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Summary. Two families of non-overlapping coercive domain decomposition methods

are proposed for the numerical approximation of advection dominated advection-di�usion

equations and systems. Convergence is proven for both the continuous and the discrete

problem. The rate of convergence of the �rst method is shown to be independent of

the number of degrees of freedom. Several numerical results are presented, showing the

e�ciency and robustness of the proposed iterative algorithms.

1. Introduction

The interest for the use of domain decomposition methods for advection-di�u-

sion equations has considerably grown in the last years (see, e.g., [14], [16], [7], [11],

[17], [8], [9], [2] for non-overlapping partitions, [6], [18] for overlapping partitions).

In this paper we are concerned with non-overlapping domain decomposition

methods for advection dominated advection-di�usion equations and systems. The

computational domain 
, a connected open bounded subset of R

d

, d = 2; 3, with a

Lipschitz boundary @
, will be split into two non-overlapping subdomains 


1

and




2

. We set � := 


1

\ 


2

, and denote by n the unit normal vector on �, directed

from 


1

to 


2

.

We propose two families of methods, depending on the choice of a parameter,

denoted by , and show their convergence, for both the continuous problem and its

discrete approximation. The �rst method, called -DR, turns out to have a rate of

convergence which is independent of the mesh size h, hence it introduces an optimal

preconditioner for the associated Schur complement matrix related to the unknown

nodal values on the interface �.

The main novelty in our methods resides in the fact that we don't care about

the local direction of the advective �eld b on � (as in adaptive methods proposed

in [7], [11]), but we only need that the boundary value problems in 


1

and 


2

along

the subdomain iterations are associated to a suitable coercive bilinear form.

To start with, in Sections 2, 3 and 4 we consider the following homogeneous

(�)
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Dirichlet boundary value problem

(1:1)

8

>

>

<

>

>

:

L

"

u := �"�u+

d

X

j=1

D

j

(b

j

u) + a

0

u = f in 


u

j@


= 0 ;

where D

j

denotes the derivative with respect to x

j

, j = 1; :::; d, f 2 L

2

(
) and the

coe�cients satisfy the regularity conditions

b 2 (L

1

(
))

d

; divb 2 L

1

(
) ; a

0

2 L

1

(
)

and the coerciveness condition

(1:2)

1

2

divb(x) + a

0

(x) � 0 for almost each x 2 
 :

As a consequence of (1.2), the associated bilinear form

(1:3)

a

]

(w; v) : =

Z




h

"rw � rv +

�

1

2

divb + a

0

�

wv

i

+

1

2

Z




(v b � rw� wb � rv) ;

is continuous and coercive in V = H

1

0

(
), the Sobolev space of functions belonging

to L

2

(
) together with their �rst order distributional derivatives.

The variational formulation of (1.1) reads:

(1:4) �nd u 2 H

1

0

(
) : a

]

(u; v) =

Z




fv 8 v 2 H

1

0

(
) :

The Lax-Milgram lemma ensures that the solution to (1.4) exists and is unique.

The results we are going to present can be straightforwardly extended to other

boundary conditions, provided that the coerciveness of the associated bilinear form

is still satis�ed.

In Section 5 we will take into consideration the case of systems of advection

dominated advection-di�usion equations. The extension of the proposed methods

to this case turns out to be an easy task. On the contrary, it is worthwhile to notice

that this is not the case for the adaptive methods devised in [7], [11], as these

algorithms are based on the knowledge of the direction of the ow on the interface

�, and this information is not easily available for systems of advection-di�usion

equations.

Finally, the numerical results illustrating the performances of the proposed

methods are presented in Section 6, for several suitable benchmark problems. The

-DR method turns out to be very e�cient and robust, and the numerical examples

show that the choice of the parameter  and of the relaxation coe�cient � (see (3.2)

and (3.3), respectively) can be done in a simple way. In conclusion, these results
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suggest to propose the -DR method as an \universal" non-overlapping domain

decomposition procedure for advection-di�usion equations and systems.

2. A model one-dimensional problem

Let us start by considering the model problem

(2:1)

8

<

:

L

"

u = �"u

xx

+ bu

x

+ a

0

u = f in 
 = (0; 1)

u(0) = u(1) = 0 ;

where " > 0, b 6= 0 and a

0

� 0 are constant coe�cients.

In [11] the following iteration-by-subdomain method to solve (2.1) has been

analyzed: given �

0

, solve for k � 1

(2:2)

8

>

>

>

>

<

>

>

>

>

:

L

"

u

k+1

1

= f in 


1

= (0; c)

u

k+1

1

(0) = 0

"u

k+1

1x

(c)� (

1

2

b + A)u

k+1

1

(c) = �

k

;

then

(2:3)

8

>

>

>

>

<

>

>

>

>

:

L

"

u

k+1

2

= f in 


2

= (c; 1)

u

k+1

2

(1) = 0

"u

k+1

2x

(c)� (

1

2

b +B)u

k+1

2

(c) = "u

k+1

1x

(c)� (

1

2

b + B)u

k+1

1

(c) ;

and �nally set

(2:4) �

k+1

= "u

k+1

2x

(c)�

�

1

2

b + A

�

u

k+1

2

(c) ;

where 0 < c < 1, and A and B are real parameters, with A 6= B. Indeed, the

cases A = �1 and B 2 R, or A 2 R and B = �1 can also be considered. For

these choices one of the two �rst-order interface conditions in c becomes a Dirichlet

boundary condition.

The convergence of this method is achieved provided that

(2:5) j�

"

(A;B)j < 1 ;

where

�

"

(A;B) :=

� coth(�c)�B="

� coth(�c)�A="

� coth[� (1� c)] + A="

� coth[� (1� c)] + B="

;

and

� :=

p

b

2

+ 4"a

0

2"
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(see [11], Section 3, in which � =

1

2

b + A and � =

1

2

b +B).

Introducing a relaxation parameter � 6= 0, we can consider a more general

iterative scheme in which

(2:6) �

k+1

= �

�

"u

k+1

2;x

(c) �

�

1

2

b + A

�

u

k+1

2

(c)

�

+ (1� �)�

k

:

In this case we have convergence when

(2:7) j1� �[1 � �

"

(A;B)]j < 1 :

This means

(2:8)

(

0 < � <

2

1��

"

(A;B)

for �

"

(A;B) < 1

2

1��

"

(A;B)

< � < 0 for �

"

(A;B) > 1

:

(Notice that �

"

(A;B) 6= 1 for A 6= B.)

The iterative method based on the relaxation procedure (2.6) is therefore con-

vergent, provided we choose � as in (2.8). However, we are interested in advection-

dominated problems, namely, the \viscous" parameter " we are considering is very

small in comparison with b and a

0

. An e�cient method in this situation is therefore

the one which converges for a choice of � independent of " as "! 0

+

.

