
IMA Journal of Numerical Analysis(2004)24, 255–271

Mixed finite element approximation of eddy current
problems

ANA ALONSO RODRÍGUEZ†
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Finite element approximations of eddy current problems that are entirely based on the
magnetic fieldH are haunted by the need to enforce the algebraic constraintcurl H = 0 in
non-conducting regions. As an alternative to techniques employing combinatorial Seifert
(cutting) surfaces, in order to introduce a scalar magnetic potential we propose mixed
multi-field formulations, which enforce the constraint in the variational formulation. In
light of the fact that the computation of cutting surfaces is expensive, the mixed finite
element approximation is a viable option despite the increased number of unknowns.
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1. Introduction

The governing equations of electromagnetic fields and currentsE , H, B, D, J are
Maxwell’s equations completed by constitutive laws in order to model the field–matter
interaction. In what follows we shall restrict ourselves to the ‘Maxwell model of
memoryless linear materials with Ohm’s law’ (see Bossavit, 1998):

−∂tD + curlH = J = Je + σE, D = εE,

∂tB + curl E = 0, B = µH.
(1.1)

Hereµ is the magnetic permeability,ε the dielectric tensor, andσ stands for conductivity.
µ and ε are assumed to be symmetric and uniformly positive definite 3× 3-matrices,
whereasσ is supposed to be symmetric and uniformly positive definite inside the
conducting regionΩC, but vanishes in the ‘air region’Ω I . All the material parameters are
functions of the spatial variablex only. Under these circumstances, if the source current
Je is of the formJe(t, x) = Re[Je(x) exp(iωt)], whereJe is a complex-valued vector field
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andω �= 0 is a fixed angular frequency, the fieldsE,H,B,D also have this harmonic
dependence on time. The Maxwell model with Ohm’s law then assumes the following
strong form:

−iωD + curl H = Je + σE, D = εE,

iωB + curl E = 0, B = µH.
(1.2)

The unknowns now are the complex amplitudesE, H, B, D, independent of time.
In many situations it is possible to consider simpler quasi-static models that still offer a

sufficiently accurate description of electromagnetic phenomena. The most popular among
these simplified models is the so-called ‘eddy current model’, which consists in neglecting
the term−iωD in (1.2) (Dirks, 1996; Ammariet al., 2000).

Then compliance with Amp̀ere’s law entails

div Je,I = 0 in Ω I ,

∫
Γ j

Je,I · n dS = 0, j = 1, . . . , pΓ , (1.3)

whereΓ j , j = 1, . . . , pΓ , are the connected components of the boundary ofΩC. The
latter is denoted byΓ := ∂ΩC. Here and in the sequel we denote byvL the restriction of a
vector fieldv to Ω L , L = I , C.

We introduce an artificial computational domainΩ ⊂ R
3, which is a box containing

the conductors and their immediate neighbourhood, big enough so that one can assume a
zero field beyond. As before we writeΩC for the conductor region andΩ I := Ω \ ΩC.
For the sake of simplicity, we assume thatΩ I is connected.

On ∂Ω , homogeneous boundary conditions for eitherH or E are imposed: throughout
we will demand

H × n = 0 on ∂Ω ,

modelling a container made by an infinitely permeable magnetic material (see Bossavit,
1998, p. 232; Silvester & Ferrari, 1990, p. 408). However, with simple modifications our
results also hold for the boundary condition

µH · n = 0 on∂Ω .

The boundary conditionH × n = 0 on∂Ω implies another compatibility condition for
Je,I , namely

Je,I · n = 0 on∂Ω . (1.4)

Obviously, we cannot expect a solution forE to be unique, because it can be altered by
any gradient supported inΩ I and will still satisfy the equations. However, imposing the
constraints

div(εEI ) = 0 in Ω I , εEI · n = 0 on∂Ω ,∫
Γ j

εEI · n dS = 0, j = 1, . . . , pΓ − 1,
(1.5)

(that are implied by (1.2)) will restore uniqueness of the solution forE.
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The complete eddy current model we consider in the sequel is then

curl H = Je + σE, iωµH + curl E = 0 in Ω ,

div(εEI ) = 0 in Ω I ,

∫
Γ j

εEI · n dS = 0, j = 1, . . . , pΓ − 1, (1.6)

εE · n = 0, H × n = 0 on ∂Ω .

The existence and uniqueness of a solution of problem (1.6) has been proved in Alonso
Rodŕıguezet al. (2003b), assuming that the entries of the matricesµ and σ belong to
L∞(Ω), those ofε belong toL∞(Ω I ), and finally that the source currentJe belongs to
(L2(Ω))3 and satisfies (1.3) and (1.4).

Dropping the displacement current converts Ampère’s law into the purely algebraic
constraintcurl H = Je,I in Ω I . This raises problems not encountered with the full Maxwell
equations. This paper will be devoted to how to deal with these problems in the context of
a variational formulation based on the magnetic fieldH. We will focus on approaches
that forgo the ‘direct option’ to incorporate the constraint into the trial space. Instead it is
enforced by means of augmented variational equations.

Adding extra equations may seem wasteful and, indeed, it is, because the resulting
formulations will, after a finite element Galerkin discretization, feature many additional
degrees of freedom. However, this is the price to pay for avoiding the cumbersome
‘topological preprocessing’, that is the construction of cuts (Gross & Kotiuga, 2001), that
is indispensable in the case of the ‘direct option’. Hence, these augmented formulations
can become relevant for practical computations. Here we are going to present a couple of
possibilities to take into account the seemingly simple constraintcurl H = Je,I in Ω I .
Each variant will come with its own issues of stability and uniqueness.

