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Finite element approximations of eddy current problems that are entirely based on the
magnetic fieldH are haunted by the need to enforce the algebraic constraiitl = 0in
non-conducting regions. As an alternative to techniques employing combinatorial Seifert
(cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed
multi-field formulations, which enforce the constraint in the variational formulation. In
light of the fact that the computation of cutting surfaces is expensive, the mixed finite
element approximation is a viable option despite the increased number of unknowns.
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1. Introduction

The governing equations of electromagnetic fields and currénts/, B, D, J are
Maxwell's equations completed by constitutive laws in order to model the field—matter
interaction. In what follows we shall restrict ourselves to the ‘Maxwell model of
memoryless linear materials with Ohm'’s law’ (see Bossavit, 1998):

J=Te+0E, D = €&,
0, B = upH.

—otD+curl’H
aB+curl &

(1.1)

Herep is the magnetic permeability,the dielectric tensor, ang stands for conductivity.

p and e are assumed to be symmetric and uniformly positive definite 3matrices,
whereaso is supposed to be symmetric and uniformly positive definite inside the
conducting regior2, but vanishes in the ‘air regior?' . All the material parameters are
functions of the spatial variabbe only. Under these circumstances, if the source current
Jeis of the form7a(t, X) = Re[Je(X) expliwt)], whereJe is a complex-valued vector field
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andw # 0 is afixed angular frequency, the fields H, B, D also have this harmonic
dependence on time. The Maxwell model with Ohm’s law then assumes the following
strong form:

—iwD+curlH = Je+ oFE, D = E€E,

iwB+curlE = 0, B = uH. (1.2)

The unknowns now are the complex amplituéie$i, B, D, independent of time.

In many situations it is possible to consider simpler quasi-static models that still offer a
sufficiently accurate description of electromagnetic phenomena. The most popular among
these simplified models is the so-called ‘eddy current model’, which consists in neglecting
the term—iwD in (1.2) (Dirks, 1996; Ammarét al,, 2000).

Then compliance with Amgre’s law entails

divle; =0 inf', /_Je,. .ndS=0, j=1,...,pr, (1.3)
I

whereI'l, j = 1,..., pr, are the connected components of the boundar2©f The
latter is denoted by” := 32C. Here and in the sequel we denotewpythe restriction of a
vector fieldvto 2L, L =1, C.
We introduce an artificial computational domaih ¢ R3, which is a box containing
the conductors and their immediate neighbourhood, big enough so that one can assume a
zero field beyond. As before we writeC for the conductor region an@®' := 2\ £C.
For the sake of simplicity, we assume that is connected.
On a2, homogeneous boundary conditions for eitheor E are imposed: throughout
we will demand

Hxn=0o0na{?,

modelling a container made by an infinitely permeable magnetic material (see Bossavit,
1998, p. 232; Silvester & Ferrari, 1990, p. 408). However, with simple modifications our
results also hold for the boundary condition

pH-n=0o0na{.

The boundary conditiofl x n = 0 on {2 implies another compatibility condition for
Je,1, namely

Je1-n=0 onafn. (1.4)

Obviously, we cannot expect a solution f&to be unique, because it can be altered by
any gradient supported if?! and will still satisfy the equations. However, imposing the
constraints

div(eE;) =0in ', €E; -n=00nd,

_ (1.5)
/_6E| ndS=0, j=1....pr -1
I

(that are implied by (1.2)) will restore uniqueness of the solutiorifor
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The complete eddy current model we consider in the sequel is then
curlH =Je+ oE, iwpH +curlE=0 in £,
div(eE|) =0 inf2', /m €E; -ndS=0, j=1...,pr—1, (1.6)
eE-n=0, Hxn=0 onaf.

The existence and uniqueness of a solution of problem (1.6) has been proved in Alonso
Rodifiguezet al. (2003b), assuming that the entries of the matrigeand o belong to
L>°(£2), those ofe belong toL>°(2"), and finally that the source curred¢ belongs to
(L2(£2))® and satisfies (1.3) and (1.4).

Dropping the displacement current converts Amgis law into the purely algebraic
constrainturl H = Je | in 2" This raises problems not encountered with the full Maxwell
equations. This paper will be devoted to how to deal with these problems in the context of
a variational formulation based on the magnetic field We will focus on approaches
that forgo the ‘direct option’ to incorporate the constraint into the trial space. Instead it is
enforced by means of augmented variational equations.