A direct calculation shows that

(2:9) �

0

(A;B) := lim

"!0

+

�

"

(A;B) =

jbj=2�B

jbj=2 + B

jbj=2 + A

jbj=2�A

;

hence the choices A = jbj=2 and B = �jbj=2 lead to a non-e�cient scheme. These

correspond to imposing the value of the normal derivative on the inow region,

or the value of the conormal derivative on the outow region. Notice that when

we consider these boundary conditions the boundary value problem at hand is

associated to a non-coercive bilinear form.

When the asymptotic reduction factor �

0

(A;B) belongs to the interval (�1; 1),

the relaxation parameter can be chosen in the whole interval (0; 1], leading to ef-

�cient iterative schemes. By means of a simple computation one can see that the

values of the parameters A and B for which �1 < �

0

(A;B) < 1 strictly contains

the region

(2:10) C := f(A;B) 2 R

2

jA � 0 ; B � 0 ; A 6= Bg :

More precisely, choosing (A

�

; B

�

) in the region of convergence (i.e., where �1 <

�

0

(A;B) < 1) but not in C, the absolute value of exactly one of the two factors

in (2.9) is strictly larger than one. In this situation, we have either A

�

> 0 or

B

�

< 0. To �x the ideas, suppose that B

�

< 0. The argument above says that we

can improve the rate of convergence of the iterative scheme by only changing the

interface condition in 


2

, substituting the one associated to B

�

with another one,
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related to any parameter B � 0, i.e., choosing (A

�

; B) in the region C. Therefore,

one should expect best convergence properties choosing the parameters in C.

The region C is exactly the set of parameters A and B for which both the

bilinear forms, associated to the boundary value problems we are considering, are

coercive for each choice of the ellipticity coe�cient ". The limit cases A = �1,

B � 0 (Dirichlet boundary condition in 


1

) and B = 1, A � 0 (Dirichlet boundary

condition in 


2

) can be also included.

The analysis performed in [11] leaded the authors to propose adaptive iterative

schemes for advection-dominated advection-di�usion equations. In this context,

adaptivity means that the boundary conditions imposed along the iterations are

consistent with the \hyperbolic" limit as " ! 0

+

, namely, the Dirichlet boundary

condition is never imposed on the outow. In fact, this choice could create arti�cial

internal layers at the interface.

We are going to suggest here a di�erent point of view. The choice that leads to

e�cient iteration-by-subdomain schemes is the one which, in each subdomain, pre-

serves the coerciveness of the associated bilinear forms. For example, the Dirichlet

boundary condition can always be imposed, no matter if the interface is an inow or

an outow boundary. Numerical evidence will show that the arti�cial internal lay-

ers, which indeed arise, are damped out after very few iterations, provided that the

relaxation parameter � is suitably chosen, and don't a�ect convergence in a signi-

�cative way. To illustrate this behaviour, we present Fig. 2.1 and Fig. 2.2. In both

�gures, we refer on the left to the equation (2.1) for " = 10

�2

, b = 1, a

0

= f = 0,

and on the right to the same case, but with boundary condition u(0) = 1. In Fig.

2.1 the splitting (2.2)-(2.4) have been performed with A = �1, B =

1

2

b, i.e., we

consider to the so-called Dirichlet/Robin scheme, and in Fig. 2.2 we have taken

A = �1, B = 0, which corresponds to the 0-DR scheme we are going to propose

in Section 3. The optimal choice of � is clearly � = 1 in Fig. 2.1 and � = 0:5 in Fig.

2.2.
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Figure 2.1. The smoothing of the arti�cial internal layer for A = �1, B =

1

2

b.
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Figure 2.2. The smoothing of the arti�cial internal layer for A = �1, B = 0.

Notice also that, as in [11], our argument permits imposing the value of the

normal derivative on an outow boundary and similarly the value of the conormal

derivative on an inow boundary. Indeed, this corresponds for b > 0 to taking

A = �b=2 < 0 (outow for 


1

) or B = b=2 > 0 (inow for 


2

), and for b < 0 to

choosing A = b=2 < 0 (inow for 


1

) or B = �b=2 > 0 (outow for 


2

), and for all

these choices coerciveness is guaranteed.

Finally, if the boundary has an inow and an outow part at the same time, we

claim that it is not necessary to employ an adaptive strategy on the interface, but

it is su�cient to impose a set of boundary conditions which assures coerciveness of

the bilinear forms in both subdomains. In the next Sections 3 and 4 we are going

to present two families of boundary value problems which enjoy these properties.

3. The -DR iterative scheme

We propose the following iteration-by-subdomain scheme for solving (1.1),

which will be called -Dirichlet/Robin (-DR).

De�ne by � the trace space on � of H

1

0

(
). It can be shown that this space

coincides with the Sobolev space H

1=2

00

(�) (for the de�nition of this space, see, e.g.,

[13]).

The scheme reads: let �

0

be given in �, for each k � 0 solve

(3:1)

8

>

>

>

>

<

>

>

>

>

:

L

"

u

k+1

1

= f in 


1

u

k+1

1

= 0 on @


1

\ @


u

k+1

1

= �

k

on �
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(3:2)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

L

"

u

k+1

2

= f in 


2

u

k+1

2

= 0 on @


2

\ @


"

@u

k+1

2

@n

�

�

1

2

b � n+ 

�

u

k+1

2

= "

@u

k+1

1

@n

�

�

1

2

b � n + 

�

u

k+1

1

on � ,

and set

(3:3) �

k+1

:= �u

k+1

2j�

+ (1� �)�

k

on � ;

where � 6= 0 is a relaxation parameter introduced to accelerate convergence.

In (3.2)  = (x) is a given function belonging to L

1

(�), satisfying (x) � 0 for

almost each x 2 �; the rate of convergence of the method is in principle dependent

on the choice of this function. Compared with the scheme analized in Section 2, we

are choosing here A = �1 and B = .

