5, e3)]

™3

e
I

1

is convergent, and, as a consequence of the coerciveness of af(-, ) in V4, e¥ converge

to 0in H'(Q;),i=1,2. OJ

Remark 4.2. The same result holds true when considering the corresponding
discrete scheme, which can be obtained from (4.5)-(4.7) by substituting V;, A and
R; with suitable finite dimensional approximations V; 5, Ay and R, p, respectively.

In fact, for each pj, € Ay, we can write

/ fRa nptn — ag(uth,Rz,huh) + / YUR|T ok
Qs T

- / Ghtih
T

for a suitable g, € Aj. Hence, only assuming that Q is a Lipschitz polygonal
domain, for each initial guess \) € Aj, one obtains convergence as in Theorem 4.1.

Though we have no information on the rate of convergence, which, in principle,
can depend on h, the numerical results in Section 6 show that this is not the case,
and the number of subdomain iterations is independent of the mesh size, for suitable
choices of the parameter v = ~;. [

Remark 4.3. It is worthwhile to notice that the y-RR method generalizes
several other ones proposed recently. For instance, we have

z|b -] unrelaxed ARN method in [11]

v =14 2y/Ib-n|?+ 4age [16]

VI[b-n]2+dre , >0 [2]

This is not the case for the ARgN method in [11]. [J
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Remark 4.4. A possible strategy for choosing the parameter ~ is the following
one: minimize with respect to v the upper bound

ot

ou 1
w¥ =\ — <5a—n— §b-1f1u>|F —yupr ,

the minimum is attained for

in (4.16). Since

Y

1 ou 1 2 1
F .= - N —e— 1+ b- = — 2
4/F< “on T3 n“) , 4/F“

Since the value of the exact solution u is not available, we propose to use along the

il
G

where

iterations

Ey
4.17 =4 — E>1
(4.17) wi=yg o B2

where )
1 ouk 1 1
F, == N 224 “honuk G:—_—/ ky2
k 4/F< “on 2 n“2> PRy F(uz)

Again, in this situation we have not a convergence proof, but some numerical results
show that this strategy works well enough (see Section 6). [

5. The ~-DR and ~+-RR iterative schemes for systems

The iterative schemes introduced in Sections 3 and 4 can be used also when
considering advection-diffusion systems, like

d
—5Au—|—ZDj(B(j)u)—|—Aou:f in Q

J=1

(5.1)

upe =0,

where BU) | j = 1,...d, Ay are q X ¢ symmetric matrices. We assume that the
coefficients of BU) and Ay belong to L>(12), and that the coefficients of E]‘ D;BW)

belong to L>°(2). Moreover, we require that the matrix
1< 4
(5.2) M(x) =5 ; D;BY(x) + Ao(x)
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1s positive semi-definite for almost each x € €2, which corresponds to the coerciveness
assumption (1.2).
We can introduce the associated bilinear form

a*(w,v) ::/Q {eSVW-VV—I—(MW)-V

(5.3) 1 d ‘ 4
n 5 /Q ;[(B(J)V) -D;w — (B(J)Djv) W],

which can be used to rewrite the Dirichlet boundary value problem (5.1) in the
variational form

(5.4) uc (Hy(Q)" - aﬁ(u,v):/gf-v Vve(H Q).

Let v = ~(x) be a ¢ x ¢ matrix with coefficients in L°°(I") and positive semi-
definite for almost each x € I'. The v-DR scheme for this problem reads:

find uft! € (V7)7 -

(5.5) Gl = [t Ve @)
931
k k
ulrlll =A

find ubt! € (V)7 -

o= [ e Ve (o)

(5.6)
(s Rop) + [t u= [ Rt [ £ Rup
T Qs Qq
R+ [ul e Ve @y
and finally
(5.7) A= fuftt + (1-0)A"  onT,

with obvious meaning of notation.
On the other hand, choosing a ¢ X ¢ matrix v = v(x) which is uniformly positive
definite in I', the v-RR scheme reads:

find uf ™' e (17)7 : af(uft! v)) —I—/(’yu’fa!l)-vnp

(5.8) :