A brief outline of the paper is as follows: in the next section we introduce notation
and function spaces needed for the remainder of the article. Then we review the well-
known H-based variational formulation of the eddy current problem. From these basic
equations we derive augmented mixed formulations in Section 4. In Section 5 their finite
element Galerkin discretization will be discussed. Finally, in Section 6 we give a priori
error estimates.

2. Basic concepts

As usual, we denote byHs(Ω) or Hs(∂Ω), s ∈ R, the Sobolev space of orders of real or
complex measurable functions defined onΩ or ∂Ω , respectively. IfΣ ⊂ ∂Ω we denote by
H1

0,Σ (Ω) the subspace ofH1(Ω) consisting of those functionsϕ satisfyingϕ|Σ = 0. As

usualH1
0 (Ω) := H1

0,∂Ω (Ω).
The spaceH(curl;Ω) (respectively,H(div;Ω)) denotes the set of real or complex

vector valued functionsv ∈ (L2(Ω))3 such thatcurl v ∈ (L2(Ω))3 (respectively, divv ∈
L2(Ω)). If Σ ⊂ ∂Ω , by H0,Σ (curl;Ω) we denote the subspace ofH(curl;Ω) of those
functionsv satisfying(v×n)|Σ = 0. WesetH0(curl;Ω) := H0,∂Ω (curl;Ω). H0(curl;Ω)

denotes the subspace of curl-free functions ofH(curl;Ω) and H0
0,Σ (curl;Ω) =

H0,Σ (curl;Ω) ∩ H0(curl;Ω). Analogously H0,Σ (div;Ω) stands for the subspace of
H(div;Ω) containing functionsv satisfying(v ·n)|Σ = 0. As above, we setH0(div;Ω) :=
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H0,∂Ω (div;Ω). Moreover,H0(div;Ω) denotes the subspace of divergence-free functions
of H(div;Ω) and H0

0,Σ (div;Ω) := H0,Σ (div;Ω) ∩ H0(div;Ω). Finally, Hs(curl;Ω)

denotes the space of vector functionsv ∈ (Hs(Ω))3 such thatcurl v ∈ (Hs(Ω))3.
Topology enters our considerations through the space ofharmonic vector fields

H := H0
0,∂Ω (curl;Ω I ) ∩ H0

0,Γ (div;Ω I ). (2.1)

Moreover, for the sake of brevity, we introduce the space of admissible electric fields

WI := {NI ∈ (L2(Ω I ))3 | NI satisfies (1.5)}, (2.2)

and the ‘space of unique vector potentials’

YI := H0,∂Ω (curl;Ω I ) ∩ H0
0,Γ (div;Ω I ) ∩ H⊥. (2.3)

They owe their name to the following result, which will be useful in the sequel. It is
essentially contained in Alonso & Valli (1996) and Fernandes & Gilardi (1997).

THEOREM 2.1 For eachvI ∈ WI there is a uniqueqI ∈ YI such thatcurl qI = εvI and

‖qI ‖L2(Ω I ) � C1 ‖εvI ‖L2(Ω I ) .

3. The H-based variational formulation

Basically, two different variational formulations of (1.6) exist, either based on the electric
field E or the magnetic fieldH (Bossavit, 1985). They correspond to the primal and dual
formulation of a second order elliptic problem. However, the algebraic constraint oncurl H
manifests itself in a entirely different way in the two formulations. Therefore we restrict
ourselves to theH-based approach.

The generic form of theH-based variational formulation involves the Hilbert space of
complex-valuedvector functions

V0 := {v ∈ H0(curl;Ω) | curl vI = 0 in Ω I },
endowed with the natural norm

||v||2V0 :=
∫
Ω

|v|2 +
∫
ΩC

| curl vC|2

(recall thatvI andvC denote the restrictions ofv to Ω I andΩC, respectively).
Wewill also need the affine space

VJe,I := {v ∈ H0(curl;Ω) | curl vI = Je,I in Ω I } = H∗ + V0,

whereH∗ is a function inH0(curl;Ω) such thatcurl H∗
I = Je,I in Ω I . The magnetic field

we are looking for belongs toVJe,I . Moreover for eachv ∈ V0

0 =
∫
Ω

(iωµH + curl E) · v = i ω
∫
Ω

µH · v +
∫
ΩC

EC · curl vC.
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Using the strong form of Amp̀ere’s law in the conductor, namelyEC = σ−1(curl HC −
Je,C), wearrive at

0 = iω
∫
Ω

µH · v +
∫
ΩC

σ−1(curl HC − Je,C) · curl vC.

So, the magnetic fieldH solves the following problem:

Find H ∈ VJe,I :
iω

∫
Ω

µH · v +
∫
ΩC

σ−1 curl HC · curl vC

=
∫
ΩC

σ−1Je,C · curl vC ∀ v ∈ V0.

(3.1)

The existence and uniqueness of a solution of (3.1) follows from the Lax–Milgram
lemma, since, under our assumptions on the material coefficients, the bilinear form is
trivially coercive onV0. Next, we have to recover the electric field inΩ . In ΩC, from
Ampère’s law we have

EC = σ−1(curl HC − Je,C), (3.2)

while in Ω I there exists a uniqueEI ∈ H(curl;Ω I ) such that

curl EI = −iωµHI , div(εEI ) = 0 in Ω I , (3.3)

εEI · n = 0 on∂Ω ,

∫
Γ j

εEI · n dS = 0 j = 1, . . . , pΓ − 1, (3.4)

EI × nI = −EC × nC onΓ . (3.5)

Here,nL denotes the unit outward normal vector on∂ΩL , L = I , C. We refer to Alonso
Rodŕıguezet al. (2003b) for more details.