Adding extra equations may seem wasteful and, indeed, it is, because the resulting
formulations will, after a finite element Galerkin discretization, feature many additional
degrees of freedom. However, this is the price to pay for avoiding the cumbersome
‘topological preprocessing’, that is the construction of cuts (Gross & Kotiuga, 2001), that
is indispensable in the case of the ‘direct option’. Hence, these augmented formulations
can become relevant for practical computations. Here we are going to present a couple of
possibilities to take into account the seemingly simple constaintH = Jo in 2'.

Each variant will come with its own issues of stability and uniqueness.

A brief outline of the paper is as follows: in the next section we introduce notation
and function spaces needed for the remainder of the article. Then we review the well-
known H-based variational formulation of the eddy current problem. From these basic
equations we derive augmented mixed formulations in Section 4. In Section 5 their finite
element Galerkin discretization will be discussed. Finally, in Section 6 we give a priori
error estimates.

2. Basic concepts

As usual, we denote b S(£2) or H3(842), s € R, the Sobolev space of ordsiof real or
complex measurable functions definedf@mr 4 £2, respectively. IfY c 92 we denote by
H&E(Q) the subspace dfl 1(12) consisting of those functiong satisfyingy,x = 0. As
usualHg (£2) := H&BQ(Q).

The spaceH (curl; £2) (respectively,H (div; £2)) denotes the set of real or complex
vector valued functions € (L2(£2))2 such thaturlv € (L2(£2))3 (respectively, diw
L2(2). If ¥ c 812, by Ho, x (curl; £2) we denote the subspace Hf(curl; {2) of those
functionsv satisfying(vxn),5; = 0. WesetHg(curl; 2) := Hg 30 (curl; £2). HOcurl; 2)
denotes the subspace of curl-free functions Hbtcurl; 2) and ng(curl; 2) =

Ho, s (curl; £2) N HOcurl; £2). Analogously Ho, x (div; £2) stands for the subspace of
H (div; {2) containing functions satisfying(v-n),x; = 0. As above, we sdtlg(div; {2) :=
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Ho.o 2 (div; £2). Moreover,HO(div; 2) denotes the subspace of divergence-free functions
of H(div; £2) and ng(div; 2) := Hp xdiv; £2) N HO(div; ). Finally, HS(curl; 2)
denotes the space of vector functians (HS(£2))2 such thaturlv € (H3(12))3.

Topology enters our considerations through the spabahonic vector fields

H = HS, o (curl; 2') N HE p(div: 21). (2.1)
Moreover, for the sake of brevity, we introduce the space of admissible electric fields
W' = {N; € (L2(22"))3|N, satisfies (1.5) (2.2)
and the ‘space of unique vector potentials’
Y! = Hoyo(eurl; 2 N HY p(div; 2') N1 (2.3)

They owe their name to the following result, which will be useful in the sequel. It is
essentially contained in Alonso & Valli (1996) and Fernandes & Gilardi (1997).

THEOREM2.1 For eachv; € W' there is a unique; € Y' such thaturl q; = ev; and

a2y < Callevillzr) -

3. TheH-based variational formulation

Basically, two different variational formulations of (1.6) exist, either based on the electric
field E or the magnetic fieldH (Bossavit, 1985). They correspond to the primal and dual
formulation of a second order elliptic problem. However, the algebraic constraouir bH
manifests itself in a entirely different way in the two formulations. Therefore we restrict
ourselves to thél-based approach.

The generic form of thél-based variational formulation involves the Hilbert space of
complex-valuedector functions

VO .= {v e Hy(curl; 2)| curlv, =0in 2'},

endowed with the natural norm

2 . 2 2
M2 .:/ v +/ |aurl vl
(0] nc

(recall thatv; andvc denote the restrictions ofto 2' and2C, respectively).
We will also need the affine space

Vel .= {v e Ho(curl; 2) | curlv) = Je in 2') = H* + VO,

whereH* is a function inHg(curl; £2) such thaturl HY = Jg; in 2'. The magnetic field
we are looking for belongs td ! . Moreover for eaclv € V°

O=/(ia)uH+curIE).V=iw/ ,uH~v+/ Ec - curlvc.
Q Q nc
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Using the strong form of Amgre’s law in the conductor, nameBt = o~ (curl He —
Je.c), wearrive at