:/ f'Vl—I—/Ak'VHF VVle(Vl)q,
Q r

18



then

find u§+1 € (VZ)‘I : ag(ulzﬂ‘l,vz) —I—/F(fyu’;rl:l).vzw
(5.9) :/Q f'Vz—I-/Q f'R1V2|F—a§(u11€+17R1V2|F)

—|— /F("}/llllc[;l) . V2|F V Vo € (Vz)q 5
and finally

(5.10) AL \F + 2’7(u’2“|"|121 — u’frlll) onl.

The convergence of both these iterative schemes can be shown as in Sections
3 and 4. More precisely, the v-DR scheme is proven to converge provided that the
matrix v satisfies

(v(x)€) - € >~"E-€ vV €é€ecRY, for almost each x € T,

for a suitable v* > 0.
The v-RR method converges provided that the matrix ~ is diagonal and each
entry vss, s = 1, ..., ¢, satisfies

ves(X) >4 >0 for almost each x € T" .

6. Numerical results

In this Section we present some numerical results, for different suitable test
problems, obtained applying the v-DR and v-RR methods introduced before. In-
deed, we are going to use the 0-DR method (namely v-DR with v = 0), which
turns out to converge even if the theoretical results in general would require v large
enough, thus avoiding to propose a strategy for the choice of the parameter ~.

We implemented the schemes of Sections 3 and 4 on a cluster of an IBM
RS/6000 workstations connected by Ethernet. The algorithms for the domain de-
composition methods are parallelized using a Master /Slave paradigm in the PVM
configuration.

When the advection is dominant, it is well-known that the pure Galerkin
method for piecewise-polynomial finite elements is instable. Therefore we have em-
ployed the GALS stabilization method, which consists in substituting the bilinear
form a*(-,-) by

aj, (wp,vn) 1= a* (wp,vn) + Z Ti(Lewn, Levh) i
KeTy

where 75 is the family of triangulations defined in Q, (-,+)x denotes the L*(RK)-
scalar product, and 7k is a positive parameter which has to be chosen in a suitable
way (see [12]). The right hand side (f, v )q has to be changed correspondingly as

‘}th(vh) = (f7 Uh)Q + Z T[g’(f, Lgvh)[( .

KeTs
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The iterative method used to solve the algebraic problems is CGSTAB with
ILU preconditioner. The iterations of the CGSTAB method have been stopped
when the relative error between two subsequent iterates is less than 107!!, and
the iterations over the subdomains when the relative L*(I')-norm of the difference
between two subsequent iterates is less then 10710, i.e., when

k
||ui+1 - ufHLO"(F)

<1071 0 i=1,2.

Y Y

(6.1)
[kl oo (ry

6.1 Furst test case

We consider a test solution belonging to the space of the trial functions, which
in our case are the piecewise-linear polynomials. We make such a simple choice to
show the main features of the DD algorithms, as a test solution u € V}, avoids any
approximation error and shows in an explicit way the algorithm behaviour with
respect to the parameters.

We consider the problem —eAu 4+ b - Vu = f, with b = (1,1), u(z,y) =
r+5y and f and the boundary conditions computed accordingly. The computational
domain is = (0,1) x (0, 1), which has been split in two rectangular subdomains
Ql and QQ.

We have applied to this problem the ADN schemes, the 0-DR scheme and the
~-RR scheme (with the value of v obtained using formula (4.17), which in this case
turns out to be nearly optimal).