Then(H, E) with H solution of (3.1) andE defined as

E =
{

EC in ΩC

EI in Ω I

is the unique solution of (1.6).

REMARK 3.1 Wenote that a finite element method based on (3.1) would have to deal with
the constrained spaceVJe,I . The direct way to deal with the constraint inV0 makes use of
scalar magnetic potentials by representing

V0|Ω I = grad H1
∂Ω (Ω I ) ⊕ H

(see Alonso Rodrı́guezet al., 2003a; Berḿudezet al., 2002). It would be a perfect solution,
unless we had to construct a basis ofH in order to continue with discretization. Such a basis
is readily available, once we have ‘cuts’ at our disposal, i.e. a collection of surfaces inΩ I

that cut any non-bounding cycle (Bossavit, 1998; Tarhasaari & Kettunen, 2001). Finding
these cuts for arbitrary shape ofΩC seems to be a challenging problem (Gross & Kotiuga,
2001).
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4. Mixed formulations

The main idea is to reformulate (3.1) as a saddle point problem in non-constrained vector
spaces by introducing Lagrange multipliers.

Let us define the bilinear form inH0(curl;Ω)

a(w, v) := iω
∫
Ω

µw · v +
∫
ΩC

σ−1 curl wC · curl vC.

We can introduce a Lagrange multiplierAI ∈ (L2(Ω I ))3 and consider the saddle point
problem 

Find (H, AI ) ∈ H0(curl;Ω) × (L2(Ω I ))3 :
a(H, v) +

∫
Ω I

curl vI · AI

=
∫
ΩC

σ−1Je,C · curl vC ∀ v ∈ H0(curl;Ω)∫
Ω I

curl HI · NI =
∫
Ω I

Je,I · NI ∀ NI ∈ (L2(Ω I ))3.

(4.1)

This problem does not have a unique solution as it is possible to add any function
of H0

0,Γ (curl;Ω I ) to AI . However, if (H, AI ) is a solution of (4.1) thenH is the
solution of (3.1), andAI satisfiescurl AI = −iωµHI = curl EI and AI × nI =
σ−1(Je,C − curl HC) × nC = −EC × nC = EI × nI on Γ . Thus, in order to restore
uniqueness of solution it is natural to look forAI in the constrained spaceWI defined in
(2.2). Then it is obvious thatAI = EI . From Theorem 2.1 it is easily verified thatWI is
equal to the range spaceε−1 curl H0,∂Ω (curl;Ω I ).

Thus, we consider thetwo-field formulation:

Find (H, AI ) ∈ H0(curl;Ω) × WI :
a(H, v) +

∫
Ω I

curl vI · AI

=
∫
ΩC

σ−1Je,C · curl vC ∀ v ∈ H0(curl;Ω)∫
Ω I

curl HI · NI =
∫
Ω I

Je,I · NI ∀ NI ∈ WI .

(4.2)

THEOREM 4.1 A unique solution of (4.2) exists.

Proof. We can appeal to Theorem 2.1 and the general theory of variational saddle point
problems (Brezzi & Fortin, 1991). �

Again, the spaceWI involves some constraints. So we introduce another Lagrange
multiplier to impose these: we consider the space

H1∗ (Ω I ) := {ϕ ∈ H1(Ω I ) | ϕ|Γ j is constant∀ j = 1, . . . , pΓ − 1, ϕ|Γ pΓ = 0},
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and it is easily verified by integration by parts thatNI ∈ WI if and only if NI ∈ (L2(Ω I ))3

and
∫
Ω I εNI · ∇ψ I = 0 for all ψI ∈ H1∗ (Ω I ). Eventually we confront the following

problem: 

Find (H, AI , φI ) in H0(curl;Ω) × (L2(Ω I ))3 × H1∗ (Ω I ) :
a(H, v) +

∫
Ω I

curl vI · AI

=
∫
ΩC

σ−1Je,C · curl vC ∀ v ∈ H0(curl;Ω)∫
Ω I

curl HI · NI +
∫
Ω I

εNI · ∇φI

=
∫
Ω I

Je,I · NI ∀ NI ∈ (L2(Ω I ))3∫
Ω I

εAI · ∇ψ I = 0 ∀ ψI ∈ H1∗ (Ω I ).

(4.3)

We note that if(H, AI , φI ) is a solution of (4.3) thenφI = 0 (just takeNI = ∇φI in
(4.3)), and(H, AI ) is solution of (4.2).

Introducing the bilinear forms

b(·, ·) : H0,∂Ω (curl;Ω I ) × (L2(Ω I ))3 → C, b(vI , NI ) :=
∫
Ω I

curl vI · NI ,

and

c(·, ·) : (L2(Ω I ))3 × H1∗ (Ω I ) → C, c(NI , ψI ) :=
∫
Ω I

εNI · ∇ψ I ,

and the linear operators

F(v) :=
∫
ΩC

σ−1Je,C · curl vC, v ∈ H0(curl;Ω)

and

G(NI ) :=
∫
Ω I

Je,I · NI , NI ∈ (L2(Ω I ))3,

problem (4.3) can be rewritten as

Find (H, AI , φI ) in H0(curl;Ω) × (L2(Ω I ))3 × H1∗ (Ω I ) :

a(H, v) + b(vI , AI ) = F(v) ∀ v ∈ H0(curl;Ω)

b(HI , NI ) + c(NI , φI ) = G(NI ) ∀ NI ∈ (L2(Ω I ))3

c(AI , ψI ) = 0 ∀ ψI ∈ H1∗ (Ω I ).