To ensure the solvability of problems (3.1) and (3.2), it is useful to consider

their variational formulation. Let us de�ne for i = 1; 2

V

i

:= fv

i

2 H

1

(


i

) j v

ij@
\@


i

= 0g

and introduce the local bilinear forms

(3:4)

a

]

i

(w

i

; v

i

) : =

Z




i

h

"rw

i

� rv

i

+

�

1

2

divb + a

0

�

w

i

v

i

i

+

+

1

2

Z




(v

i

b � rw

i

� w

i

b � rv

i

) :

Notice that, from (1.2), there exist constants �

]

i

and �

]

i

, i = 1; 2, such that

(3:5) a

]

i

(w

i

; v

i

) � �

]

i

jjw

i

jj

1;


i

jjv

i

jj

1;


i

8 w

i

; v

i

2 V

i

and

(3:6) a

]

i

(v

i

; v

i

) � �

]

i

jjv

i

jj

2

1;


i

8 v

i

2 V

i

:

The iterative scheme (3.1)-(3.3) reads:

(3:7)

8

>

>

>

>

<

>

>

>

>

:

�nd u

k+1

1

2 V

1

:

a

]

1

(u

k+1

1

; v

1

) =

Z




1

fv

1

8 v

1

2 H

1

0

(


1

)

u

k+1

1j�

= �

k

7



(3:8)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�nd u

k+1

2

2 V

2

:

a

]

2

(u

k+1

2

; v

2

) =

Z




2

fv

2

8 v

2

2 H

1

0

(


2

)

a

]

2

(u

k+1

2

;R

2

�) +

Z

�

u

k+1

2j�

� =

Z




2

fR

2

� +

Z




1

fR

1

�

�a

]

1

(u

k+1

1

;R

1

�) +

Z

�

u

k+1

1j�

� 8 � 2 �

and �nally

(3:9) �

k+1

:= �u

k+1

2j�

+ (1� �)�

k

on � ;

where R

i

denotes any extension operator from � to V

i

.

Problem (3.8) can be rewritten in the equivalent form

(3:10)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�nd u

k+1

2

2 V

2

:

a

]

2

(u

k+1

2

; v

2

) +

Z

�

u

k+1

2j�

v

2j�

=

Z




2

fv

2

+

Z




1

fR

1

v

2j�

�a

]

1

(u

k+1

1

;R

1

v

2j�

) +

Z

�

u

k+1

1j�

v

2j�

8 v

2

2 V

2

:

It must be noticed that problem (3.7) is a coercive problem in H

1

0

(


1

), whereas

problem (3.10) is coercive in V

2

, for any  � 0. Hence the iterative scheme is

correctly de�ned, and, more important, enjoys the coerciveness properties which

have been shown in Section 2 to lead to convergent schemes. We want also to

underline that it is di�erent from the ADN scheme proposed in [11], as the Dirichlet

boundary condition is imposed on the whole interface �, no matter if it is an inow

or an outow boundary. However, in the particular situation in which the ow has

always the same direction on �, say b �n < 0 on �, choosing  = �

1

2

b �n we recover

the ADN scheme.

We also propose a modi�ed algorithm, which is somehow more complicated to

implement, but enjoys better convergence properties. Setting ((�; �))

�

the scalar

product in the trace space � = H

1=2

00

(�), we solve instead of (3.10) the following

problem

(3:11)

8

>

>

>

>

<

>

>

>

>

:

�nd u

k+1

2

2 V

2

:

a

]

2

(u

k+1

2

; v

2

) + ((u

k+1

2j�

; v

2j�

))

�

=

Z




2

fv

2

+

Z




1

fR

1

v

2j�

�a

]

1

(u

k+1

1

;R

1

v

2j�

) + ((u

k+1

1j�

; v

2j�

))

�

8 v

2

2 V

2

;

for a constant  � 0.
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For proving the convergence of this scheme, we need some preliminary results.

First of all, for i = 1; 2 and for each � 2 �, introduce the solution E

i

� 2 V

i

of the

Dirichlet boundary value problem

(3:12)

8

>

>

>

>

<

>

>

>

>

:

L

"

(E

i

�) = 0 in 


i

(E

i

�)

j@
\@


i

= 0

(E

i

�)

j�

= � :

By well-known a-priori estimates for elliptic problems, the extension operator E

i

:

� ! V

i

is continuous, i.e., there exists k

i

> 0 such that

(3:13) jjE

i

�jj

1;


i

� k

i

jj�jj

�

8 � 2 � :

Moreover, the trace inequality yields

(3:14)

~

k

i

jj�jj

�

� jjE

i

�jj

1;


i

8 � 2 �

for a suitable constant

~

k

i

> 0.

For each �; � 2 � de�ne now the Steklov-Poincar�e operators S

i

: � ! �

0

as

(3:15)

hS

1

�; �i = a

]

1

(E

1

�;E

1

�) � ((�; �))

�

hS

2

�; �i = a

]

2

(E

2

�;E

2

�) + ((�; �))

�

;

and set

S = S

1

+ S

2

:

The operator S

1

turns out to be continuous as

(3:16) hS

1

�; �i � (�

]

1

k

2

1

+ )jj�jj

�

jj�jj

�

;

and moreover, for each  � 0, S

2

is continuous and coercive, as

(3:17) hS

2

�; �i � (�

]

2

k

2

2

+ )jj�jj

�

jj�jj

�

and

(3:18) hS

2

�; �i � (�

]

2

~

k

2

2

+ )jj�jj

2

�

:

It is easily seen that the iteration operator in (3.7), (3.11), (3.9) is given by

(3:19) T

�

:= I � �S

�1

2

S

(see for instance [1], Section 5, for the same result in a di�erent context). The proof

of convergence is therefore reduced to showing that the operator T

�

is a contraction

in �, with respect to a suitable norm.
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We need the following abstract convergence theorem:

Theorem 3.1. Let X be a (real) Hilbert space and X

0

its dual space, and

denote by h�; �i the duality pairing between X

0

and X. Let the linear continuous

operator S : X ! X

0

be split as S = S

1

+ S

2

. Suppose that

1. S

1

is linear and continuous, i.e., there exists �

1

> 0 such that

hS

1

�; �i � �

1

jj�jj

X

jj�jj

X

8 �; � 2 X ;

2. S

2

is linear, continuous and coercive, i.e.

2.a there exists �

2

> 0 such that

hS

2

�; �i � �

2

jj�jj

X

jj�jj

X

8 �; � 2 X ;

2.b there exists �

2

> 0 such that

hS

2

�; �i � �

2

jj�jj

2

X

8 � 2 X ;

3. there exists a constant �

�

> 0 such that

hS

2

�; S

�1

2

S�i+ hS�; �i � �

�

jj�jj

2

X

8 � 2 X :

Then for any given �

0

in X the sequence

�

k+1

= �

k

� �S

�1

2

S�

k

converges to 0, provided that

0 < � <

�

�

�

2

2

�

2

(�

1

+ �

2

)

2

:

Proof. We introduce the scalar product

(�; �)

S

2

:=

1

2

(hS

2

�; �i+ hS

2

�; �i) ;

with the corresponding norm jj�jj

S

2

:= hS

2

�; �i

1=2

, which is equivalent to the norm

jj�jj

X

, i.e.,

�

2

jj�jj

2

X

� jj�jj

2

S

2

� �

2

jj�jj

2

X

:

We prove that the map T

�

: X ! X de�ned as

T

�

� := � � �S

�1

2

S�

is a contraction with respect to the norm jj � jj

S

2

. Assuming that 0 � �, we have

jjT

�

�jj

2

S

2

= jj�jj

2

S

2

+ �

2

hS�; S

�1

2

S�i � �(hS

2

�; S

�1

2

S�i+ hS�; �i)

� jj�jj

2

S

2

+ �

2

(�

1

+ �

2

)

2

�

2

jj�jj

2

X

� ��

�

jj�jj

2

X

;

10



and we obtain

jjT

�

�jj

2

S

2

� K

�

�

jj�jj

2

S

2

;

where

K

�

�

= 1 + �

2

(�

1

+ �

2

)

2

�

2

2

� �

�

�

�

2

The thesis follows by imposing the condition K

�

�

< 1.