We have used a mesh having 21 x 21 points in each subdomain. When imple-
menting the ADN method, for each ¢ we have chosen the optimal value of 8 reported
in [17]. In general this value is rather sensitive to e, and, for the example at hand,
ranges between 0.5 and 0.8. Instead, for the 0-DR method we have observed that
the optimal 8 is equal to 0.5 for any choice of ¢, provided that the ratio between
the values of the mesh size in the two subdomains is equal to one, otherwise the
optimal value of 8 is not far from 0.5, as shown in Table 6.1. We also notice that
it 1s not straightforward to find the optimal parameter 6 for the v-DR algorithm,
~ # 0, and for a generic choice of § we have verified that its convergence is often
rather slow.

position of T" optimal 6 number of iterations
xp = 0.25 0.54 12
xr = 0.50 0.5 6
xr = 0.75 0.44 14

Table 6.1. Optimal values of 6 for the 0-DR method.

In the one-dimensional case considered in Section 2 the v-DR scheme corre-
sponds to the choice A = —o0 and B = ~. It is worthwhile to notice that, in the
limit £ — 07T, in that case the best choice of the parameter # is the one for which

1 —6[1 — po(—o0,7)] =0
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(see (2.7), (2.9)), namely
1 v
Oopt = = + — .

pt 2 + |b|
This strengthens the conviction that the choice § = 0.5 for the multi-dimensional

0-DR scheme is likely close to the optimal one.
To make a comparison between the ADN, 0-DR and +-RR methods, we show
in Fig. 6.2 the number of iterations needed to achieve convergence, in the case the
two subdomains of the same size, each one having 21 x 21 uniformly spaced grid

points.
22 T T T T T T T
e—o ADN
20 - +—4 0-DR |y
+—+VyRR

-
©

P = =
N N =Y
T T T

[N
o
T

number of iterations

0 . . . . . . .
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1 1.E+01
epsilon

Figure 6.2. Number of iterations for the ADN, 0-DR and v-RR methods.

It is worthwhile to notice that the 0-DR scheme performs better than the ADN
one. In fact, the number of iterations needed is lower, without needing to modify
the value of 6 with respect to .

In Tables 6.3 and 6.4 it is shown that the rate of convergence of the 0-DR
and v-RR methods is essentially independent of the number of degrees of freedom.
Moreover, the number of iterations of the 0-DR scheme depends very mildly on the
value of ¢. In this examples, we are splitting the domain € in two parts of the same
size, having various meshes, with the same number of nodes in the direction z in
Qy and 9, and always 21 nodes in the direction y.

nodes \ ¢ 1011071072103 |107* | 107> | 107 | 107"
(21 x21)+ (21 x21) | 4|5 6 9 7 6 6 6 6
(31 x21)+ (31 x21)| 4|4 6 9 7 6 6 6 6
(41 x 21) + (41 x21) | 4|4 5 7 7 7 6 6 6
(51 x 21) + (51 x 21) | 4|4 5 7 8 7 6 6 7

Table 6.3. Number of iterations of the 0-DR method.
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nodes \ ¢ 1073 107* [ 107° | 107% | 1077

(21 x21)+ (21 x21) | 20| 16| 12
(31x21)+(31x21)| 20| 16| 12
(41 x21)+ (41 x21)| 20| 16| 12
(51x21)+ (51 x21)| 20| 16| 12

O O O O
SOy O D

Table 6.4. Number of iterations of the v-RR method.

We finally notice that, for the problem at hand, the unrelaxed ARN method
has the same behaviour of the v-RR method (with the value of v given by (4.17),
which in this case is v ~ 0.5). The same happens for the choice of v proposed in
[16], and also for the one in [2] (when ke is small enough).

6.2. The thermal boundary layer problem
This problem reads:

—eAu+ 2yu, =0 on Q= (0,1) x (0,0.5)
with boundary conditions described in Fig. 6.5.

u=1 (1,05)

u=1__ "~ u=2y

(00) u=0 >
\ boundary layers
e

Figure 6.5. Boundary conditions for the thermal boundary layer problem.

The solution presents two zones of large gradient near the boundaries
{y=0and 0<z <1} {r=1and 0<y <0.5}.