0= ia)[ uH -V+[ a‘l(curl Hc — Jec) - curl vc.
Q nc

So, the magnetic fieltl solves the following problem:

FindH € V7! :

i H.v “LeurlHe - curl v
w/;)/»l’ +/;2C0' C C (3.1)
=/ o 1ec-curlve Vve VO
QC

The existence and uniqueness of a solution of (3.1) follows from the Lax—Milgram
lemma, since, under our assumptions on the material coefficients, the bilinear form is
trivially coercive onV?. Next, we have to recover the electric field ia. In 2€, from
Ampere’s law we have

Ec = o (curlHe — Jec). (3.2)

while in 2! there exists a uniqué, € H (curl; 2') such that

curl E; = —iwpH;, div(eE;) =0 in', (3.3)

eE; -n=0 onaf, /FjeE|-ndS=O i=1...,pr—1 (3.4)

Ei xnj=—-Ecxnc onI. (3.5)

Here,n_ denotes the unit outward normal vector@fl_, L = |, C. We refer to Alonso

Rodfiguezet al. (2003b) for more details.
Then(H, E) with H solution of (3.1) and defined as

i OC
E— Ec an
E, in®'

is the unique solution of (1.6).

REMARK 3.1 Wenote that a finite element method based on (3.1) would have to deal with
the constrained spaa&’! . The direct way to deal with the constrainti makes use of
scalar magnetic potentials by representing

Voo =gradHj(2) @ H

(see Alonso Rodguezet al, 2003a; Bermidezet al., 2002). It would be a perfect solution,
unless we had to construct a basigtih order to continue with discretization. Such a basis

is readily available, once we have ‘cuts’ at our disposal, i.e. a collection of surfa¢®s in
that cut any non-bounding cycle (Bossavit, 1998; Tarhasaari & Kettunen, 2001). Finding
these cuts for arbitrary shape 8F seems to be a challenging problem (Gross & Kotiuga,
2001).
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4, Mixed formulations

The main idea is to reformulate (3.1) as a saddle point problem in non-constrained vector
spaces by introducing Lagrange multipliers.
Let us define the bilinear form iklg(curl; £2)

a(w, V) := ia)f uw-v—i-/ o Leurlwe - curl ve.
0 nc

We can introduce a Lagrange multiplidr, € (L2(£2'))2 and consider the saddle point
problem

Find (H, A}) € Ho(curl; 2) x (L2(02')3:

a(H,v)+/ curlv, - A
QI

1 _ (4.1)
=/ o "Jec -curlve VY v € Ho(curl; 2)
nC

/;)l curlH; - N, :,/_QI Je.l -Nj VN € (LZ(.QI))‘?’.

This problem does not have a unique solution as it is possible to add any function
of H&F(curl; 2"y to A;. However if (H,A)) is a solution of (4.1) therH is the
solution of (3.1), andA| satisfiescurlA; = —iwpuH, = curlE; andA|; x n; =
a‘l(Je,c — curl He) x nc = —Ec x nc = E; x ny onI'. Thus, in order to restore
uniqueness of solution it is natural to look &y in the constrained spad¥’' defined in
(2.2). Then it is obvious tha&, = E,. From Theorem 2.1 it is easily verified that' is
equal to the range spaee? curl Hg 30 (curl; 2').

Thus, we consider thisvo-field formulation

Find (H, A}) € Ho(curl; 2) x W' :

a(H,v)+/ curl v, - A
QI

4 _ (4.2)
= o "Jec -curlve V v € Ho(curl; 2)
nC

/CUI‘|H|-N|:/ \]e,|~N| VN|EWI.
n! n!

THEOREM4.1 A unique solution of (4.2) exists.

Proof. We can appeal to Theorem 2.1 and the general theory of variational saddle point
problems (Brezzi & Fortin, 1991). O

Again, the spac&V' involves some constraints. So we introduce another Lagrange
multiplier to impose these: we consider the space

HI2") = {p e H'(2") | ¢pi isconstan¥ j =1,..., pr — 1, ¢rer = O},
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and it is easily verified by integration by parts thite W' if and only ifN; e (L2(2'))3
and [, eN; -V, = Ofor all ¥, € H1(£2'"). Eventually we confront the following

problem:

Find (H, Ay, ¢1) in Ho(curl; 2) x (L2(2'))3 x H1(2'):
a(H,v)+/ curlv, - A
QI
= / . cr*lJe,c -curlve V v € Ho(curl; 2)
i9)
- B (4.3)
/ curlH; - N ~|—/ eN| - Vo,
! !
:/IJe,| N VN € (L2(02')°
0
/ €A -V, =0 vy e HY(2Y).
QI

We note that if(H, A|, ¢) is a solution of (4.3) theg; = O (just takeN;, = V¢, in
(4.3)), and(H, A|) is solution of (4.2).
Introducing the bilinear forms

b(-, ) : Hoapourl; 2') x (L2(2')% - C, b(vi,N;) :=/Icurlv| "Ny,
0

and
e, ) (LA2)3 x HXQ') = C,  c(Ni,¥1) :=/IeN. VY,
2

and the linear operators

Fv) ::/ cr*lJe,c -curlve, v e Ho(eurl; £2)
nC

and
GN)) = fg Joo - Ni, Np e (L2022,

problem (4.3) can be rewritten as

Find (H, Ay, ¢1) in Ho(curl; 2) x (L2(2')3 x H1(2') :

a(H,v) +b(vi, Ap) = F() Vv e Ho(eurl; 2)

b(Hi, Ni) +c(Ni, ¢1) G(N))  VN; e (L3(0"))®

C(Ay, Y1) =0 Yy e HE2Y).

In order to prove that (4.3) has a unique solution, we can use the following result, which
is Lemma 4.1 in Chert al. (2000) extended to complex Hilbert spaces.
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LEMMA 4.2 Let X, Q, M be three complex Hilbert spaces aad: X x X — C,
b: XxQ — C,c: Qx M — C be three continuous bilinear forms, i.e. there
exist three positive constantg, ¢, ¢z such thafa(v, w)| < c1|[vlix|lw|x, |b(v, N)| <
C2lIVIixIINllq, Ic(N, ¥)| < ca|IN[lgll¥lim forall v, w € X, N € Q andy € M. Given

f e X',ge Q,l e M, letus consider the saddle point problem

Find(H,A,¢)in X x Q x M :
a(H,v) +bv,A) = (f,v) VveX
(4.4)
b(H,N) +c(N,¢) = (g,N) VNeQ
C(A, ¥) = (,vy) Y e M.

Let Q% ¢ Q andX? ¢ X be two subspaces as follows:
Q°={NeQlcN,y)=0 VyeM}, XO={veX|bv,Ny=0 VNe Q.
Assume thaay(, -) is X%-coercive, i.e.
la(v, )| > a|v} Vve XO (4.5)

and that the following inf-sup conditions hold:

: |b(v, N)|

inf —= 7 >, 4.6

N0 e Vi x NIl ~ P (4.6)
N, )|

e 2 Y, (4.7)
veMNeq [INIlQII¥lim

for some positive constangs 8, y. Then problem (4.4) has a unigue solution.
Now we are in a position to prove the following result.
THEOREM4.3 Problem (4.3) has a unique solution.
Proof. In order to verify the assumptions of Lemma 4.2, first recall that the spaiemd
VO can also be characterized as

w' = {N| e (L2(")3] /m eN| - VY =0 Ve Hi(rz')}

and
VO = {ve Ho(curl: 2) | / curlvi Ny =0 VN, eW'},
Ql

(in the latter case, just také, = e Lcurlv)).

Since the bilinear forna(-, -) is coercive on the spadé®, we need only show that the
two inf—sup conditions are satisfied, more precisely, that there exist two positive constants
B andy such that

| [ curlvy - Ny |
sup > BIN ez (4.8)
veHoteurl:2)  IIVIlH@url; )
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forallN; e W', and

| eNy - VY,
sup M Z vV llwue (4.9)
Neztye Nz

forall y € HX(12").
Poincaé’s inequality gives us a consta@, > O such that|y iy <

CallVYi L2y for all ¥ € H*l(Q'). Moreover, sincee is assumed to be uniformly
positive definite, there exist two positive constaatsand ¢* such that for allN; €
(L2023

2 2
SIS <fm ey - Ny < €[Ny 125

Hence, given; € H1(2') and choosingN; = Vi, we have

sup |f_Q| €N| VE|| S fQI (:'VI//| VE|

€x
> Z &lVUilizon 2 = 1Villngo)-
N|€(L2(Q|))3 ”Nl |||_2(QI) ||V¢| |||_2(QI) zo w2 = Cz 25