We are in a position to prove

Theorem 3.2. There exists 

�

� 0 such that for each  � 

�

and for each

�

0

2 � the iterative scheme (3:7), (3:11), (3:9) is convergent in �, provided that the

relaxation parameter � is chosen in a suitable interval (0; �



).

Proof. From (3.16),(3.17) and (3.18) assumptions 1 and 2 of Theorem 3.1 are

satis�ed with

�

i

= �

]

i

k

2

i

+  ; �

2

= �

]

2

~

k

2

2

+  ;

i = 1; 2. We are going to prove that there exists 

�

� 0 such that for each  � 

�

assumption 3 of Theorem 3.1 is satis�ed. We have

hS

2

�; S

�1

2

S�i+ hS�; �i = 2hS�; �i+ hS

2

�; S

�1

2

S�i � hS�; �i

� 2hS�; �i � jhS

2

�; S

�1

2

S�i � hS�; �ij :

Setting � = S

�1

2

S�, one obtains

jhS

2

�; S

�1

2

S�i � hS�; �ij = ja

]

2

(E

2

�;E

2

�) � a

]

2

(E

2

�;E

2

�)j

= j

Z




2

b � (E

2

�rE

2

� �E

2

�rE

2

�)j

� 2jjbjj

L

1

(


2

)

jjE

2

�jj

1;


2

jjE

2

�jj

1;


2

� 2jjbjj

L

1

(


2

)

k

2

2

jj�jj

�

jjS

�1

2

S�jj

�

:

From the de�nition of S and (3.5),(3.6), (3.13) and (3.14) we �nd

hS�; �i � (�

]

1

k

2

1

+ �

]

2

k

2

2

) jj�jj

2

�

jj�jj

2

�

;

hS�; �i � (�

]

1

~

k

2

1

+ �

]

2

~

k

2

2

) jj�jj

2

�

:

Therefore, setting � := �

]

1

k

2

1

+ �

]

2

k

2

2

and � := �

]

1

~

k

2

1

+ �

]

2

~

k

2

2

, we have

hS

2

�; S

�1

2

S�i+ hS�; �i � 2�jj�jj

2

�

� 2jjbjj

L

1

(


2

)

k

2

2

�

�

2

jj�jj

2

�

= 2

�

�� jjbjj

L

1

(


2

)

k

2

2

�

�

2

�

jj�jj

2

�

:

The assumption 3 is satis�ed provided that

�

�

:= 2

�

�� jjbjj

L

1

(


2

)

k

2

2

�

�

2

�

> 0 ;
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i.e.,

�

2

> jjbjj

L

1

(


2

)

k

2

2

�

�

:

Recalling the de�nition of �

2

it is su�cient to take

 � 

�

:=

8

>

>

<

>

>

:

0 for �

]

2

~

k

2

2

> jjbjj

L

1

(


2

)

k

2

2

�

�

> jjbjj

L

1

(


2

)

k

2

2

�

�

� �

]

2

~

k

2

2

for �

]

2

~

k

2

2

� jjbjj

L

1

(


2

)

k

2

2

�

�

;

and �nally apply Theorem 3.1.

It is worthwhile to notice that the rate of convergence of the iterative scheme

(3.7), (3.11), (3.9) only depends on the parameters �

]

i

, �

]

i

in (3.5) and (3.6), k

i

,

~

k

i

in (3.13) and (3.14), i = 1; 2. When considering a �nite dimensional approxima-

tion, all these constants, except k

i

, are independent of the total number of degrees

of freedom. Therefore, the iterative scheme furnishes an optimal preconditioner,

provided that we can �nd an uniform bound for k

i

. In other words, it is necessary

to prove the uniform extension result

(3:20) jjE

i;h

�

h

jj

1;


i

� k

i

jj�

h

jj

�

8 �

h

2 �

h

;

where �

h

is the discrete approximation of the trace space �, and, for each � 2 �,

E

i;h

� is the �nite dimensional counterpart of E

i

� introduced in (3.12).

This result is well-known, e.g., for piecewise-polynomial �nite elements de�ned

on a regular family of triangulations T

h

of 
, which induces a quasi-uniform family

of triangulations on � (see, for instance, [5], [4], [15]).

Remark 3.3. In the �nite dimensional case, the convergence of the itera-

tive scheme (3.7)-(3.9) can be proven by a similar argument. In fact, for discrete

functions all the norms are equivalent, hence there exists a constant �

h

> 0 such

that

(3:21) �

h

jj�

h

jj

2

�

� jj�

h

jj

2

0;�

8 �

h

2 �

h

:

By using this estimate, we only have to substitute the constant �

2

:= �

]

2

~

k

2

2

+  in

(3.18) with

�

2;h

:= �

]

2

~

k

2

2

+ �

h

;

and convergence is achieved for inf




 � 

�

h

:= 

�

=�

h

.

Therefore, in this case we are not in a condition to prove that the iterative

procedure introduces an optimal preconditioner. However, the numerical results

shows that the rate of convergence is in fact independent of h (see Section 6).

Remark 3.4. Though the convergence result in Theorem 3.2 holds only for 

su�ciently large, numerical evidence shows that the -DR iterative scheme indeed

12



converges for any  � 0, in particular for  = 0. In Section 6 we are really going to

apply only the 0-DR method, to all the numerical test cases.

4. The -RR iterative scheme

In this Section we present and analyze another iteration-by-subdomain proce-

dure, which will be called -Robin/Robin (-RR). It reads as follows: given �

0

in

L

2

(�), for each k � 0 solve

(4:1)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

L

"

u

k+1

1

= f in 


1

u

k+1

1

= 0 on @


1

\ @


"

@u

k+1

1

@n

�

�

1

2

b � n� 

�

u

k+1

1

= �

k

on �

and

(4:2)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

L

"

u

k+1

2

= f in 


2

u

k+1

2

= 0 on @


2

\ @


"

@u

k+1

2

@n

�

�

1

2

b � n+ 

�

u

k+1

2

= "

@u

k+1

1

@n

�

�

1

2

b � n + 

�

u

k+1

1

on � ,

where

(4:3) �

k+1

:= "

@u

k+1

2

@n

�

�

1

2

b � n� 

�

u

k+1

2

on � ;

 = (x) being a given function in L

1

(�) satisfying (x) � ̂ > 0 for almost each

x 2 � . With respect to the method introduced in Section 2, we are setting here

A = � and B = .