In order to prove that (4.3) has a unique solution, we can use the following result, which
is Lemma 4.1 in Chenet al. (2000) extended to complex Hilbert spaces.
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LEMMA 4.2 Let X, Q, M be three complex Hilbert spaces anda : X × X → C,
b : X × Q → C, c : Q × M → C be three continuous bilinear forms, i.e. there
exist three positive constantsc1, c2, c3 such that|a(v, w)| � c1‖v‖X‖w‖X , |b(v, N)| �
c2‖v‖X‖N‖Q, |c(N, ψ)| � c3‖N‖Q‖ψ‖M for all v, w ∈ X, N ∈ Q andψ ∈ M . Given
f ∈ X′, g ∈ Q′, l ∈ M ′, let us consider the saddle point problem

Find (H, A, φ) in X × Q × M :

a(H, v) + b(v, A) = 〈 f, v〉 ∀ v ∈ X

b(H, N) + c(N, φ) = 〈g, N〉 ∀ N ∈ Q

c(A, ψ) = 〈l , ψ〉 ∀ ψ ∈ M .

(4.4)

Let Q0 ⊂ Q andX0 ⊂ X be two subspaces as follows:

Q0 = {N ∈ Q | c(N, ψ) = 0 ∀ ψ ∈ M}, X0 = {v ∈ X | b(v, N) = 0 ∀ N ∈ Q0}.
Assume thata(·, ·) is X0-coercive, i.e.

|a(v, v)| � α‖v‖2
X ∀ v ∈ X0, (4.5)

and that the following inf–sup conditions hold:

inf
N∈Q0

sup
v∈X

|b(v, N)|
‖v‖X‖N‖Q

� β, (4.6)

inf
ψ∈M

sup
N∈Q

|c(N, ψ)|
‖N‖Q‖ψ‖M

� γ, (4.7)

for some positive constantsα, β, γ . Then problem (4.4) has a unique solution.

Now we are in a position to prove the following result.

THEOREM 4.3 Problem (4.3) has a unique solution.

Proof. In order to verify the assumptions of Lemma 4.2, first recall that the spacesWI and
V0 can also be characterized as

WI =
{

NI ∈ (L2(Ω I ))3 |
∫
Ω I

εNI · ∇ψ I = 0 ∀ ψI ∈ H1∗ (Ω I )

}
and

V0 =
{

v ∈ H0(curl;Ω) |
∫
Ω I

curl vI · NI = 0 ∀ NI ∈ WI
}

,

(in the latter case, just takeNI = ε−1 curl vI ).
Since the bilinear forma(·, ·) is coercive on the spaceV0, we need only show that the

two inf–sup conditions are satisfied, more precisely, that there exist two positive constants
β andγ such that

sup
v∈H0(curl;Ω)

∣∣ ∫
Ω I curl vI · NI

∣∣
‖v‖H(curl;Ω)

� β‖NI ‖L2(Ω I ) (4.8)
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for all NI ∈ WI , and

sup
NI ∈(L2(Ω I ))3

∣∣ ∫
Ω I εNI · ∇ψ I

∣∣
‖NI ‖L2(Ω I )

� γ ‖ψI ‖H1(Ω I ) (4.9)

for all ψI ∈ H1∗ (Ω I ).
Poincaŕe’s inequality gives us a constantC2 > 0 such that ‖ψI ‖H1(Ω I ) �

C2‖∇ψI ‖L2(Ω I ) for all ψI ∈ H1∗ (Ω I ). Moreover, sinceε is assumed to be uniformly
positive definite, there exist two positive constantsε∗ and ε∗ such that for allNI ∈
(L2(Ω I ))3

ε∗‖NI ‖2
L2(Ω I )

�
∫
Ω I

εNI · NI � ε∗‖NI ‖2
L2(Ω I )

.

Hence, givenψI ∈ H1∗ (Ω I ) and choosingNI = ∇ψI we have

sup
NI ∈(L2(Ω I ))3

∣∣ ∫
Ω I εNI · ∇ψ I

∣∣
‖NI ‖L2(Ω I )

�
∫
Ω I ε∇ψI · ∇ψ I

‖∇ψI ‖L2(Ω I )

� ε∗‖∇ψI ‖L2(Ω I ) � ε∗
C2

‖ψI ‖H1(Ω I ).

Concerning (4.8), by Theorem 2.1 for allNI ∈ WI there existsqI ∈ YI such that
NI = ε−1 curl qI . Let q ∈ H(curl;Ω) be a continuous extension ofqI into ΩC; hence,
‖q‖H(curl;Ω) � C3‖qI ‖H(curl;Ω I ). By the stability estimate of Theorem 2.1 we can infer
that

‖q‖2
H(curl;Ω) � C2

3‖qI ‖2
H(curl;Ω I )

� C2
3(1 + C2

1)‖ curl qI ‖2
L2(Ω I )

.