Concerning (4.8), by Theorem 2.1 for &l € W' there existxy; € Y' such that
N; = e Lcurlq. Letq € H(curl; £2) be a continuous extension gf into £2€; hence,

9l H curt; 2) < Callai | auri: 21)- BY the stability estimate of Theorem 2.1 we can infer
that

1915 curt: ) < CEIT 2, qur 1) < CEA+CD I eurl a2 g1 -

Thus,

|fg| CUI’|V| N|| S |f9| CUI‘|Q| N||

sup >
veHotcurl ) IVIIH curl; 2) lall v curt: 2
S 1 | [reurlg Ny | 1 S €Ni - N
T (@A+CHYCy eurlaillzgy 1+ CHY2Cs [leNi 2
€x

> WHNI”LZ(Q')-

5. Finite element discretization

We are aiming for Galerkin finite element discretization of both the two-field problem (4.2)
and the three-field formulation (4.3). In both cases we want to verify the assumptions of
the theory of discrete saddle point problems (Brezzi & Fortin, 1991, Chapter 2).

We assume thaf?, 2€, 2' are Lipschitz polyhedra and consider a family of regular
tetrahedral meshddh}n of 2 such that each elemekt e 7y, is contained either if2€
or in 2'. We denote byZc n, 7)  the restriction of7j, to 7 and ', respectively. The
parameteh will also provide the meshwidth d#.
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We employ Necklec’s curl-conforming edge elements of the lowest order to
approximate the magnetic field: [ef be the finite elements space defined by the complex
valued functions

Vh = {vh € H(curl; 2) | va(X) )k = ak +bk x X VK € Tp},

whereak andbk are two constant vectors {B3. It is known that any functiony, € Vi, is
uniquely determined by the following degrees of freedom (Hiptmair, 2002, Section 3.2):

Me(V) = {/v~rds| eisanedgeo‘rTh},
e

where T is the unit vector along the edge These edge moments make sense for any
v € (H3(2))% with curlv € (LP(2))% withs > 1/2 andp > 2 (see Amrouchet al,,
1998, Lemma 4.7 and Hiptmair, 2002, Lemma 3.13). Moreover, the following interpolation
error estimate holds (see Alonso & Valli, 1999; Chetnal, 2000 and Hiptmair, 2002,
Theorem 3.14).

LEMMA 5.1 Denoting byrhw € Vj, the interpolant ofv, for 1/2 < s < 1, we have
llrhw — Wil 2y < Cahi (1w [[Hsk) + Il curlwy [[isky)  Yw e H(eurl; K),
wherehg is the diameter oK € 7y.

The homogeneoous boundary conditionsag are incorporated by setting degrees of
freedom om {2 to zero. Thus we end up with the spaces

X = Vh N Ho(curl; 2) and X}, := {vy o1 | Vh € Xn}.

For additional information about edge elements the reader is referred to Hiptmair (2002,
Chapter 3), Alonso & Valli (1999), and Girault & Raviart (1986, Chapter Ill, Section 5.3).

5.1 Two-field formulation

The challenge is the approximations of the constrained spéceHowever, ve can take
the cue from the representation in Theorem 2.1 and lift it into the discrete setting. More
precisely, we choose

W = e eurl X}

as trial space fow'. Note that this is a conforming discretization in the sensewh'a\tc
W!'. This results in the following discrete two-field problem:

Find (Hn, Ay p) in Xp x W!

a(Hh,vh)+/ curlvih-Ajn
o

= O_l\]e,c -aurlven  Vvh € X, (5-1)

f2c

/CUI’|H|,h~N|7h:/ Je,|-N|’h VN|,h€WA.
.Q| -QI
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THEOREM5.2 Problem (5.1) has a unique solution.

Proof. As in the case of the continuous problem, it is straightforward that the bilinear form
a(-, -) is continuous inXy, and coercive in

X0 = {vheXh| / cur|v|,h-N.,h=OVN.,hewg}, (5.2)
0

since in particulae~*curlv; h € W!, sothatvy, € X2 impliescurl vy g1 = 0.

To prove a uniform discrete inf-sup condition we rely on the following lemma. Itis a
variant of a discrete PoingarFriedrichs inequality, see Hiptmair (2002, Theorem 4.7) for
aproof.