Noticing that

(4:4)

�

k+1

= "

@u

k+1

1

@n

�

�

1

2

b � n + 

�

u

k+1

1

+ 2u

k+1

2

= �

k

+ 2(u

k+1

2

� u

k+1

1

) ;

we can rewrite the scheme above in the variational form

(4:5)

�nd u

k+1

1

2 V

1

: a

]

1

(u

k+1

1

; v

1

) +

Z

�

u

k+1

1j�

v

1j�

=

Z




1

fv

1

+

Z

�

�

k

v

1j�

8 v

1

2 V

1

;

13



then

(4:6)

�nd u

k+1

2

2 V

2

: a

]

2

(u

k+1

2

; v

2

) +

Z

�

u

k+1

2j�

v

2j�

=

Z




2

fv

2

+

Z




1

fR

1

v

2j�

� a

]

1

(u

k+1

1

;R

1

v

2j�

)

+

Z

�

u

k+1

1j�

v

2j�

8 v

2

2 V

2

;

and �nally

(4:7) �

k+1

= �

k

+ 2(u

k+1

2j�

� u

k+1

1j�

) on � ;

where notation is as in Section 3. Due to the assumption  2 L

1

(�), we have that

�

k+1

2 L

2

(�).

Let us underline that, also in the present case, the bilinear forms which are

used in the iterative scheme, i.e.,

a

]

i

(w

i

; v

i

) +

Z

�

w

i

v

i

; i = 1; 2 ;

are coercive in V

i

, for each  � 0.

We obtain the following convergence theorem which is inspired by the results

of [14], [16]:

Theorem 4.1. Assume either that 
 is a Lipschitz polygonal domain or that

@
 2 C

2

. Suppose moreover that b

j�

2 (L

1

(�))

d

. For each �

0

2 L

2

(�) and for

each i = 1; 2, the sequences u

k

i

converge in H

1

(


i

) to the restriction u

j


i

of the

solution u of (1:4).

Proof. Set e

k

i

:= u

k

i

�u

j


i

for each k � 0. The exact solution u clearly satis�es

a

]

1

(u

j


1

; v

1

) +

Z

�

u

j�

v

1j�

=

Z




1

fv

1

+

Z




2

fR

2

v

1j�

� a

]

2

(u

j


2

;R

2

v

1j�

) +

Z

�

u

j�

v

1j�

8 v

1

2 V

1

;

and

a

]

2

(u

j


2

; v

2

) +

Z

�

u

j�

v

2j�

=

Z




2

fv

2

+

Z




1

fR

1

v

2j�

� a

]

1

(u

j


1

;R

1

v

2j�

) +

Z

�

u

j�

v

2j�

8 v

2

2 V

2

:

From well-known regularity results for elliptic equations (see, e.g., [13], [10]), the

solution u belongs to H

3=2+�

(
) for a suitable � > 0, and consequently

@u

@n

2 L

2

(�).

Therefore we can also write

Z




2

fR

2

v

1j�

� a

]

2

(u

j


2

;R

2

v

1j�

) +

Z

�

u

j�

v

1j�

=

Z

�

�

"

@u

@n

�

1

2

b � nu+  u

�

j�

v

1j�

:
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Setting now

!

k

:= �

k

�

�

"

@u

@n

�

1

2

b � nu+ u

�

j�

;

the error equations can be written as

(4:8) a

]

1

(e

k+1

1

; v

1

) +

Z

�

e

k+1

1j�

v

1j�

=

Z

�

!

k

v

1j�

8 v

1

2 V

1

;

and

(4:9)

a

]

2

(e

k+1

2

; v

2

) +

Z

�

e

k+1

2j�

v

2j�

= �a

]

1

(e

k+1

1

;R

1

v

2j�

) +

Z

�

e

k+1

1j�

v

2j�

8 v

2

2 V

2

;

where

(4:10) !

k+1

= !

k

+ 2(e

k+1

2j�

� e

k+1

1j�

) :

Taking v

1

= e

k+1

1

in (4.8) and v

2

= e

k+1

2

in (4.9), we have

(4:11) a

]

1

(e

k+1

1

; e

k+1

1

) =

Z

�

(!

k

� e

k+1

1j�

)e

k+1

1j�

and

(4:12) a

]

2

(e

k+1

2

; e

k+1

2

) = �a

]

1

(e

k+1

1

;R

1

e

k+1

2j�

) +

Z

�

(e

k+1

1j�

� e

k+1

2j�

)e

k+1

2j�

:

Choosing v

1

= R

1

e

k+1

2j�

in (4.8), we also obtain

(4:13) a

]

1

(e

k+1

1

;R

1

e

k+1

2j�

) =

Z

�

(!

k

� e

k+1

1j�

)e

k+1

2j�

;

and inserting this result in (4.12) we have

(4:14) a

]

2

(e

k+1

2

; e

k+1

2

) =

Z

�

(2e

k+1

1j�

� e

k+1

2j�

� !

k

)e

k+1

2j�

:

Adding (4.11) and (4.14) we �nd

a

]

1

(e

k+1

1

; e

k+1

1

) + a

]

2

(e

k+1

2

; e

k+1

2

)

=

Z

�

1



[!

k

(e

k+1

1j�

� e

k+1

2j�

) � 

2

(e

k+1

1j�

� e

k+1

2j�

)

2

]

=

Z

�

�

1

4

[2(e

k+1

1j�

� e

k+1

2j�

)� !

k

]

2

+

Z

�

1

4

(!

k

)

2

:
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Recalling (4.10), we �nally obtain

(4:15) a

]

1

(e

k+1

1

; e

k+1

1

) + a

]

2

(e

k+1

2

; e

k+1

2

) +

Z

�

1

4

(!

k+1

)

2

=

Z

�

1

4

(!

k

)

2

:

Adding now over k from 0 to M � 1, it follows

(4:16)

M

X

k=1

[a

]

1

(e

k

1

; e

k

1

) + a

]

2

(e

k

2

; e

k

2

)] +

Z

�

1

4

(!

M

)

2

=

Z

�

1

4

(!

0

)

2

;

hence the series

1

X

k=1

[a

]

1

(e

k

1

; e

k

1

) + a

]

2

(e

k

2

; e

k

2

)]

is convergent, and, as a consequence of the coerciveness of a

]

i

(�; �) in V

i

, e

k

i

converge

to 0 in H

1

(


i

), i = 1; 2.

Remark 4.2. The same result holds true when considering the corresponding

discrete scheme, which can be obtained from (4.5)-(4.7) by substituting V

i

, � and

R

i

with suitable �nite dimensional approximations V

i;h

, �

h

and R

i;h

, respectively.