Thus,

sup
v∈H0(curl Ω)

∣∣ ∫
Ω I curl vI · NI

∣∣
‖v‖H(curl;Ω)

�
∣∣ ∫

Ω I curl qI · NI
∣∣

‖q‖H(curl;Ω)

� 1

(1 + C2
1)1/2C3

∣∣ ∫
Ω I curl qI · NI

∣∣
‖ curl qI ‖L2(Ω I )

= 1

(1 + C2
1)1/2C3

∫
Ω I εNI · NI

‖εNI ‖L2(Ω I )

� ε∗
(1 + C2

1)1/2C3ε∗ ‖NI ‖L2(Ω I ).

�

5. Finite element discretization

Weare aiming for Galerkin finite element discretization of both the two-field problem (4.2)
and the three-field formulation (4.3). In both cases we want to verify the assumptions of
the theory of discrete saddle point problems (Brezzi & Fortin, 1991, Chapter 2).

We assume thatΩ , ΩC, Ω I are Lipschitz polyhedra and consider a family of regular
tetrahedral meshes{Th}h of Ω such that each elementK ∈ Th is contained either inΩC

or in Ω I . We denote byTC,h, TI ,h the restriction ofTh to ΩC andΩ I , respectively. The
parameterh will also provide the meshwidth ofTh.
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We employ Ńed́elec’s curl-conforming edge elements of the lowest order to
approximate the magnetic field: letVh be the finite elements space defined by the complex
valued functions

Vh := {vh ∈ H(curl;Ω) | vh(x)|K = aK + bK × x ∀ K ∈ Th},
whereaK andbK are two constant vectors inC3. It is known that any functionvh ∈ Vh is
uniquely determined by the following degrees of freedom (Hiptmair, 2002, Section 3.2):

Me(v) =
{∫

e
v · τ ds | e is an edge ofTh

}
,

whereτ is the unit vector along the edgee. These edge moments make sense for any
v ∈ (Hs(Ω))3 with curl v ∈ (L p(Ω))3 with s > 1/2 and p > 2 (see Amroucheet al.,
1998, Lemma 4.7 and Hiptmair, 2002, Lemma 3.13). Moreover, the following interpolation
error estimate holds (see Alonso & Valli, 1999; Chenet al., 2000 and Hiptmair, 2002,
Theorem 3.14).

LEMMA 5.1 Denoting byπhw ∈ Vh the interpolant ofw, for 1/2 < s � 1, we have

‖πhw − w‖L2(K ) � C4 hs
K (‖wI ‖Hs(K ) + ‖ curl wI ‖Hs(K )) ∀ w ∈ Hs(curl; K ),

wherehK is the diameter ofK ∈ Th.

The homogeneoous boundary conditions on∂Ω are incorporated by setting degrees of
freedom on∂Ω to zero. Thus we end up with the spaces

Xh := Vh ∩ H0(curl;Ω) andXI
h := {vh|Ω I | vh ∈ Xh}.

For additional information about edge elements the reader is referred to Hiptmair (2002,
Chapter 3), Alonso & Valli (1999), and Girault & Raviart (1986, Chapter III, Section 5.3).

5.1 Two-field formulation

The challenge is the approximations of the constrained spaceWI . However, we can take
the cue from the representation in Theorem 2.1 and lift it into the discrete setting. More
precisely, we choose

WI
h := ε−1 curl XI

h

as trial space forWI . Note that this is a conforming discretization in the sense thatWI
h ⊂

WI . This results in the following discrete two-field problem:

Find (Hh, AI ,h) in Xh × WI
h :

a(Hh, vh) +
∫
ΩI

curl vI ,h · AI ,h

=
∫
ΩC

σ−1Je,C · curl vC,h ∀ vh ∈ Xh,

∫
ΩI

curl HI ,h · NI ,h =
∫
ΩI

Je,I · NI ,h ∀ NI ,h ∈ WI
h .

(5.1)
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THEOREM 5.2 Problem (5.1) has a unique solution.

Proof. As in the case of the continuous problem, it is straightforward that the bilinear form
a(·, ·) is continuous inXh and coercive in

X0
h :=

{
vh ∈ Xh |

∫
ΩI

curl vI ,h · NI ,h = 0 ∀ NI ,h ∈ WI
h

}
, (5.2)

since in particularε−1 curl vI ,h ∈ WI
h , so thatvh ∈ X0

h impliescurl vh|Ω I = 0.
To prove a uniform discrete inf–sup condition we rely on the following lemma. It is a

variant of a discrete Poincaré–Friedrichs inequality, see Hiptmair (2002, Theorem 4.7) for
aproof.

LEMMA 5.3 LetXI ,0
h := {vI ,h ∈ XI

h | curl vI ,h = 0} and

(XI ,0
h )⊥ :=

{
pI ,h ∈ XI

h |
∫
ΩI

pI ,h · vI ,h = 0 ∀ vI ,h ∈ XI ,0
h

}
.

Then there exists a positive constantC5, independent ofh, such that for allpI ,h ∈ (XI ,0
h )⊥

‖pI ,h‖L2(ΩI )
� C5‖ curl pI ,h‖L2(ΩI )

.

By the definition ofWI
h , for eachNI ,h ∈ WI

h there existŝqI ,h ∈ XI
h such thatNI ,h =

ε−1 curl q̂I ,h. By projecting on(XI ,0
h )⊥, we find a uniqueqI ,h ∈ (XI ,0

h )⊥ with the same
property. Letqh be some uniform discrete extension ofqI ,h to ΩC (the existence of such
an extension has been proved in Alonso & Valli, 1999). Thenqh ∈ Xh and

‖qh‖H(curl;Ω) � C6‖qI ,h‖H(curl;ΩI ) � C6(1 + C2
5)1/2‖ curl qI ,h‖L2(ΩI )

.