In Fig. 6.6 the convergence histories of the ADN, ARN, 0-DR and ~-RR
methods are plotted for ¢ = 107, We have divided Q in two subdomains:

2y :=(0,0.7) x (0,0.5) with 21 x 41 uniformly spaced grid points

Q3 :=(0.7,1) x (0,0.5) with 41 x 41 uniformly spaced grid points.
The value of the relaxation parameter is § = 0.91 for the ADN scheme, § = 0.42
for the 0-DR scheme (due to the different mesh parameters in 7 and Q9), and

§ = 1 for the ARN scheme (unrelaxed ARN scheme). For the v-RR scheme the

value of ~, which is obtained using formula (4.17), is approximately 0.13 for all the
computations.
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Figure 6.6. Convergence histories for ¢ = 1074,

Also in this example, the choice of the optimal relaxation parameter 6 for the
0-DR scheme is rather easy, as it is exactly 0.5 when hq, = hgq,, and close enough to
that value in several other cases, as shown in Table 6.7. In this Table, the number
of nodes in 1 and €25 is always 21 x 21.

position of T" optimal 6 number of iterations
xp = 0.25 0.52 10
xr = 0.50 0.5 7
xr = 0.75 0.48 10

Table 6.7. Optimal values of 6 for the 0-DR method.

Again, the rate of convergence turns out to be essentially independent of the
number of degrees of freedom and of ¢, for both the 0-DR and the v-RR methods
(see Tables 6.8 and 6.9). The choice of the parameter v = 53, for the v-RR method
is now different from the one indicated in (4.17), and has been determined running
the program a few times, looking for the “best” rate of convergence. In these
last computations, we have divided the domain 2 in ©; := (0,0.75) x (0,0.5) and
Qy :=(0.75,1) x (0,0.5).

nodes \ ¢ 10 1[1071 1072|1073 107* 1075 | 107% | 1077
(31 x 21) + (11 x 21) | 10 | 10 8| 10 8 7 6 6 6
(46 x 21) + (16 x 21) | 10 | 10 8| 10 8 7 6 6 6
(61 x 21) + (21 x 21) | 10 | 10 8| 10 8 7 7 8 9
(76 x 21) + (26 x 21) | 10 | 10 8| 10 8 8| 11 7 6

Table 6.8. Number of iterations of the 0-DR method.
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nodes \ ¢ 1073 107* [ 107° | 107% | 1077

31x21)4+(11x21)| 30| 26| 25| 26| 25
46 x 21) + (16 x21) | 32| 25| 25| 26| 25
61x21)+(21x21)| 32| 27| 26| 26| 26
T6x21)+(26x21)| 31| 27| 26| 27| 26

e .

Table 6.9. Number of iterations of the v-RR method.

We notice that, for this thermal boundary layer problem, the choice of the
parameter v = %x/|b -n|? + 4ke proposed in [2] for the v-RR method is more

efficient, at least for small . In fact, choosing ¢ = 107°%, » ranging between 1072
and 102, and the number of nodes as in Table 6.9, the number of iterations needed
to achieve convergence is always equal to 8.

6.3. An example with Tg # ()

Now we consider another test case, in which the advective field b is tangential
on a part of the interface T.

In this case, the ARN scheme cannot work, as one cannot recover the continuity

of the solution on T := {x € T'|b(x) - n(x) = 0}. Instead, the choice of v proposed
in [2] is admissible.

The problem we are going to consider is
—cAu+buy, =0 in Q= (0, 1)2

with

,_ [ -1 0<y<05
10 05<y<1

and boundary conditions © = 1 on the sides with vertex in (0,0) and v = 1 on the
sides with vertex in (1,1).

In Figure 6.10 we show the number of iterations needed by the 0-DR and the
ADN methods to achieve convergence, for different values of €. We have split €2 into
two parts of the same size, using a mesh with 21 x 21 points in each subdomain.
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epsilon

Figure 6.10. Number of iterations for ADN and 0-DR methods.