In fact, for each �

h

2 �

h

we can write

Z




2

fR

2;h

�

h

� a

]

2

(u

hj


2

;R

2;h

�

h

) +

Z

�

u

hj�

�

h

=

Z

�

g

h

�

h

for a suitable g

h

2 �

h

. Hence, only assuming that 
 is a Lipschitz polygonal

domain, for each initial guess �

0

h

2 �

h

one obtains convergence as in Theorem 4.1.

Though we have no information on the rate of convergence, which, in principle,

can depend on h, the numerical results in Section 6 show that this is not the case,

and the number of subdomain iterations is independent of the mesh size, for suitable

choices of the parameter  = 

h

.

Remark 4.3. It is worthwhile to notice that the -RR method generalizes

several other ones proposed recently. For instance, we have

 =

8

>

>

>

>

<

>

>

>

>

:

1

2

jb � nj unrelaxed ARN method in [11]

1

2

p

jb � nj

2

+ 4a

0

" [16]

1

2

p

jb � nj

2

+ 4�" ; � > 0 [2] .

This is not the case for the AR

�

N method in [11].
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Remark 4.4. A possible strategy for choosing the parameter  is the following

one: minimize with respect to  the upper bound

Z

�

1

4

(!

0

)

2

in (4.16). Since

!

0

= �

0

�

�

"

@u

@n

�

1

2

b � nu

�

j�

� u

j�

;

the minimum is attained for

 =

r

F

G

;

where

F :=

1

4

Z

�

�

�

0

� "

@u

@n

+

1

2

b � nu

�

2

; G :=

1

4

Z

�

u

2

:

Since the value of the exact solution u is not available, we propose to use along the

iterations

(4:17) 

k

:=

r

F

k

G

k

; k � 1 ;

where

F

k

:=

1

4

Z

�

�

�

0

� "

@u

k

2

@n

+

1

2

b � nu

k

2

�

2

; G

k

:=

1

4

Z

�

(u

k

2

)

2

:

Again, in this situation we have not a convergence proof, but some numerical results

show that this strategy works well enough (see Section 6).

5. The -DR and -RR iterative schemes for systems

The iterative schemes introduced in Sections 3 and 4 can be used also when

considering advection-di�usion systems, like

(5:1)

8

>

>

<

>

>

:

�"�u+

d

X

j=1

D

j

(B

(j)

u) + A

0

u = f in 


u

j@


= 0 ;

where B

(j)

, j = 1; :::; d, A

0

are q � q symmetric matrices. We assume that the

coe�cients of B

(j)

and A

0

belong to L

1

(
), and that the coe�cients of

P

j

D

j

B

(j)

belong to L

1

(
). Moreover, we require that the matrix

(5:2) M(x) :=

1

2

d

X

j=1

D

j

B

(j)

(x) + A

0

(x)
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is positive semi-de�nite for almost each x 2 
, which corresponds to the coerciveness

assumption (1.2).

We can introduce the associated bilinear form

(5:3)

a

]

(w;v) :=

Z




h

"rw � rv + (M w) � v

i

+

1

2

Z




d

X

j=1

[(B

(j)

v) �D

j

w � (B

(j)

D

j

v) �w] ;

which can be used to rewrite the Dirichlet boundary value problem (5.1) in the

variational form

(5:4) u 2 (H

1

0

(
))

d

: a

]

(u;v) =

Z




f � v 8 v 2 (H

1

0

(
))

d

:

Let  = (x) be a q � q matrix with coe�cients in  L

1

(�) and positive semi-

de�nite for almost each x 2 �. The -DR scheme for this problem reads:

(5:5)

8

>

>

>

>

<

>

>

>

>

:

�nd u

k+1

1

2 (V

1

)

q

:

a

]

1

(u

k+1

1

;v

1

) =

Z




1

f � v

1

8 v

1

2 (H

1

0

(


1

))

q

u

k+1

1j�

= ��

�

k

(5:6)

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

�nd u

k+1

2

2 (V

2

)

q

:

a

]

2

(u

k+1

2

;v

2

) =

Z




2

f � v

2

8 v

2

2 (H

1

0

(


2

))

q

a

]

2

(u

k+1

2

;RR

R

2

��

�

) +

Z

�

(u

k+1

2j�

) � ��

�

=

Z




2

f � RR

R

2

��

�

+

Z




1

f � RR

R

1

��

�

�a

]

1

(u

k+1

1

;RR

R

1

��

�

) +

Z

�

(u

k+1

1j�

) ���

�

8 ��

�

2 (�)

q

and �nally

(5:7) ��

�

k+1

:= �u

k+1

2j�

+ (1� �)��

�

k

on � ;

with obvious meaning of notation.

On the other hand, choosing a q�q matrix  = (x) which is uniformly positive

de�nite in �, the -RR scheme reads:

(5:8)

�nd u

k+1

1

2 (V

1

)

q

: a

]

1

(u

k+1

1

;v

1

) +

Z

�

(u

k+1

1j�

) � v

1j�

=

Z




1

f � v

1

+

Z

�

��

�

k

� v

1j�

8 v

1

2 (V

1

)

q

;
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then

(5:9)

�nd u

k+1

2

2 (V

2

)

q

: a

]

2

(u

k+1

2

;v

2

) +

Z

�

(u

k+1

2j�

) � v

2j�

=

Z




2

f � v

2

+

Z




1

f � RR

R

1

v

2j�

� a

]

1

(u

k+1

1

;RR

R

1

v

2j�

)

+

Z

�

(u

k+1

1j�

) � v

2j�

8 v

2

2 (V

2

)

q

;

and �nally

(5:10) ��

�

k+1

= ��

�

k

+ 2(u

k+1

2j�

� u

k+1

1j�

) on � :

The convergence of both these iterative schemes can be shown as in Sections

3 and 4. More precisely, the -DR scheme is proven to converge provided that the

matrix  satis�es

((x)��

�

) � ��

�

� 

�

��

�

� ��

�

8 ��

�

2 R

q

; for almost each x 2 � ;

for a suitable 

�

� 0.

The -RR method converges provided that the matrix  is diagonal and each

entry 

ss

, s = 1; :::; q, satis�es



ss

(x) � ̂ > 0 for almost each x 2 � :

6. Numerical results

In this Section we present some numerical results, for di�erent suitable test

problems, obtained applying the -DR and -RR methods introduced before. In-

deed, we are going to use the 0-DR method (namely -DR with  = 0), which

turns out to converge even if the theoretical results in general would require  large

enough, thus avoiding to propose a strategy for the choice of the parameter .

We implemented the schemes of Sections 3 and 4 on a cluster of an IBM

RS/6000 workstations connected by Ethernet. The algorithms for the domain de-

composition methods are parallelized using a Master/Slave paradigm in the PVM

con�guration.