Since the constantC6(1 + C2
5)1/2 is independent ofh, qh is a suitable candidate in the

discrete inf–sup condition:

sup
vh∈Xh

| ∫ΩI
curl vI ,h · NI ,h|

‖vh‖H0(curl;Ω)

�
| ∫ΩI

curl qI ,h · NI ,h|
‖qh‖H0(curl;Ω)

� ε∗
C6(1 + C2

5)1/2ε∗ ‖NI ,h‖L2(ΩI )
.

(5.3)

All assumptions of Brezzi & Fortin (1991, Chapter II, Theorem 1.1) are satisfied. �

REMARK 5.1 The only way to implement the spaceWI
h is to rely on its very definition,

that is we obtain its elements asε−1 curl of edge element functions. Yet, these will no
longer be unique. The bottom line is that in a practical implementation of the two-field
method we will face a singular system of linear equations. As its kernel is well separated,
conjugate gradient type iterative solvers will perform well.

5.2 Three-field formulation

Apart fromH we have to approximateAI (namely,EI ) andφI in (4.3). LetPk denote the
standard space of complex polynomials of total degree less than or equal tok with respect
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to the real variablex. To discretizeAI ∈ L2(Ω I ) we choose piecewise constant vector
functions in the space

QI
h := {NI ,h ∈ (L2(Ω I ))3 | NI ,h|K ∈ (P0)

3 ∀ K ∈ TI ,h}.
In order to approximate the Lagrangian multiplierφI ∈ H1∗ (Ω I ) it would be natural to
rely on piecewise linear Lagrangian finite elements. However, it turns out that this space is
too small to guarantee uniform stability of the discretized mixed formulation. We have to
switch to a larger space for the approximation of the Lagrangian multiplier; it will be the
non-conforming Crouzeix–Raviart elements, defined as follows:

U I
h := {ψI ,h ∈ L2(Ω I ) | ψI ,h|K ∈ P1 ∀ K ∈ TI ,h andψI ,h is continuous at the
centroid of any facef common to two elements inTh}.

Then the discreteφI will belong to

M I
h := {ψI ,h ∈ U I

h | ψI ,h(p) is equal for all centroidsp of faces ofΓ j ,

j = 1, . . . , pΓ − 1, andψI ,h(p) = 0 for all centroidsp of faces ofΓ pΓ }.
Note that, since functions inU I

h are no longer continuous, they are no longer inH1(Ω I ).
Therefore we must define a modified bilinear formch : (L2(Ω I ))3×(H1∗ (Ω I )+M I

h) → C

and a norm onH1∗ (Ω I ) + M I
h . For eachψI ∈ H1∗ (Ω I ) + M I

h we denotẽ∇ψI the function
in (L2(Ω I ))3 defined as

(∇̃ψI )|K := ∇(ψI |K ) ∀ K ∈ TI ,h.

Note that ifψI ∈ H1∗ (Ω I ), then∇̃ψI = ∇ψI . Similarly, we define the bilinear form

ch(NI , ψI ) :=
∑

K

∫
K

εNI · ∇ψI

=
∫
Ω I

εNI · ∇̃ψI ∀ NI ∈ (L2(Ω I ))3, ψI ∈ H1∗ (Ω I ) + M I
h

and the norm inH1∗ (Ω I ) + M I
h

‖ψI ‖2
h :=

∑
K

∫
K

|∇ψI |2 = ‖∇̃ψI ‖2
L2(Ω I )

.

Then, the finite element approximation of (4.3) can be formulated as follows:

Find (Hh, AI ,h, φI ,h) in Xh × QI
h × M I

h :

a(Hh, vh) + b(vI ,h, AI ,h) = F(vh) ∀ vh ∈ Xh

b(HI ,h, NI ,h) + ch(NI ,h, φI ,h) = G(NI ,h) ∀ NI ,h ∈ QI
h

ch(AI ,h, ψI ,h) = 0 ∀ ψI ,h ∈ M I
h .

(5.4)

To show that this problem has a unique solution we need the following lemma, (see Monk,
1991).
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LEMMA 5.4 We have theL2(Ω I )-orthogonal decompositionQI
h = curl XI

h ⊕ ∇̃M I
h .

Proof. The proof has two parts. In the first part we show that for allvI ,h ∈ XI
h andψI ,h ∈

M I
h we have the orthogonality

∫
Ω I curl vI ,h · ∇̃ψI ,h = 0. In the second part we establish

that dim(QI
h) = dim(curl XI

h) + dim(∇̃M I
h).

For anyvI ,h ∈ XI
h andψI ,h ∈ M I

h integration by parts yields∫
Ω I

curl vI ,h · ∇̃ψI ,h =
∑

K

∫
K

curl vI ,h · ∇ψI ,h =
∑

K

∫
∂K

curl vI ,h · n ψI ,h

=
∑

f ∈Fint

∫
f

curl vI ,h · n [ψI ,h] f +
∑

f ∈F∂Ω

∫
f

curl vI ,h · n ψI ,h

+
pΓ∑
j =1

∑
f ∈F

Γ j

∫
f

curl vI ,h · n ψI ,h,

whereFint is the set of internal faces of the triangulationTI ,h, F∂Ω andFΓ j denote the
set of faces ofTI ,h on ∂Ω andΓ j , respectively, and[ψI ,h] f denotes the jump ofψI ,h

across the facef . Note that, for all f ∈ Fint, (curl vI ,h · n)| f is constant and
∫

f [ψI ,h] f =
0 since[ψI ,h] f is a linear function and it is equal zero in the centroid off . Moreover
(curl vI ,h · n)| f = 0 for all f ∈ F∂Ω , and, using that for all facesf ∈ FΓ j one has∫

f ψI ,h = ψ j meas( f ), for all j = 1, . . . , pΓ , wefinally find∑
f ∈F

Γ j

∫
f

curl vI ,h · n ψI ,h =
∑

f ∈F
Γ j

(curl vI ,h · n)| f ψ j meas( f ) = ψ j

∫
Γ j

curl vI ,h · n = 0,

hence ∫
Ω I

curl vI ,h · ∇̃ψI ,h = 0.