LEMMA 5.3 Letxr';0 ={Vihe Xr|1 | curlvn=0}and
(X:{O)l = {p|,h e X} /Q Prh-Vih=0Vvhe Xﬁ,’o} -
|

Then there exists a positive const&st independent of, such that for alp; € (xr';o)L

IP1.hllL2e,) < CsllcurlpynllLzg,)-

By the definition ofw!, for eachN; n € W}! there exist&]; nh € X, such thaN; j, =
e~ Leurly p. By projecting on(X; %)L, we find a uniqueqi n € (X;%)* with the same
property. Letq, be some uniform discrete extensioncfy, to 2€ (the existence of such
an extension has been proved in Alonso & Valli, 1999). Thgr X, and

1911+ curt: 2) < Celldinllneurl: 2y < Co(1+ CHY2| curlqunllLz(g)-

Since the constars(1 + C2)Y/2 is independent oh, gy, is a suitable candidate in the
discrete inf-sup condition:

sup | [0, curlvy h - Ny pl N | fo, curl gy p - Ny pl €x
= =
VheXn ||Vh||H0(curI;!2) ||Qh||H0(curI;!2) Ce(1+ Cé)l/ZG*

INERIL2(2))-
(5.3)
All assumptions of Brezzi & Fortin (1991, Chapter Il, Theorem 1.1) are satisfied. O

REMARK 5.1 The only way to implement the spakiqq' is to rely on its very definition,

that is we obtain its elements as? curl of edge element functions. Yet, these will no
longer be unique. The bottom line is that in a practical implementation of the two-field
method we will face a singular system of linear equations. As its kernel is well separated,
conjugate gradient type iterative solvers will perform well.

5.2 Three-field formulation

Apart fromH we have to approximat&, (hamely,E|) and¢, in (4.3). LetPx denote the
standard space of complex polynomials of total degree less than or edualttorespect
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to the real variablex. To discretizeA, € L?(2') we choose piecewise constant vector
functions in the space

Ql :={Nih e (L2(2"))3 | Ninhk € (P VK € Tjp).

In order to approximate the Lagrangian multipligr € H1(2'") it would be natural to

rely on piecewise linear Lagrangian finite elements. However, it turns out that this space is
too small to guarantee uniform stability of the discretized mixed formulation. We have to
switch to a larger space for the approximation of the Lagrangian multiplier; it will be the
non-conforming Crouzeix—Raviart elements, defined as follows:

Ul i= (Y1 h € L22Y) | Y10k € PLYK € Tj p andy y is continuous at the
centroid of any face common to two elements if, }.
Then the discrete, will belong to
M} = {1 .n € U} | ¥ n(p) is equal for all centroidp of faces ofl'],
j=1,...,pr —1, andy; nh(p) = O for all centroidsp of faces of/"Pr'}.

Note that, since functions iUr'] are no longer continuous, they are no longeHih(2').
Therefore we must define a modified bilinear fazim (L2(2'))3x (H1(2")+M}) — C
and a norm orH1(2') + M/\. For eachy, € H1(2') + M/ we denoteVy, the function
in (L2(2"))3 defined as

Vi = V@) YK eTin.
Note that ify, € H1(2'), thenVy, = V. Similarly, we define the bilinear form

Ny ) =3 [ e
K K
=/ eN| -V VNp e (L2(2")3, v e HER2Y) + M),
0N
and the norm iHX(2") + M)

1y 11 = ZfK VY 12 = IV 122 00 -
K

Then, the finite element approximation of (4.3) can be formulated as follows:
Find (Hh, A h, ¢1,n) in Xn x Qf x M|\ :
a(Hn, vh) +b(vi h, Arh) = F(vn) Y Vh € Xp

(5.4)
b(Hi n, Ni.n) + ch(Ni.n, é1.n)

G(Nip)  VYNiheQl

Ch(AlLh, ¥1.h) =0 Vi e M.

To show that this problem has a unique solution we need the following lemma, (see Monk,
1991).
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LEMMA 5.4 We haethe L2(2')-orthogonal decompositio®}, = curl X} @ VM.

Proof. The proof has two parts. In the first part we show that fovaH Xr'] andy h €
Mr'] we have the orthogonalityg. curlvyn - $W|,h = 0. In the second part we establish
that dimQ},) = dim(curl X)) + dim(VM}).