In this case the performance of the v-RR scheme are not satisfactory, even
when ¢ is very small. In fact, as it can be noticed in Fig. 6.11, using the value of v
given formula (4. 17 the number of iterations is very large. The situation improves
for the value v = 71/|b - n|? + 4xe proposed by [2], for x ranging between 1072 and
102, but is still Worse of both the 0-DR and the ADN schemes. In fact, for the case
described in Fig. 6.10 and ¢ = 1079, convergence is reached after 83 iterations for
# = 1072, while 0-DR and ADN need 7 and 23 iterations, respectively. The choice
of larger values of k gives worse results.

0

10

10"

10°

maximum norm

107

100 +

10°

0 100 200 300 400 500
number of iterations

Figure 6.11. Convergence history of the 4-RR method for ¢ = 10775,

Also in this case, the number of iterations needed by the 0-DR scheme turns
out to be independent of the number of nodes and ¢, as is shown in Table 6.12. For

these computations, we have chosen £ = (0,0.25)x(0,1) and 25 = (0.25,1)x (0, 1).
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nodes \ ¢ 10 1[1071 1072|1073 107* 1075 | 107% | 1077

(11x21)4+(31x21)[19[19| 12| 15| 14| 15| 10| 11| 10
(16 x21)+ (46 x21) [19[19| 12| 15| 14| 15| 10| 10| 10
(21x21)4+(61x21)[19[19| 12| 16| 14| 15| 10| 10| 10
(26 x21) 4+ (76 x21) [19 (19| 12| 16| 14| 15| 10| 10| 9

Table 6.12. Number of iterations of the 0-DR method.

We have also applied the 0-DR and the ADN methods to other test cases, in
which the advective field b changes direction on I'. The performances of the 0-DR
have been comparable to the ones of this third test case. On the contrary, in this
situation the ADN scheme imposes a mixed Dirichlet-Neumann boundary condition
on both sides of I', and sometimes this seems to slow down the rate of convergence,
as the singularity appearing in the point where the boundary condition changes
type can be propagated inside the subdomains €2y and 2.

7. Conclusions

We have proposed two families of domain decomposition methods for advection-
diffusion equations and systems, called v-DR and ~-RR.

Under suitable assumptions, we have proven their convergence, for both the
infinite dimensional and finite dimensional cases. In particular, in the latter case
the v-DR scheme is shown to converge at a rate which is independent of the number
of degrees of freedom, hence the domain decomposition procedure implicitly defines
an optimal preconditioner.

We have employed these methods for computing the solution of some test prob-
lems, with good performances. The 0-DR method (namely, v-DR for v = 0) turns
out to be particularly well-suited, as:

e it is efficient, as the relative error between two subsequent iterates becomes
less than 10710 in a few iteration-by-subdomain sweeps;

o it is robust, namely it can be used for large or small diffusion, with coarse or
fine meshes, and in each case the rate of convergence is essentially the same.
Moreover, also the relaxation parameter 6 is rather insensitive to these coefhi-
cients, and the choice 6 = 0.5 is the optimal one provided that a uniform mesh
has been used in 2. For meshes with a different mesh-parameter in £ and €25,
in our computations the optimal parameter always ranges between 0.4 and 0.6,
and in any case the choice § = 0.5 yields a number of iterations not far from
the best one;

e it is simple to implement, as it doesn’t require to take into account the direction
of the advective field on the interface I' for deciding the boundary condition to
impose in that point (this can be rather cumbersome for non-uniform meshes).
The Dirichlet boundary condition can always be used on one side of T', the
Robin condition on the other side;

e it is general, namely the same algorithm can be employed also for systems of
advection-diffusion equations.
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Added in proof. While completing this paper, we have been aware that

the v-RR method, for any positive function v, has been already proposed in [3].
There the authors have also proven the convergence of the subdomain iterates u¥
in H'(Q;), but only in the infinite dimensional case.
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