When the advection is dominant, it is well-known that the pure Galerkin

method for piecewise-polynomial �nite elements is instable. Therefore we have em-

ployed the GALS stabilization method, which consists in substituting the bilinear

form a

]

(�; �) by

a

]

h

(w

h

; v

h

) := a

]

(w

h

; v

h

) +

X

K2T

h

�

K

(L

"

w

h

; L

"

v

h

)

K

;

where T

h

is the family of triangulations de�ned in 
, (�; �)

K

denotes the L

2

(K)-

scalar product, and �

K

is a positive parameter which has to be chosen in a suitable

way (see [12]). The right hand side (f; v

h

)




has to be changed correspondingly as

F

h

(v

h

) := (f; v

h

)




+

X

K2T

h

�

K

(f; L

"

v

h

)

K

:
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The iterative method used to solve the algebraic problems is CGSTAB with

ILU preconditioner. The iterations of the CGSTAB method have been stopped

when the relative error between two subsequent iterates is less than 10

�11

, and

the iterations over the subdomains when the relative L

1

(�)-norm of the di�erence

between two subsequent iterates is less then 10

�10

, i.e., when

(6:1)

ku

k+1

i

� u

k

i

k

L

1

(�)

ku

k

i

k

L

1

(�)

� 10

�10

; i = 1; 2 :

6.1 First test case

We consider a test solution belonging to the space of the trial functions, which

in our case are the piecewise-linear polynomials. We make such a simple choice to

show the main features of the DD algorithms, as a test solution u 2 V

h

avoids any

approximation error and shows in an explicit way the algorithm behaviour with

respect to the parameters.

We consider the problem �"�u + b � ru = f , with b = (1; 1), u(x; y) =

x+5y and f and the boundary conditions computed accordingly. The computational

domain is 
 = (0; 1) � (0; 1), which has been split in two rectangular subdomains




1

and 


2

.

We have applied to this problem the ADN schemes, the 0-DR scheme and the

-RR scheme (with the value of  obtained using formula (4.17), which in this case

turns out to be nearly optimal).

We have used a mesh having 21� 21 points in each subdomain. When imple-

menting the ADN method, for each " we have chosen the optimal value of � reported

in [17]. In general this value is rather sensitive to ", and, for the example at hand,

ranges between 0:5 and 0:8. Instead, for the 0-DR method we have observed that

the optimal � is equal to 0:5 for any choice of ", provided that the ratio between

the values of the mesh size in the two subdomains is equal to one, otherwise the

optimal value of � is not far from 0:5, as shown in Table 6.1. We also notice that

it is not straightforward to �nd the optimal parameter � for the -DR algorithm,

 6= 0, and for a generic choice of � we have veri�ed that its convergence is often

rather slow.

position of � optimal � number of iterations

x

�

= 0:25 0:54 12

x

�

= 0:50 0:5 6

x

�

= 0:75 0:44 14

Table 6.1. Optimal values of � for the 0-DR method.

In the one-dimensional case considered in Section 2 the -DR scheme corre-

sponds to the choice A = �1 and B = . It is worthwhile to notice that, in the

limit "! 0

+

, in that case the best choice of the parameter � is the one for which

1� �[1 � �

0

(�1; )] = 0
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(see (2.7), (2.9)), namely

�

opt

=

1

2

+



jbj

:

This strengthens the conviction that the choice � = 0:5 for the multi-dimensional

0-DR scheme is likely close to the optimal one.

To make a comparison between the ADN, 0-DR and -RR methods, we show

in Fig. 6.2 the number of iterations needed to achieve convergence, in the case the

two subdomains of the same size, each one having 21 � 21 uniformly spaced grid

points.
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Figure 6.2. Number of iterations for the ADN, 0-DR and -RR methods.

It is worthwhile to notice that the 0-DR scheme performs better than the ADN

one. In fact, the number of iterations needed is lower, without needing to modify

the value of � with respect to ".

In Tables 6.3 and 6.4 it is shown that the rate of convergence of the 0-DR

and -RR methods is essentially independent of the number of degrees of freedom.

Moreover, the number of iterations of the 0-DR scheme depends very mildly on the

value of ". In this examples, we are splitting the domain 
 in two parts of the same

size, having various meshes, with the same number of nodes in the direction x in




1

and 


2

, and always 21 nodes in the direction y.

nodes n " 10 1 10

�1

10

�2

10

�3

10

�4

10

�5

10

�6

10

�7

(21� 21) + (21 � 21) 4 5 6 9 7 6 6 6 6

(31� 21) + (31 � 21) 4 4 6 9 7 6 6 6 6

(41� 21) + (41 � 21) 4 4 5 7 7 7 6 6 6

(51� 21) + (51 � 21) 4 4 5 7 8 7 6 6 7

Table 6.3. Number of iterations of the 0-DR method.
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nodes n " 10

�3

10

�4

10

�5

10

�6

10

�7

(21� 21) + (21� 21) 20 16 12 9 6

(31� 21) + (31� 21) 20 16 12 9 6

(41� 21) + (41� 21) 20 16 12 9 6

(51� 21) + (51� 21) 20 16 12 9 6

Table 6.4. Number of iterations of the -RR method.

We �nally notice that, for the problem at hand, the unrelaxed ARN method

has the same behaviour of the -RR method (with the value of  given by (4.17),

which in this case is  ' 0:5). The same happens for the choice of  proposed in

[16], and also for the one in [2] (when �" is small enough).

6.2. The thermal boundary layer problem

This problem reads:

�"�u+ 2yu

x

= 0 on 
 = (0; 1)� (0; 0:5)

with boundary conditions described in Fig. 6.5.

boundary layers

b

u=1

u=0

u=2yu=1

(0,0)

(1,0.5)

Figure 6.5. Boundary conditions for the thermal boundary layer problem.

The solution presents two zones of large gradient near the boundaries

fy = 0 and 0 � x � 1g ; fx = 1 and 0 � y � 0:5g :

In Fig. 6.6 the convergence histories of the ADN, ARN, 0-DR and -RR

methods are plotted for " = 10

�4

. We have divided 
 in two subdomains:




1

:= (0; 0:7) � (0; 0:5) with 21� 41 uniformly spaced grid points




2

:= (0:7; 1) � (0; 0:5) with 41� 41 uniformly spaced grid points.

The value of the relaxation parameter is � = 0:91 for the ADN scheme, � = 0:42

for the 0-DR scheme (due to the di�erent mesh parameters in 


1

and 


2

), and

� = 1 for the ARN scheme (unrelaxed ARN scheme). For the -RR scheme the

value of , which is obtained using formula (4.17), is approximately 0:13 for all the

computations.

22



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
number of iterations

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
ax

im
um

 n
or

m

ADN 
0-DR
ARN
γ-RR

Figure 6.6. Convergence histories for " = 10

�4

.