For anyvi n € X\ andy, n € M/ integration by parts yields

curlvip - Vi p = /CUI"VLh-VlﬁLh: / curl Vi p - N n
= Z /CUF|V|,h-ﬂ[1ﬂ|,h]f+ Z /fCUf|V|,h-m//|,h

feFin | feFyo
pPr
+y > fcurlv|,h~nw|,h,
j=1feF,;’f

where Fint is the set of internal faces of the triangulati®nn, F;, andF; denote the
set of faces of7; , on 32 and I'l, respectively, andy n]¢ denotes the jump of
across the facé . Note that, for allf € Fint, (curlvy n - n);s is constant angff [Yinlf =
0 since[y n]f is a linear function and it is equal zero in the centroidfofMoreover
(curlvih-n) ¢ = Oforall f € Fp, and, using that for all face$ € Fr; one has
[ ¥in=vjmeasf), forall j =1,..., pp, wefinally find

Z /CUI"VLh'n}//Lh: Z (curlv|,h~n)|f1/fjmea$f)=1/fj/.curlv|’h~n=0,
feF, vt feF r
hence

/ curlvyp- %Wl,h =0.
0

Let us introduce the Raviart-Thomas finite element space (Brezzi & Fortin, 1991,
Chapter III)

RTh == {vh € H(div: 2') | va() |k = ak + bk X YK € Tj p},
whereag is a constant complex vector abd is a complex number, and the subspaces
RTs0 = RN Hope(iv. 2'), RTY;, := RThNHY,,(div, 2').

By arguments from discrete cohomology, it can be proved (see Bossavit, 1998) that, as
vector spaces of,

dim(eurl X},) = dim(RT&,Q(Q' ) —(pr — 1.

Let us denote by ¥ the number of tetrahedra @i 1, by #F the total number of faces of
7\.n and by #;, o, #F, the number of faces df| , on a2 and byI" respectively. Itis not
difficult to prove that

dim(RTg ) = dim(RTo50(2")) — dim(div(RTo 52(2'))) = H#F — #F50) — #K,

dim(M}) = #F —#Fp) + (pr — 1) = dim(V(M}\)),
dim(Qf) = 3#K.
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Since 4K = 2#F — (#F, + #F ) then

dim(eurl X},) + dim(VM})
= [#F —#Fy) —#K — (pr — DI+ [#F —#Fr) + (pr — D]
= 2HF — (#Fyq + #Fp) — #K = 4#K — #K = dim(Q)).

Since, trivially,curl X}, ¢ Q| andVM,. c Q/,, the proof s finished. O
Using Lemma 5.3, we can now prove the main result of this section.

THEOREM5.5 Given a triangulatioryy, of 2, assume that the entries of the matiare
piecewise constants ift' . Then problem (5.4) has a unique solution.

Proof. Conditions (4.5) and (4.6) follow as in the proof of Theorem 5.2, provided that we
show that the space

{Vh € Xn | b(vih,Nip) =0 VNipe Qo)
WhereQL’O C Q,'1 is defined as follows:

Q% :={Nihe QL len(Nin¥in) =0 V¥yineMl,

coincides with the spac)éﬂ defined in (5.2). In fact, it is enough to prove tha!;’o = WA.

Since the entries of the matrixare piecewise constants, for edghn € Q:{O we have

eNj h € Q},. Therefore, using Lemma 5.4, we obtain thbl 1, € curl X/, hencte'{o C

e Leurl Xﬂ]. The converse is straightforward, proceeding as in the proof of Lemma 5.4.
Concerning the inf-sup condition (4.7) note that forlln € Mg one haS%WI,h €

Q,'v hence from the definition of the norfin ||

enNun vl JnTyinviml  _ Jor €9 Vv
= = - = = Cx-
Nineq) INLhlLz@n I¥nln = IV nllLzcon I¥1alin IIVlﬂl,hllfz(Ql)
(5.5)
O
REMARK 5.2 Note thatde| = curlKe for someKe | € Hgaq(curl; oY If hKe,

is well defined, we can definlBr(N;) := fm curl(mnhKe 1) - Ny. If in problem (5.4) we
replaceG with Gy, it is easily showed that the negy , is equal to zero.