Let us introduce the Raviart–Thomas finite element space (Brezzi & Fortin, 1991,
Chapter III)

RTh := {vh ∈ H(div;Ω I ) | vh(x)|K = aK + bK x ∀ K ∈ TI ,h},
whereaK is a constant complex vector andbK is a complex number, and the subspaces

RT0,∂Ω := RTh ∩ H0,∂Ω (div,Ω I ), RT0
0,∂Ω := RTh ∩ H0

0,∂Ω (div,Ω I ).

By arguments from discrete cohomology, it can be proved (see Bossavit, 1998) that, as
vector spaces onC,

dim(curl XI
h) = dim(RT0

0,∂Ω (Ω I )) − (pΓ − 1).

Let us denote by #K the number of tetrahedra ofTI ,h, by #F the total number of faces of
TI ,h and by #F∂Ω , #FΓ , the number of faces ofTI ,h on∂Ω and byΓ respectively. It is not
difficult to prove that

dim(RT0
0,∂Ω ) = dim(RT0,∂Ω (Ω I )) − dim(div(RT0,∂Ω (Ω I ))) = (#F − #F∂Ω ) − #K ,

dim(M I
h) = (#F − #FΓ ) + (pΓ − 1) = dim(∇̃(M I

h)),

dim(QI
h) = 3#K .
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Since 4#K = 2#F − (#F∂Ω + #FΓ ) then

dim(curl XI
h) + dim(∇̃M I

h)

= [(#F − #F∂Ω ) − #K − (pΓ − 1)] + [(#F − #FΓ ) + (pΓ − 1)]
= 2#F − (#F∂Ω + #FΓ ) − #K = 4#K − #K = dim(QI

h).

Since, trivially,curl XI
h ⊂ QI

h and∇̃M I
h ⊂ QI

h, the proof is finished. �

Using Lemma 5.3, we can now prove the main result of this section.

THEOREM 5.5 Given a triangulationTh of Ω , assume that the entries of the matrixε are
piecewise constants inΩ I . Then problem (5.4) has a unique solution.

Proof. Conditions (4.5) and (4.6) follow as in the proof of Theorem 5.2, provided that we
show that the space

{vh ∈ Xh | b(vI ,h, NI ,h) = 0 ∀ NI ,h ∈ QI ,0
h },

whereQI ,0
h ⊂ QI

h is defined as follows:

QI ,0
h := {NI ,h ∈ QI

h | ch(NI ,h, ψI ,h) = 0 ∀ ψI ,h ∈ M I
h},

coincides with the spaceX0
h defined in (5.2). In fact, it is enough to prove thatQI ,0

h = WI
h .

Since the entries of the matrixε are piecewise constants, for eachNI ,h ∈ QI ,0
h we have

εNI ,h ∈ QI
h. Therefore, using Lemma 5.4, we obtain thatεNI ,h ∈ curl XI

h, henceQI ,0
h ⊂

ε−1 curl XI
h. The converse is straightforward, proceeding as in the proof of Lemma 5.4.

Concerning the inf–sup condition (4.7) note that for allψI ,h ∈ M I
h one has̃∇ψI ,h ∈

QI
h, hence from the definition of the norm‖ · ‖h

sup
NI ,h∈QI

h

|ch(NI ,h, ψI ,h)|
‖NI ,h‖L2(Ω I )‖ψI ,h‖h

� |ch(∇̃ψI ,h, ψI ,h)|
‖∇̃ψI ,h‖L2(Ω I )‖ψI ,h‖h

=
∫
Ω I ε∇̃ψI ,h · ∇̃ψI ,h

‖∇̃ψI ,h‖2
L2(Ω I )

� ε∗.

(5.5)

�

REMARK 5.2 Note thatJe,I = curl Ke,I for someKe,I ∈ H0,∂Ω (curl;Ω I ). If πhKe,I

is well defined, we can defineGh(NI ) := ∫
Ω I curl(πhKe,I ) · NI . If in problem (5.4) we

replaceG with Gh, it is easily showed that the newφI ,h is equal to zero.

6. Error estimates

Given the discrete inf–sup conditions established in Section 5.1, the quasi-optimality of the
discrete solution of the two-field problem is standard (Brezzi & Fortin, 1991, Chapter 2).
Here, we are only concerned with the discrete three-field problem (5.4).
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We denote byc1 andc2 the continuity constants of the bilinear formsa(·, ·) andb(·, ·)
respectively, byα the coercivity constant ofa(·, ·) in V0 and byβ andγ two positive
constants, independent ofh, such that

inf
NI ,h∈QI ,0

h

sup
vh∈Xh

|b(vI ,h, NI ,h)|
‖vh‖H(curl,Ω)‖NI ,h‖L2(Ω I )

� β, (6.1)

and

inf
ψI ,h∈M I

h

sup
NI ,h∈Qh

|ch(NI ,h, ψI ,h)|
‖φI ,h‖h‖NI ,h‖L2(Ω I )

� γ . (6.2)

From (5.3) and (5.5) we can takeβ = ε∗
C6(1+C2

5)1/2ε∗ andγ = ε∗.