Also in this example, the choice of the optimal relaxation parameter � for the

0-DR scheme is rather easy, as it is exactly 0:5 when h




1

= h




2

, and close enough to

that value in several other cases, as shown in Table 6.7. In this Table, the number

of nodes in 


1

and 


2

is always 21� 21.

position of � optimal � number of iterations

x

�

= 0:25 0:52 10

x

�

= 0:50 0:5 7

x

�

= 0:75 0:48 10

Table 6.7. Optimal values of � for the 0-DR method.

Again, the rate of convergence turns out to be essentially independent of the

number of degrees of freedom and of ", for both the 0-DR and the -RR methods

(see Tables 6.8 and 6.9). The choice of the parameter  = 

h

for the -RR method

is now di�erent from the one indicated in (4.17), and has been determined running

the program a few times, looking for the \best" rate of convergence. In these

last computations, we have divided the domain 
 in 


1

:= (0; 0:75) � (0; 0:5) and




2

:= (0:75; 1)� (0; 0:5).

nodes n " 10 1 10

�1

10

�2

10

�3

10

�4

10

�5

10

�6

10

�7

(31� 21) + (11� 21) 10 10 8 10 8 7 6 6 6

(46� 21) + (16� 21) 10 10 8 10 8 7 6 6 6

(61� 21) + (21� 21) 10 10 8 10 8 7 7 8 9

(76� 21) + (26� 21) 10 10 8 10 8 8 11 7 6

Table 6.8. Number of iterations of the 0-DR method.
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nodes n " 10

�3

10

�4

10

�5

10

�6

10

�7

(31� 21) + (11� 21) 30 26 25 26 25

(46� 21) + (16� 21) 32 25 25 26 25

(61� 21) + (21� 21) 32 27 26 26 26

(76� 21) + (26� 21) 31 27 26 27 26

Table 6.9. Number of iterations of the -RR method.

We notice that, for this thermal boundary layer problem, the choice of the

parameter  =

1

2

p

jb � nj

2

+ 4�" proposed in [2] for the -RR method is more

e�cient, at least for small ". In fact, choosing " = 10

�6

, � ranging between 10

�2

and 10

2

, and the number of nodes as in Table 6.9, the number of iterations needed

to achieve convergence is always equal to 8.

6.3. An example with �

0

6= ;

Now we consider another test case, in which the advective �eld b is tangential

on a part of the interface �.

In this case, the ARN scheme cannot work, as one cannot recover the continuity

of the solution on �

0

:= fx 2 � jb(x) �n(x) = 0g. Instead, the choice of  proposed

in [2] is admissible.

The problem we are going to consider is

�"�u+ bu

x

= 0 in 
 = (0; 1)

2

;

with

b =

�

�1 0 � y � 0:5

0 0:5 < y � 1

and boundary conditions u = 1 on the sides with vertex in (0; 0) and u = 1 on the

sides with vertex in (1; 1).

In Figure 6.10 we show the number of iterations needed by the 0-DR and the

ADN methods to achieve convergence, for di�erent values of ". We have split 
 into

two parts of the same size, using a mesh with 21� 21 points in each subdomain.
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Figure 6.10. Number of iterations for ADN and 0-DR methods.

In this case the performance of the -RR scheme are not satisfactory, even

when " is very small. In fact, as it can be noticed in Fig. 6.11, using the value of 

given formula (4.17) the number of iterations is very large. The situation improves

for the value  =

1

2

p

jb � nj

2

+ 4�" proposed by [2], for � ranging between 10

�2

and

10

2

, but is still worse of both the 0-DR and the ADN schemes. In fact, for the case

described in Fig. 6.10 and " = 10

�6

, convergence is reached after 83 iterations for

� = 10

�2

, while 0-DR and ADN need 7 and 23 iterations, respectively. The choice

of larger values of � gives worse results.
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Figure 6.11. Convergence history of the -RR method for " = 10

�5

.

Also in this case, the number of iterations needed by the 0-DR scheme turns

out to be independent of the number of nodes and ", as is shown in Table 6.12. For

these computations, we have chosen 


1

= (0; 0:25)�(0; 1) and 


2

= (0:25; 1)�(0; 1).
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nodes n " 10 1 10

�1

10

�2

10

�3

10

�4

10

�5

10

�6

10

�7

(11� 21) + (31� 21) 19 19 12 15 14 15 10 11 10

(16� 21) + (46� 21) 19 19 12 15 14 15 10 10 10

(21� 21) + (61� 21) 19 19 12 16 14 15 10 10 10

(26� 21) + (76� 21) 19 19 12 16 14 15 10 10 9

Table 6.12. Number of iterations of the 0-DR method.

We have also applied the 0-DR and the ADN methods to other test cases, in

which the advective �eld b changes direction on �. The performances of the 0-DR

have been comparable to the ones of this third test case. On the contrary, in this

situation the ADN scheme imposes a mixed Dirichlet-Neumann boundary condition

on both sides of �, and sometimes this seems to slow down the rate of convergence,

as the singularity appearing in the point where the boundary condition changes

type can be propagated inside the subdomains 


1

and 


2

.

7. Conclusions

We have proposed two families of domain decomposition methods for advection-

di�usion equations and systems, called -DR and -RR.

Under suitable assumptions, we have proven their convergence, for both the

in�nite dimensional and �nite dimensional cases. In particular, in the latter case

the -DR scheme is shown to converge at a rate which is independent of the number

of degrees of freedom, hence the domain decomposition procedure implicitly de�nes

an optimal preconditioner.

We have employed these methods for computing the solution of some test prob-

lems, with good performances. The 0-DR method (namely, -DR for  = 0) turns

out to be particularly well-suited, as:

� it is e�cient, as the relative error between two subsequent iterates becomes

less than 10

�10

in a few iteration-by-subdomain sweeps;

� it is robust, namely it can be used for large or small di�usion, with coarse or

�ne meshes, and in each case the rate of convergence is essentially the same.

Moreover, also the relaxation parameter � is rather insensitive to these coe�-

cients, and the choice � = 0:5 is the optimal one provided that a uniform mesh

has been used in 
. For meshes with a di�erent mesh-parameter in 


1

and 


2

,

in our computations the optimal parameter always ranges between 0:4 and 0:6,

and in any case the choice � = 0:5 yields a number of iterations not far from

the best one;

� it is simple to implement, as it doesn't require to take into account the direction

of the advective �eld on the interface � for deciding the boundary condition to

impose in that point (this can be rather cumbersome for non-uniform meshes).

The Dirichlet boundary condition can always be used on one side of �, the

Robin condition on the other side;

� it is general, namely the same algorithm can be employed also for systems of

advection-di�usion equations.
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Added in proof. While completing this paper, we have been aware that

the -RR method, for any positive function , has been already proposed in [3].

There the authors have also proven the convergence of the subdomain iterates u

k

i

in H

1

(


i

), but only in the in�nite dimensional case.
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