6. Error estimates

Given the discrete inf—sup conditions established in Section 5.1, the quasi-optimality of the
discrete solution of the two-field problem is standard (Brezzi & Fortin, 1991, Chapter 2).
Here, we are only concerned with the discrete three-field problem (5.4).
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We denote byc; andcy the continuity constants of the bilinear formas, -) andb(., )
respectively, by the coercivity constant cl(-, -) in V° and byg andy two positive
constants, independentlofsuch that

. b(vin, N
inf [b(vi,h, Ni,p)| > B, (6.1)
NLheQL’OvheXh ||Vh||H(curI,!2)||Nl,h|||_2((zl)

and
i [ch (N1 h, Y1)l

> (6.2)
vineM Ny peQn 191RIInINT RIL2 01

From (5.3) and (5.5) we can talge= andy = ¢,.

€x
Ce(1-+C2)1/2ex

THEOREMG6.1 Let(H, A, ¢1) € Ho(curl; 2) x (L2(2"))3 x HX(12") be the solution of
problem (4.3) andHn, A| h, ¢1.n) € Xn x Q}, x M|, the solution of problem (5.4). Then
the following error estimates hold:

C1 C2 .
IH — HnllH@url; ) < (1+ —> <1+ —) inf [IH = VhllHcurl;2), (6.3)
o B ) vheXn

C2 .
AT —AinllLzen < <1+ —> inf AL = NinllL2cor

NineQy (6.4)
C1

B
C2
l¢1 — @1.hlln = 1 nlln < ?HH — HnllH curl: 2)- (6.5)

+ ||H_Hh||H(curl;!2)y

Proof. The proof follows the lines of the proofs in Brezzi & Fortin (1991, Chapter 2). For
all vi;, vh € Xpn andN; p € Q||

a(Hn — Vi, vh) +b(vi h, A h — Nih) = F(vh) —a(v§, vh) — b(vi h, Nj n)

=a(H — v§, vh) + b(vi h, Al — Nj ).

Note that ifvy € Xﬁ thencurlv; h = 0in 2", thereforea(Hp — Vi, Vh) = a(H — Vv{, vp).
If we takevi € XS := {vh € Xn | b(vin,Nip) = G(N1p) VN € QL) then
Hn — v € X2 and we find

a(Hn — Vi, Hh — Vi) = a(H — vj;, Hh — v})).

SinceX? ¢ VO, from coerciveness we conclude

IH = HnllHcurl: 2) < IH = VillHurl;2) + IHh = Vil H curt: 2)

C1
<1+ 2)IH = Villwario) Y Vi € X5 (6.6)
Moreover, from the inf-sup condition (6.1), for alf € Xy there exists a unique, €
(X2)L such thab(z) h, N h) = b(H| — Vi h, Nj ) for all Nj € Q;° and

C2

B

1ZallH curt; 2) < — IIH = VhllHeurl; 92)-
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SettingV}, := znh + vh, forall N, h € Qf'{o we have
b(vi h, Ni.h) =b(Hi, Ny ) = b(Hy, Nih) + (N h, 1) = G(Nj p),
hencev}; € X¢. Furthermore,

C2
IH _Vﬁ||H(curI;Q) < IH = VhllHurl; 2) + 120l H curl; 2) < (1+ E)”H = VhllHcurl; 2)»

and (6.3) follows from (6.6).
To obtain (6.4) we use the inf-sup condition (6.1). For eld¢h € QL’O we find

o 1 [b(vi.n, Al.n — Njn)l
) Buexs  IVhllHurl. o)

IALR = NihllL2

On the other hand

b(vi h, Ai,h —Njh) = F(vh) —a(Hn, vh) — b(vi h, Njh)
=a(H — Hn,vh) +b(vi h, A| =N p),

then

C1 C2
AR = Ninll2on < FIIH — HhllHeuri:2) + E”AI = NihllLzens

which yields (6.4).
To obtain (6.5) we use the inf-sup condition (6.2) that in particular gives

1 (NI .
¢1.nllh < — M
Y NjheQn ||N|,h|||_2(0|)
On the other hand
ch(Nih, #1.n) =G(Nj n) —b(H| . Njh)
:m‘l‘ c(Ny h, 1) — m
=b(Hi —Hin. Nih),

then c
o1 nlin < 7IIH — HhllHcurl, 2)-

O

REMARK 6.1 It is worthy to note thath';o = e Leurl Xr|1 and that there existg, €
Ho.s 0 (curl; 2"y such thakA| = curl q;. Hence

inf  JAl = Ninlli2gor, = inf e curlar — curldin)liz
NI,hGQ:{O thEXrI1

< C inf g —dihllkurs; 2n)-
di.h€Xy,
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