THEOREM 6.1 Let(H, AI , φI ) ∈ H0(curl;Ω)× (L2(Ω I ))3 × H1∗ (Ω I ) be the solution of
problem (4.3) and(Hh, AI ,h, φI ,h) ∈ Xh × QI

h × M I
h the solution of problem (5.4). Then

the following error estimates hold:

‖H − Hh‖H(curl;Ω) �
(

1 + c1

α

)(
1 + c2

β

)
inf

vh∈Xh
‖H − vh‖H(curl;Ω), (6.3)

‖AI − AI ,h‖L2(Ω I ) �
(

1 + c2

β

)
inf

NI ,h∈QI ,0
h

‖AI − NI ,h‖L2(Ω I )

+ c1

β
‖H − Hh‖H(curl;Ω),

(6.4)

‖φI − φI ,h‖h = ‖φI ,h‖h � c2

γ
‖H − Hh‖H(curl;Ω). (6.5)

Proof. The proof follows the lines of the proofs in Brezzi & Fortin (1991, Chapter 2). For
all v∗

h, vh ∈ Xh andNI ,h ∈ QI
h

a(Hh − v∗
h, vh) + b(vI ,h, AI ,h − NI ,h) = F(vh) − a(v∗

h, vh) − b(vI ,h, NI ,h)

= a(H − v∗
h, vh) + b(vI ,h, AI − NI ,h).

Note that ifvh ∈ X0
h thencurl vI ,h = 0 in Ω I , thereforea(Hh − v∗

h, vh) = a(H − v∗
h, vh).

If we take v∗
h ∈ XG

h := {vh ∈ Xh | b(vI ,h, NI ,h) = G(NI ,h) ∀ NI ,h ∈ QI ,0
h }, then

Hh − v∗
h ∈ X0

h and we find

a(Hh − v∗
h, Hh − v∗

h) = a(H − v∗
h, Hh − v∗

h).

SinceX0
h ⊂ V0, from coerciveness we conclude

‖H − Hh‖H(curl;Ω) � ‖H − v∗
h‖H(curl;Ω) + ‖Hh − v∗

h‖H(curl;Ω)

�
(
1 + c1

α

)‖H − v∗
h‖H(curl;Ω) ∀ v∗

h ∈ XG
h . (6.6)

Moreover, from the inf–sup condition (6.1), for allvh ∈ Xh there exists a uniquezh ∈
(X0

h)⊥ such thatb(zI ,h, NI ,h) = b(HI − vI ,h, NI ,h) for all NI ,h ∈ QI ,0
h and

‖zh‖H(curl;Ω) � c2

β
‖H − vh‖H(curl;Ω).
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Settingv∗
h := zh + vh, for all NI ,h ∈ QI ,0

h we have

b(v∗
I ,h, NI ,h) = b(HI , NI ,h) = b(HI , NI ,h) + c(NI ,h, φI ) = G(NI ,h),

hencev∗
h ∈ XG

h . Furthermore,

‖H − v∗
h‖H(curl;Ω) � ‖H − vh‖H(curl;Ω) +‖zh‖H(curl;Ω) �

(
1+ c2

β

)
‖H − vh‖H(curl;Ω),

and (6.3) follows from (6.6).
To obtain (6.4) we use the inf–sup condition (6.1). For eachNI ,h ∈ QI ,0

h we find

‖AI ,h − NI ,h‖L2(Ω I ) � 1

β
sup

vh∈Xh

|b(vI ,h, AI ,h − NI ,h)|
‖vh‖H(curl,Ω)

.

On the other hand

b(vI ,h, AI ,h − NI ,h) = F(vh) − a(Hh, vh) − b(vI ,h, NI ,h)

= a(H − Hh, vh) + b(vI ,h, AI − NI ,h),

then

‖AI ,h − NI ,h‖L2(Ω I ) � c1

β
‖H − Hh‖H(curl;Ω) + c2

β
‖AI − NI ,h‖L2(Ω I ),

which yields (6.4).
To obtain (6.5) we use the inf–sup condition (6.2) that in particular gives

‖φI ,h‖h � 1

γ
sup

NI ,h∈Qh

|ch(NI ,h, φI ,h)|
‖NI ,h‖L2(Ω I )

.

On the other hand

ch(NI ,h, φI ,h) =G(NI ,h) − b(HI ,h, NI ,h)

=b(HI , NI ,h) + c(NI ,h, φI ) − b(HI ,h, NI ,h)

=b(HI − HI ,h, NI ,h),

then
‖φI ,h‖h � c2

γ
‖H − Hh‖H(curl,Ω).

�

REMARK 6.1 It is worthy to note thatQI ,0
h = ε−1 curl XI

h and that there existsqI ∈
H0,∂Ω (curl;Ω I ) such thatεAI = curl qI . Hence

inf
NI ,h∈QI ,0

h

‖AI − NI ,h‖L2(Ω I ) = inf
qI ,h∈XI

h

‖ε−1(curl qI − curl qI ,h)‖L2(Ω I )

� C inf
qI ,h∈XI

h

‖qI − qI ,h‖H(curl;Ω I ).
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